2013年山东省滨州市中考数学试题及答案(word版)
- 格式:doc
- 大小:456.00 KB
- 文档页数:16
2013年山东省滨州市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,满分36分。
)1.计算1132-,正确的结果为( ) A .15 B .15- C .16 D .16- 2.化简3a a,正确结果为( ) A .a B .a 2 C .a ﹣1 D .a ﹣2 3.把方程112x =变形为x=2,其依据是( ) A .等式的性质1 B .等式的性质2 C .分式的基本性质 D .不等式的性质14.如图,已知圆心角∠BOC=78°,则圆周角∠BAC 的度数是( )A .156°B .78°C .39°D .12°5.如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是( )A .B .C .D .6.若点A (1,y 1)、B (2,y 2)都在反比例函数()0k y k x=>的图象上,则y 1、y 2的大小关系为( ) A .y 1<y 2 B .y 1≤y 2 C .y 1>y 2 D .y 1≥y 27.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A . 6,B . 3C .6,3D .8.如图,等边△ABC 沿射线BC 向右平移到△DCE 的位置,连接AD 、BD ,则下列结论: ①AD=BC ;②BD 、AC 互相平分;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .39.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为( )A .12B .34C .13D .1410.对于任意实数k ,关于x 的方程x 2﹣2(k+1)x ﹣k 2+2k ﹣1=0的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定11.若把不等式组2312x x --⎧⎨--⎩≥≥的解集在数轴上表示出来,则其对应的图形为( ) A .长方形 B .线段 C .射线 D .直线12.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c <0;③ac >0;④当y <0时,x <﹣1或x >2.其中正确的个数是( )A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题4分,满分24分)13.分解因式:5x 2﹣20= .14.在△ABC 中,∠C=90°,AB=7,BC=5,则边AC 的长为 .15.在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= .16.一元二次方程2x 2﹣3x+1=0的解为 .17.在▱ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,且AB=6,BC=10,则OE= .18.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n 个算式(n 为正整数)应表示为 .三、解答题(本大题共7小题,满分60分)19.(6分)(请在下列两个小题中,任选其一完成即可)(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)解方程:352123x x +-=. 20.(7分)(计算时不能使用计算器)(20|2|π++-.21.(8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.22.(8分)如图,在△ABC 中,AB=AC ,点O 在边AB 上,⊙O 过点B 且分别与边AB 、BC 相交于点D 、E ,EF ⊥AC ,垂足为F .求证:直线EF 是⊙O 的切线.23.(9分)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm ,高为20cm .请通过计算说明,当底面的宽x 为何值时,抽屉的体积y 最大?最大为多少?(材质及其厚度等暂忽略不计).24.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).25.(12分)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线15y x=-垂直的直线l5的函数表达式.参考答案与解析一、选择题(本大题共12小题,每小题3分,满分36分。
山东省滨州市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2)C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B (10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1) B.(4,3) C.(3,4) D.(1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.B.C.D.【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N 分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB 于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.【点评】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x ﹣[x]的图象为()A.B.C.D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°【点评】此题主要考查了三角形内角和定理,正确把握定义是解题关键.14.(5分)若分式的值为0,则x的值为﹣3.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.【点评】本题主要考查分式的值为0的条件,注意分母不为0.15.(5分)在△ABC中,∠C=90°,若tanA=,则sinB=.【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.【解答】解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.【点评】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为y2<y1<y3.【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.【解答】解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF 的长.【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.【分析】原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC 平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA (ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A (1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答】解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。
2013年滨州市初中学生学业考试英语试题试卷类型:A第Ⅰ卷(选择题共75分)一、听力选择(共20小题,计20分。
每小题约有8秒钟的答题时间。
)(一)录音中有五个句子,听句子两遍后,从每小题A、B、C三个选项中选出能对每个句子做出适当反应的答语。
1. A.It’s Thursday. B.It’s eight o’clock. C.It’s June 13.2. A.My pleasure. B.Thank you. C.Don’t mention it.3. A.In the park. B.For three hours. C.At the age of ten.4. A.Well done. B.Follow me. C.Sure, here you are.5. A.Never mind. B.Sorry to hear that. C.Much better.(二)录音中有五组对话和五个问题,听对话和问题两遍后,从每小题A、B、C三个选项中选出能回答所给问题的正确答案。
6. What did Tony buy last night?A B C7.A B C8. Where are they probably talking now?A.In the bank. B.In the cinema. C.In the bookstore.9. Why can’t Tom go out to play?A.Because he has to work in the garden.B.Because he has to look after his father.C.Because he has to study at home.10. How old may Lisa be?A.16. B.18. C.20.(三)录音中有一段对话和五个问题,听对话和问题两遍后,从每小题A、B、C三个选项中选出能回答所给问题的正确答案。
2013年山东滨州中考《数学》试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2013年某某省滨州市滨城区中考数学二模试卷一、选择题(本大题共12题,在每个小题的四个选项中只有一个十正确的,请把正确的选出来,并将其字母标号填写在答题栏内,每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分)1.(3分)(2013•滨城区二模)在十米跳台跳水中,某运动员某次跳水向上跳的最高点离跳台2米,记作+2米,则水面到跳台的距离记作()A.+12米B.﹣12米C.+10米D.﹣10米考点:正数和负数.分析:本题需先根据已知条件向上跳的最高点离跳台2米,记作+2米,从而得出水面到跳台的距离.解答:解:∵向上跳的最高点离跳台2米,记作+2米,∴在十米跳台跳水中,水面到跳台的距离记作:﹣10米;故选D.点评:本题主要考查了正数和负数,在解题时要根据正数和负数的概念进行解题是本题的关键.2.(3分)(2008•乌鲁木齐)的相反数是()A.﹣B.C.﹣D.考点:实数的性质.专题:计算题.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:∵+(﹣)=0,∴的相反数是﹣.故选A.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.3.(3分)(2009•某某)下列运算中,正确的是()A.=±3B.(a2)3=a6C.3a•2a=6a D.3﹣2=﹣9考点:负整数指数幂;算术平方根;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:分别根据算术平方根、幂的乘方、单项式的乘法、负整数指数幂的运算法则进行计算.解答:解:A、=3;B、正确;C、3a•2a=6a2;D、3﹣2=.故选B .点评:正确理解负整数指数次幂的含义,幂的乘方,积的乘方的运算法则是解答此题的关键.4.(3分)(2013•滨城区二模)与平面图形图有相同对称性的平面图形是()A.B.C.D.考点:中心对称图形.分析:由题意可知要求的图形既是中心对称图形又是轴对称图形,根据轴对称图形与中心对称图形的概念求解.解答:解:观察图形可知已知图形既是中心对称图形又是轴对称图形.A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选B.点评:掌握中心对称图形与轴对称图形的概念.(1)在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.(2)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.5.(3分)(2008•荆州)下列根式中属最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A 、是最简二次根式;B、=,可化简;C、==2,可化简;D、==3,可化简;故选A.点评:最简二次根式是本节的一个重要概念,也是中考的常考点.最简二次根式应该是:根式里没分母(或小数),分母里没根式.被开方数中不含开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.6.(3分)(2010•某某)如图所示的几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面看应是两个相对的三角形,故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.(3分)(2005•某某)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm考点:垂径定理;勾股定理.专题:压轴题.分析:先根据垂径定理求出OA、AM的长,再利用勾股定理求OM.解答:解:由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED⊥AB于点M,则ED=10cm,AB=8cm,由垂径定理知:点M为AB中点,∴AM=4cm,半径OA=5cm,∴OM2=OA2﹣AM2=25﹣16=9,∴OM=3cm.故选A.点评:本题利用了垂径定理和勾股定理求解.8.(3分)(2013•滨城区二模)如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于()A.B.C.D.1考点:锐角三角函数的定义;圆周角定理.分析:连接AB,BC,即可证明△ABC是等腰直角三角形,根基同弧所对的圆周角相等即可求解.解答:解:连接AB,BC.∵AC是直径.∴∠ABC=90°,则△ABC是等腰直角三角形.∴∠C=45°∴sin∠APB=sinC=sin45°=.故选B.点评:本题主要考查了正弦函数的定义,正确作出辅助线,把所求的角进行转化是解题的关键.9.(3分)(2013•滨城区二模)已知在半径为2的⊙O中,圆内接△ABC的边AB=2,则∠C的度数为()A.60°B.30°C.60°或120°D.30°或150°考点:圆周角定理;解直角三角形.专题:计算题;分类讨论.分析:过圆心作AB的垂线,在构建的直角三角形中,易求得圆心角∠AOB的度数,由此可求出∠C的度数.(注意∠C所对的弧可能是优弧,也可能是劣弧)解答:解:如图,连接OA、OB,过O作OD⊥AB于D.在Rt△OAD中,AD=,OA=2,∴sin∠AOD==,∴∠AOD=60°,∠AOB=120°.点C的位置有两种情况:①当点C在F点位置时,∠C=∠F=∠AOB=60°;②当点C在E点位置时,∠C=∠E=180°﹣∠F=120°.故选C.点评:本题主要考查了垂径定理以及解直角三角形的应用.注意点C的位置有两种情况,不要漏解.10.(3分)(2013•滨城区二模)一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0B.0或﹣2 C.﹣2 D.2考点:根的判别式;一元二次方程的定义.专题:计算题.分析:由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.解答:解:∵一元二次方程mx2+mx﹣=0有两个相等实数根,∴△=m2﹣4m×(﹣)=m2+2m=0,解得:m=0或m=﹣2,经检验m=0不合题意,则m=﹣2.故选C点评:此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.11.(3分)(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.12.(3分)(2010•某某)如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积()A.B.C.D.考点:扇形面积的计算;正方形的性质.专题:压轴题.分析:连接AM、BM.根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OAB的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.解答:解:连接AM、BM.∵MN∥AD∥BC,OM=ON,∴四边形AOBN的面积=四边形AOBM的面积.再根据图形的轴对称性,得阴影部分的面积=扇形OAB的面积=圆面积.故选B.点评:此题注意能够把不规则图形的面积进行转换.涉及的知识点:两条平行线间的距离处处相等;等底等高的三角形的面积相等;正方形的每一条边所对的圆心角是90°.二、填空题(本大题共6个小题,每小题填对最后结果得4分,满分24分)13.(4分)(2011•某某)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为9.63×10﹣5.考点:科学记数法—表示较小的数.专题:计算题.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0963用科学记数法可表示为:0.000 0963=9.63×10﹣5;故答案为:9.63×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(4分)(2011•某某)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页,数学2页,英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为.考点:概率公式.专题:应用题.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故答案为.点评:本题主要考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(2013•滨城区二模)不等式组的整数解是1,2 .考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:由①得x<3,由②得x>,故不等式组的解集为<x<3,则不等式组的整数解为1,2.故答案为:1,2.点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(4分)(2009•某某)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A'落在AB边的起始位置上时即停止转动,则点B转过的路径长为2π(结果保留π).考点:弧长的计算;旋转的性质.专题:压轴题.分析:点B转过的路径长是以点C为圆心,BC为半径,旋转角度是60度,根据弧长公式可得.解答:解:∵AC=A′C,且∠A=60°∴△ACA′是等边三角形.∴∠ACA′=60°∴点B转过的路径长是:=2π.点评:本题的关键是弄清所求的是那一段弧长,圆心用半径,圆心角分别是多少,然后利用弧长公式求解.17.(4分)(2010•内江)化简:= x+1 .考点:分式的加减法.专题:计算题.分析:分式相加减时,先进行通分运算,再根据分式加减法则进行运算.解答:解:原式=﹣==x+1.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.18.(4分)(2011•某某)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值X围是﹣3<x <1 .考点:二次函数的图象.专题:压轴题.分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的X围.解答:解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值X围是﹣3<x<1.点评:此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.三、解答题(本大题共7个小题,满分60分)19.(6分)(2013•滨城区二模)计算:|﹣3|﹣(3.14﹣π)0+.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及绝对值、0指数幂、负指数幂等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣1+﹣2=2+3﹣2=3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记绝对值、0指数幂、负指数幂等考点的运算.20.(7分)(2011•呼伦贝尔)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x 分)进行了统计,具体统计结果见下表:分数段90<x≤100 80<x≤90 70<x≤80 60<x≤70 x≤60人数 1200 1461 642 480 217(1)填空:①本次抽样调查共测试了4000 名学生;②参加地理会考模拟测试的学生成绩的中位数落在分数段80<x≤90上;③若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为108°;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?考点:频数(率)分布表;用样本估计总体;中位数.专题:压轴题;图表型.分析:(1)①把所有的人数加起来即可;②根据中位数的定义解答③算出这个分数段人数所占的百分比再乘以360°即可;(2)求出该地区确定地理会考成绩60分以上(含60分)的人数,再除以总人数,求出百分比,与97%比较,大于97%时,为合格,小于97%时,为不合格.解答:解:(1)①1200+1461+642+480+217=4000(人);②学生的成绩已按大小顺序排列第2000和第2001个数的平均数是中位数,即落在80<x≤90分数段内;③1200÷4000×100%×360°=108°;故填4000;80<x≤90;108°.(2)∵(1200+1461+642+480+117)÷4000×100%=97.5%>97%,∴本次地理会考模拟测试的合格率达到要求.点评:本题考查读频数分布表获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数;以及圆心角的计算方法.21.(8分)(2013•滨城区二模)如图,大小不等、形状相同的两个三角板(等腰直角)△OAB和△EOF摆拼在一起,它们的直角顶点重合,连结AE、BF,你认为线段AE、线段BF有怎样的关系?证明你的结论.考点:全等三角形的判定与性质;等腰直角三角形.分析:根据等腰三角形性质得出OA=OB,OE=OF,∠AOB=∠EOF=90°,求出∠AOE=∠BOF,根据SAS证△AOE≌△BOF,推出AE=BF,∠EAO=∠FBO,延长AE交OB于M,角BF于H,根据∠AMO=∠BMH,∠EAO=∠FBO求出∠BHN=∠AOM=90°,根据垂直定义得出即可.解答:AE=BF,AE⊥BF,证明:∵△AOB和△EOF是等腰直角三角形,∴OA=OB,OE=OF,∠AOB=∠EOF=90°,∴∠AOB﹣∠EOB=∠EOF﹣∠EOB,∴∠AOE=∠BOF,在△AOE和△BOF中∴△AOE≌△BOF(SAS),∴AE=BF,∠EAO=∠FBO,延长AE交OB于M,角BF于H,∵∠AMO=∠BMH,∠EAO=∠FBO,∴∠BHN=∠AOM=90°,∴AE⊥BF.点评:本题考查了等腰直角三角形性质,垂直定义,三角形内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,判定两三角形全等的方法有SAS,ASA,SSS,AAS.22.(8分)(2013•滨城区二模)由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图所示,其树恰好落在另一棵树乙的根部C处,已知AB=1米,BC=5米,两棵树的株距(两棵树的水平距离)为3米.在点A 有一只蚂蚁想尽快爬到位于B、C两点之间的D处,且CD=,问它怎样走最近?为什么?考点:勾股定理的应用.专题:计算题.分析:过C作CH⊥AB于H,可以计算AH,BH,根据AH,CH可以计算AC的长,根据AB,BH可以计算AB的长,比较AC+CD和AB+BD的长,选择一个最近的路线,即为蚂蚁行走的路线.解答:答:蚂蚁沿着A﹣B﹣D路线走最近.理由如下:过C作CH⊥AB于H,在Rt△BCH中,∠H=90°,∵株距为3,∴CH=3,∵BC=5,∴由勾股定理:BH2=52﹣32=16,∴BH=4 AH=5,在Rt△ACH中,∠H=90°,∴CA2=52+32=34,BC=5,CD=0.1,BD=4.9,∴AC+CD=+0.1,AB+BD=1+4.9=5.9,∴AB+BD<AC+CD.∴蚂蚁沿着A﹣B﹣D路线走最近.点评:本题考查了勾股定理在实际生活中的应用,考查了实数大小的比较,本题中正确的计算AC,AB的长是解题的关键.23.(9分)(2013•滨城区二模)有三X卡片(背面完全相同)分别写在sin30°,tan60°,cos30°,把它们背面朝上洗匀后,小军从中抽取一X,记下这个数后放回洗匀,小明从中抽出一X.(1)小军抽取的卡片上是有理数的概率是.(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.考点:游戏公平性;特殊角的三角函数值;概率公式;列表法与树状图法.分析:(1)由特殊角的三角函数值,即可求得sin30°,tan60°,cos30°的值,然后由概率公式即可求得小军抽取的卡片上是有理数的概率;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人抽取的卡片上两数之积是有理数的情况,利用概率公式即可求得小军获胜与小明获胜的概率,继而求得这个游戏规则对谁有利.解答:解:(1)∵sin30°=,tan60°=,cos30°=,∴小军抽取的卡片上是有理数的概率是:.故答案为:;(2)画树状图得:∵共有9种等可能的结果,两人抽取的卡片上两数之积是有理数有4种情况,∴P(小军获胜)=,P(小明获胜)=,∴这个游戏规则对小军有利.点评:此题考查了游戏公平性的判断与特殊角的三角函数值问题.注意判断游戏公平性就要计算每个事件的概率,谁的概率大对谁就有利.24.(10分)(2013•滨城区二模)如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F.(1)试探求∠1与∠2的大小关系并说明理由.(2)用尺规作出△ABF的外接圆(保留作图痕迹),记作O,判断直线CD与⊙O的位置关系并证明.考点:切线的判定;正方形的性质;相似三角形的判定与性质.分析:(1)首先根据∠1+∠CEF=90°,∠DAE+∠1=90°,可得∠DAE=∠CEF,然后证明△ADE∽△ECF,根据相似可得出AE=2EF,AD=2DE,对应边成比例可证明△ADE∽△AEF,即可证明∠1=∠2;(2)直角三角形外接圆圆心在斜边中点处,由此可作出圆,证明OE⊥CD,可得出直线CD与⊙O相切.解答:解:∠1=∠2,理由如下:∵∠1+∠CEF=90°,∠DAE+∠1=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2;(2)直线CD与⊙O相切.理由如下:圆心O在AF的中点上,如图所示,连接OE,则OF=OE,故可得∠2=∠OEF,∵∠1+∠CEF=90°,∠1=∠2,∴∠2+∠CEF=90°,∴∠OEF+∠CEF=90°,即OE⊥CD,故直线CD与⊙O相切.点评:本题考查了切线的判定及性质,注意掌握直角三角形外接圆圆心在斜边中点处,另外要求同学们掌握切线的判定定理,有一定难度.25.(12分)(2013•滨城区二模)已知一元二次方程x2+mx+n+2=0的一根为﹣1.(1)试确定n关于m的函数关系式;(2)判断抛物线y=x2+mx+n与x轴的公共点个数;(3)设抛物线y=x2+mx+n+2与x轴交于A、B两点(A、B不重合),且以AB为直径的圆正好经过该抛物线的顶点,求对应点的m、n的值.考点:二次函数综合题.分析:(1)把x=﹣1直接代入一元二次方程x2+mx+n+2=0中即可得到n关于m的函数关系式;(2)利用(1)的结论证明抛物线y=x2+mx+n的判别式是正数就可以了;(3)首先求出方程x2+mx+m﹣1=0的两根,然后用m表示AB的长度,表示抛物线顶点坐标,再利用以AB为直径的圆正好经过该抛物线的顶点可以得到关于m的方程,解方程即可求出m的值.解答:解:(1)由题意得(﹣1)2+(﹣1)m+n+2=0,即n=m﹣3;(2)∵一元二次方程x2+mx+n=0的判别式△=m2﹣4n,由(1)得△=m2+4(m﹣3)=m2+4m+12=(m+2)2+8>0,∴一元二次方程x2+mx+n=0有两个不相等的实根,∴抛物线y=x2+mx+n与x轴有两个交点;(3)由题意,x2+mx+m﹣1=0,解此方程得x1=1,x2=1﹣m (m≠2),∴AB=m﹣2(m>2)或AB=2﹣m(m<2),∵y=x2+mx+n+2即y=x2+mx+m﹣1的顶点坐标是(﹣,﹣),又∵以AB为直径的圆正好经过该抛物线的顶点,∴设顶点为M,则△ABM为等腰直角三角形,∴可得当m>2时,有(m﹣2)=,解得m1=2(舍),m2=6,当m<2时,有(2﹣m)=,解得m3=2(舍),m4=0,综上可知m=6或m=0,∴或.点评:本题考查二次函数和一元二次方程的关系,此题比较难,综合性比较强,主要利用了抛物线与x轴交点情况与判别式的关系解决问题,也利用了圆的知识来确定待定系数.。
滨州中考数学试题及答案本次滨州中考数学试题涵盖了初中数学的多个重要知识点,包括代数、几何、统计与概率等。
以下是部分试题及答案:一、选择题(每题3分,共30分)1. 若a和b互为相反数,则a+b的值为()A. 0B. 1C. -1D. 无法确定答案:A2. 下列哪个选项是二次函数y=ax^2+bx+c的图像()A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一条直线D. 一个圆答案:B3. 如果一个三角形的两边长分别为3和5,那么第三边的取值范围是()A. 2到8之间B. 0到8之间C. 2到8(不包括2和8)D. 0到8(不包括0和8)答案:C4. 一个圆的半径为r,那么它的面积是()A. πr^2B. 2πrC. πrD. 4πr^2答案:A5. 已知一组数据的平均数为5,中位数为4,众数为3,那么这组数据的极差是()A. 2B. 1C. 0D. 无法确定答案:B二、填空题(每题3分,共15分)6. 一个数的平方根是2,那么这个数是______。
答案:47. 如果一个多边形的内角和为720度,那么这个多边形的边数是______。
答案:58. 一个等腰直角三角形的斜边长为5,那么它的两条直角边长分别是______。
答案:5√2/29. 一组数据1, 2, 2, 3, 4的方差是______。
答案:0.810. 如果一个函数的图象经过点(1,2)和(2,3),那么这个函数的一次项系数是______。
答案:1三、解答题(共55分)11. 已知一个二次函数的顶点坐标为(-1, 4),且经过点(0, 3),求这个二次函数的解析式。
答案:y = -3x^2 + 6x + 312. 一个长方体的长、宽、高分别为a、b、c,且a > b > c。
如果长方体的体积为24立方厘米,表面积为72平方厘米,求长方体的长、宽、高。
答案:a = 4厘米,b = 3厘米,c = 2厘米13. 已知一个等差数列的首项为2,公差为3,求这个数列的第10项。
2013年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每个小题的四个选项中只有一个正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内。
每小题选对得3分,错选、不选或多选均记0分,满分36分。
1.(3分)(2013•滨州)计算,正确的结果为()A.B.C.D.考点:有理数的减法.分析:根据有理数的减法运算法则进行计算即可得解.解答:解:﹣=﹣.故选D.点评:本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.2.(3分)(2013•滨州)化简,正确结果为()A.a B.a2C.a﹣1D.a﹣2考点:约分.分析:把分式中的分子与分母分别约去a,即可求出答案.解答:解:=a2;故选B.点评:此题考查了约分,解题的关键是把分式中的分子与分母分别进行约分即可.3.(3分)(2013•滨州)把方程变形为x=2,其依据是()A.等式的性质1 B.等式的性质2 C.分式的基本性质D.不等式的性质1考点:等式的性质.分析:根据等式的基本性质,对原式进行分析即可.解答:解:把方程变形为x=2,其依据是等式的性质2;故选:B.点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.4.(3分)(2008•湖州)如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A . 156°B . 78°C . 39°D . 12°考点: 圆周角定理.专题: 计算题. 分析: 观察图形可知,已知的圆心角和圆周角所对的弧是一条弧,根据同弧所对的圆心角等于圆周角的2倍,由圆心角∠BOC 的度数即可求出圆周角∠BAC 的度数. 解答:解:∵圆心角∠BOC 和圆周角∠BAC 所对的弧为,∴∠BAC=∠BOC=×78°=39°.故选C 点评: 此题要求学生掌握圆周角定理,考查学生分析问题、解决问题的能力,是一道基础题. 5.(3分)(2013•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是( )A .B .C .D .考点: 简单组合体的三视图. 分析: 从上面看得到从左往右2列,正方形的个数依次为1,2,依此画出图形即可. 解答: 解:根据几何体可得此图形的俯视图从左往右有2列,正方形的个数依次为1,2.故选:A . 点评: 此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的位置.6.(3分)(2013•滨州)若点A (1,y 1)、B (2,y 2)都在反比例函数的图象上,则y 1、y 2的大小关系为( ) A . y 1<y 2 B . y 1≤y 2 C . y 1>y 2 D . y 1≥y 2考点: 反比例函数图象上点的坐标特征. 分析: 根据反比例函数图象的增减性进行判断. 解答:解:∵反比例函数的解析式中的k <0,∴该函数的图象是双曲线,且图象经过第二、四象限,在每个象限内,y随x的增大而增大.∴点A(1,y1)、B(2,y2)都位于第四象限.又∵1<2,∴y1>y2故选C.点评:本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.7.(3分)(2013•滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,B.,3 C.6,3 D.,考点:正多边形和圆.分析:由正方形的边长、外接圆半径、内切圆半径正好组成一个直角三角形,从而求得它们的长度.解答:解:∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3∴AO==3故选B.点评:此题考查了正多边形和圆,重点是了解有关概念并熟悉如何构造特殊的直角三角形,比较重要.8.(3分)(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.3考点:平移的性质;等边三角形的性质;菱形的判定与性质.分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断④正确.解答:解:△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.点评:本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定,解答本题的关键是先判断出△ACD是等边三角形,难度一般.9.(3分)(2013•滨州)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为()A.B.C.D.考点:列表法与树状图法;三角形三边关系.分析:利用列举法可得:从长度分别为3、5、6、9的四条线段中任取三条的可能结果有:3、5、6;3、5、9;3、6、9;5、6、9;能组成三角形的有:3、5、6;5、6、9;然后利用概率公式求解即可求得答案.解答:解:∵从长度分别为3、5、6、9的四条线段中任取三条的可能结果有:3、5、6;3、5、9;3、6、9;5、6、9;能组成三角形的有:3、5、6;5、6、9;∴能组成三角形的概率为:=.故选A.点评:此题考查了列举法求概率的知识.此题难度不大,注意用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2013•滨州)对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0∴此方程有两个不相等的实数根,故选C.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(3分)(2013•滨州)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.解答:解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选B.点评:本题考查了不等式组的解集及在数轴上表示不等式的解集的知识,属于基础题.12.(3分)(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.解答:解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.点评:此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI 越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题本大题共6个小题,每小题填对最后结果得4分,满分24分。
绝密★启用前试题类型:A 滨州市二〇一三年初中学生学业考试数学试题温馨提示:1.本试卷共8页,满分120分,考试时间为120分钟.2.请用蓝色或黑色钢笔、圆珠笔直接在试卷上作答(作图可用铅笔).3.答卷前请将密封线内的项目填写清楚,并将座号填写在右下角的座号栏内.一、选择题:本大题共12分小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内.每小题选对得3分,错选、不选或多选均记0分,满分36分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.(2013山东滨州,1,3分)计算13-12,正确的结果为A.15B.-15C.16D.-16【答案】D.2.(2013山东滨州,2,3分)化简3aa,正确的结果为A.a B.a2C.a-1D.a-2【答案】B.3.(2013山东滨州,3,3分)把方程12x=1变形为x=2,其依据是A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质1【答案】B.4.(2013山东滨州,4,3分)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为A.156°B.78°C.39°D.12°【答案】C.5.(2013山东滨州,5,3分)左图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是【答案】A.6.(2013山东滨州,6,3分)若点A(1,y1)、B(2,y2)都在反比例函数y=kx(k>0)的图象上,则y1、y2的大小关系为A.y1<y2B.y1≤y2C.y1>y2D.y1≥y2【答案】C.7.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A.6,32B .32,3 C.6,3 D .62,32【答案】B.8.(2013山东滨州,8,3分)如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是A.0 B.1 C.2 D.3【答案】D.9.(2013山东滨州,9,3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为A.12B.34C.13D.14【答案】A.10.(2013山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【答案】C.11.(2013山东滨州,11,3分)若把不等式组2xx--3⎧⎨-1-2⎩≥,≥的解集在数轴上表示出来,则其对应的图形为A.长方形B.线段C.射线D.直线【答案】B.12.(2013山东滨州,12,3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的个数是A.1 B.2 C.3 D.4【答案】B.二、填空题:本大题共6各小题,每小题填对最后结果得4分,满分24分.13.(2013山东滨州,13,4分)分解因式:5x2-20=______________.【答案】5(x+2)(x-2).14.(2013山东滨州,14,4分)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为______________.【答案】2615.(2013山东滨州,15,4分)在等腰△ABC中,AB=AC,∠A=50°,则∠B=______________.【答案】65°16.(2013山东滨州,16,4分)一元二次方程2x2-3x+1=0的解为______________.【答案】x1=1,x2=1 2 .17.(2013山东滨州,17,4分)在 ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=______________.【答案】A.18.(2013山东滨州,18,4分)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.【答案】[10(n-1)+5]×[10(n-1)+5]=100n(n-1)+25.三、解答题:本大题共7个小题,满分60分.解答时请写出必要的演推过程.19.(2013山东滨州,19,6分)(本小题满分6分,请在下列两个小题中,任选其一完成即可)(1)解方程组:3419 x yx y+=⎧⎨-=4.⎩,(2)解方程:352. 23x x+-1=【解答过程】解:(1)3419x yx y+=⎧⎨-=4.⎩,①②.由②,得x=4+y,③把③代入①,得3(4+y)+4y=19,12+3y+4y=19,y=1.把y=1代入③,得x=4+1=5.∴方程组的解为5 xy=⎧⎨=1.⎩,(2)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x=-17.系数化为1,得x=-175.20.(2013山东滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+0(3)π+-27+32-.【解答过程】解:原式=3-3+1-33+2-3=-33.21.(2013山东滨州,21,8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【解答过程】解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型校服的学生有10人.(2)补充如下:(3)185型的人数是50-3-15-15-10-5=2(人),圆心角的度数为360°×250=14.4°.(4)165型和170型出现的次数最多都是15次,故众数是165和170;共50个数据,第25和第26个数据都是170,故中位数是170.22.(2013山东滨州,22,8分)如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.【解答过程】证明:连接OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C.∴∠OEB=∠C.∴OE∥AC.∵EF⊥AC,∴OE⊥EF.∴直线EF是⊙O的切线.23.(2013山东滨州,23,9分)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)【解答过程】解:根据题意,得y=20x(1802-x),整理,得y=-20x2+1800x.∵y=-20x2+1800x=-20(x2-90x+2025)+40500=-20(x-45)2+40500,∵-20<0,∴当x=45时,函数有最大值,y最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 2. 24.(2013山东滨州,24,10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示.其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm ,为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计)【解答过程】 解:过点C 作CM ∥AB ,交EF 、AD 于N 、M ,作CP ⊥AD ,交EF 、AD 于Q 、P .由题意,得四边形ABCM 是平行四边形, ∴EN=AM=BC=20(cm).∴MD=AD -AM=50-20=30(cm). 由题意知CP=40cm ,PQ=8cm , ∴CQ=32cm . ∵EF ∥AD ,∴△CNF ∽△CMD .∴NF MD =CQCP , 即30NF =3240. 解得NF=24(cm).∴EF=EN+NF=20+24=44(cm). 答:横梁EF 应为44cm .25.(2013山东滨州,25,12分) 根据要求,解答下列问题:(1)已知直线l 1的函数解析式为y=x ,请直接写出过原点且与l 1垂直的直线l 2的函数表达式;(2)如图,过原点的直线l 3向上的方向与x 轴的正方向所成的角为30°. ①求直线l 3的函数表达式;②把直线l 3绕原点O 按逆时针方向旋转90°得到直线l 4,求直线l 4的函数表达式.(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-1 5 x垂直的直线l5的函数表达式.【解答过程】解:(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴ON=3.设直线l3的表达式为y=kx,把(3,1)代入y=kx,得1=3k,k=33.∴直线l3的表达式为y=33x.②如图,作出直线l4,且在l4取一点P,使OP=OM,作PQ⊥y轴于Q,同理可得∠POQ=30°,PQ=1,OQ=3,设直线l4的表达式为y=kx,把(-1,3)代入y=kx,得3=-k,∴k=-3.∴直线l4的表达式为y==-3x.(3)当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.。
新世纪教育网 精品资料版权所有@新世纪教育网
2013年山东省德州市平原县中考数学二模试卷
一、选择题(本大题共12个小题,每小题3分,共36分)
=2
3.(3分)(2011•曲靖)将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()
新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网
4.(3分)(2011•河池)如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是()
5.(3分)(2011•凉山州)如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()
B=AOB=
ACB=×
6.(3分)(2011•牡丹江)下列图形中,既是轴对称图形又是中心对称图形的有()个.
7.(3分)(2011•荆门)关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1
,,整理原式即可得出关于
﹣=1
8.(3分)(2011•南宁)如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,
在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()
B.
9.(3分)(2011•庆阳)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据如图提供的信息,捐款金额的众数和中位数分别是()
10.(3分)(2013•平原县二模)如图,在△ABC中,AB=AC=13,BC=10,点D为BC中点,DE⊥AB,垂足为点E,则DE等于()
B.
DE=
11.(3分)(2009•黔南州)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()
cm .
OD=OA=1cm
AD=
cm
OD=
12.(3分)(2011•六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()
二、填空题(本大题共5个小题,每小题4分,共20分.)
13.(4分)(2013•平原县二模)2013年初甲型H7N9流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H7N9流感球形病毒细胞的直径约为0.00000156m,则它的半径用科学记数法表示7.8×10﹣7m.
14.(4分)(2013•平原县二模)计算:|﹣2|+(+1)0﹣()﹣1+tan60°=.
+1﹣(
.
故答案为:.
15.(4分)(2013•平原县二模)将二次函数y=﹣x2+2x+2的图象先向下平移3个单位长度,再向左平移1个单位长度得到的图象的解析式为y=﹣x2.
16.(4分)(2011•鞍山)如图,▱ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接
BE、AF交于点H,连接DF、CE交于点G,则=.
=,同理
S××
S×S
S ABCD S
故答案为:
17.(4分)(2011•长春)边长为2的两种正方形卡片如图①所示,卡片中的扇形半径均为2.图②是交替摆放A、B两种卡片得到的图案.若摆放这个图案共用两种卡片21张,则这个图案中阴影部分图形的面积和为44﹣π(结果保留π).
π×
π×
三、解答题(共7题,共64分)
18.(6分)(2011•牡丹江)先化简,再求值:,其中x所取的值是在﹣2<x≤3内的一个整数.
•,
,
19.(8分)(2011•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.
(1)有多少种购买方案?请列举所有可能的结果;
(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.
,
∴买到的钢笔与笔记本数量相等的概率为
20.(8分)(2013•平原县二模)已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)
和点B(m,﹣2),
(1)求这两个函数的关系式;
(2)观察图象,写出使得y1>y2成立的自变量x的取值范围.
解:(1)∵函数y1=的图象过点A(1,4),即4=,
∴k=4,
∴反比例函数的关系式为y1=;
又∵点B(m,﹣2)在y1=上,
∴m=﹣2,
∴B(﹣2,﹣2),
∴依题意,得
解得
21.(10分)(2011•莱芜)莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.
(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.
根据题意,得
)
22.(10分)(2011•河池)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB 外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
)
×=4,
×
即AD∥BC,
∴四边形ABCE是平行四边形;
(3)解:设OG的长为x,
∵OC=OB=8,
∴CG=8﹣x,
由折叠的性质可得:AG=CG=8﹣x,
在Rt△AOG中,AG2=OG2+OA2,
即(8﹣x)2=x2+(4)2,
23.(10分)(2011•钦州)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4,求垂线段OE的长.
,
AD==
AE=2
.
OE=
的长为.
24.(12分)(2011•衢州)已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.
压轴题.
(1)利用△BOC∽△COA,得出C点坐标,再利用待定系数法求出二次函数解析式即可;
(2)可求得直线l1的解析式为,直线l2的解析式为,进而得出
点的坐标即可得出,三条线段数量关系;
(3)利用等边三角形的判定方法得出△ABK为正三角形,以及易知△KDC为等腰三角形,进而得出△MCK为等腰三角形时M点坐标.
解:(1)解法1:∵l1⊥l2,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
,
,
,
由题意,可设抛物线的函数解析式为,
)的坐标分别代入
,
解这个方程组,得,
∴抛物线的函数解析式为
,
)代入函数解析式得
所以,抛物线的函数解析式为=
,,
,
的解析式为
KD=,
则可得
)得
KD=DE=EF=
,
的解析式为
)
y=x+3
═
,
)
,KD=
,
),。