半导体霍尔效应研究
- 格式:doc
- 大小:248.50 KB
- 文档页数:4
分析讨论:1. 霍尔元件为什么要用半导体材料?因为半导体材料的迁移率 μ 高,电阻率 ρ 适中,是制造霍尔器件理想的材料。
2. 实验中,工作电流和磁场为什么要换向?为了把产生霍尔效应的时候所伴随的副效应影响从测量结果中消除。
副效应主要由两个组成——由于不等位电势引起的副效应和热磁副效应。
a. 由于制造工艺,测量霍尔电压的电极A 和A ’很难做到在一个理想等势面上,所以又电流通过时,即使不加磁场也会有附加电压产生。
b. 电流和磁场换向主要是解决热磁副效应,测量不同电位差取平均值。
3. 如果霍尔片的法线与磁场方向和磁场不一致,对测量结果有影响吗?有。
磁场也只有部分分量有作用,所以如果法线与磁场方向不一致时,实际磁场小于通电电流应产生的磁场。
4误差分析系统误差:地磁场的存在;第2点中的副效应影响。
随机误差:电流不稳定——实验过程中仪表盘上,I M 与 I S 会不稳定浮动,多次测量取平均值的方法,以及等示数稳定下来再读数也很重要。
5结果分析根据结果来看,R H1= 1.693 * 103,R H2= 1.771 * 103,且两幅曲线图中的R 2均大于0.995,可以得出实验测量过程的误差是很小的(随机误差很小),但是最终的结果却还是有区别,且相差了0.08,假定真实霍尔系数为两个数据的平均数1.732 * 103,那么该实验的误差为0.04/1.732 = 2.3%。
最终结果误差百分比比较小但还是存在,可以推测是由实验中的副效应引起的。
6在最后零磁场下测定A 、C 之间电压的时候,这个时候直接测量的是两极电压,所以直接将接头拔下接在输出电流的两端,这时候测出的电压也就是A 、C 之间的电压。
7该实验通过励磁电流(I M ),可以利用公式B=α * I M ,来间接算出磁场强度。
且IM 可以直接通过霍尔传感器来控制,一定程度上提高了实验测量精度。
结论:1. 通过实验了解了半导体的霍尔效应,研究了霍尔电压与霍尔电流、磁场强度之间的关系,验证了霍尔电压在误差允许范围内与霍尔电流、磁场强度成正比。
半导体的霍尔系数与电导率实验报告半导体的霍尔系数与电导率实验报告一、实验目的1. 了解半导体材料的基本性质;2. 掌握霍尔效应的基本原理和测量方法;3. 掌握电导率的测量方法;4. 通过实验,探究半导体材料的电学特性。
二、实验原理1. 霍尔效应当一个电流I在导体中流动时,会在导体内产生磁场B。
如果在导体上施加一个横向磁场,则磁场会使电子受到一个横向力F,使电子在导体中发生偏转,这种现象称为霍尔效应。
霍尔效应的大小与横向磁场、电流强度、样品尺寸和载流子类型等因素有关。
2. 电导率电导率是指单位长度、单位截面积的导体,在单位电压下通过的电流强度。
对于半导体材料来说,其电导率与载流子浓度和载流子迁移率有关。
三、实验步骤1. 实验器材:霍尔效应测量仪、半导体样品、恒流源、数字万用表等。
2. 实验步骤:(1)将半导体样品固定在霍尔效应测量仪上,并接上恒流源和数字万用表,调节恒流源使其输出电流为所需值。
(2)调节霍尔效应测量仪上的磁场大小和方向,使其满足实验要求。
(3)记录数字万用表上的电压值、电流值和磁场值。
(4)更改实验条件,重复步骤2和步骤3,记录数据。
(5)根据数据计算出半导体样品的霍尔系数和电导率。
四、实验结果及分析1. 实验数据实验数据如下表所示:2. 计算结果根据实验数据,可以计算出半导体样品的霍尔系数和电导率。
计算公式如下:$$R_H=%frac{V_H}{IB}$$$$%sigma=%frac{I}{VB}$$其中,RH为霍尔系数,σ为电导率,VH为霍尔电压,I为电流强度,B为磁场大小,V为电压值。
根据上述公式,可以得到半导体样品的霍尔系数为1.6×10-3m3/C,电导率为3.3×10-3 S/m。
3. 结果分析根据实验结果可以看出,半导体样品的霍尔系数较小,说明其载流子浓度较低。
而电导率比较大,说明半导体样品中的载流子迁移率较高。
这与半导体材料的特性相符。
五、实验总结通过本次实验,我们掌握了半导体材料的基本性质和电学特性,并了解了霍尔效应和电导率的基本原理和测量方法。
东南大学材料科学与工程实验报告 学生姓名 徐佳乐 班级学号 12011415 实验日期 2014/9/4 批改教师 课程名称 电子信息材料大型实验 批改日期 实验名称 半导体霍尔效应实验 报告成绩一、 实验目的1、 了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导。
2、 掌握霍尔系数和电导率的测量方法。
3、 通过测量数据的处理判别样品的导电类型,计算室温下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。
二、 实验原理霍尔效应的测量是研究半导体性质的重要实验方法。
利用霍尔效应,可以确定半导体的导电类型和载流子浓度。
利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机制(本征导电和杂质导电)和散射机制(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。
测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的特性。
1、 霍尔效应和霍尔系数设一块半导体的x 方向上有均匀的电流流过,在z 方向上加有磁场,则在这块半导体的y 方向上出现一横向电势差,这种现象被称为“霍尔效应”, 称为“霍尔电压”,所对应的横向电场称为“霍尔电场”。
霍尔电场强度的大小与流经样品的电流密度和磁感应强度的乘积成正比:ZX H H B J R E ••=式中比例系数称为“霍尔系数”。
半导体样品的长、宽、厚分别为l 、a 、b ,半导体载流子(空穴)的浓度为p ,它们在电场作用下,以平均漂移速度沿x 方向运动,形成电流。
在垂直于电场方向上加一磁场,则运动着的载流子要受到洛仑兹力的作用该洛仑兹力指向-y 方向,因此载流子向-y 方向偏转,这样在样品的左侧面就积累了空穴,从而产生了一个指向+y 方向的电场——霍尔电场。
当该电场对空穴的作用力q 与洛仑兹力相平衡时,空穴在y 方向上所受的合力为零,达到稳态。
在稳态时,有 :若是均匀的,则在样品左、右两侧面间的电位差:而x 方向的电流: 由以上的式子得: 所以对p 型半导体: n 型半导体: 所以的计算式: 2、 半导体电导率半导体电导率:电导率测试公式:结合电导率和霍尔系数的测量,可以计算载流子的迁移率: 实验得出与温度T 的关系曲线如图1.现在以p 型半导体为例分析:(1) 低温区。
实验三半导体材料的霍尔效应测量实验1实验原理1)霍尔效应霍尔效应指的是在外加磁场的作用下,给半导体通入电流,内部的载流子受到磁场引起的洛伦兹力的影响,空穴和电子向相反的方向偏转,这种偏转导致在垂直电流和磁场方向上产生正负电荷的积累,形成附加的横向电场,直至电场对载流子的作用力与洛伦兹力抵消,此时的电场强度乘以半导体样品的宽度后,可以得到霍尔电压V H。
设磁感应强度为B,电子浓度(假设为n型半导体)为n,则电流表达式为I H=nevbd,而霍尔电压产生的电场为E H=vB霍尔电压的表达式为:V H=E H b=vBb =I HnebdBb =1neI H Bd=R HI H Bd其中R H称为霍尔系数:R H=1 ne可以通过V H,B, I H的方向可以判断样品的导电类型,通过V H和 I H的关系曲线可以提取出R H,进一步还可以得到电子(空穴)浓度。
在实际测量中,还会伴随一些热磁副效应,使得V H还会附带另外一些电压,给测量带来误差。
为了消除误差,需要取不同的I H和B的方向测量四组数据求平均值得到V H,如下表示I H正向I H负向B正向V1V3B负向V2V42)范德堡法测量电阻率由于实验使用的霍尔元件可视为厚度均匀、无空洞的薄片,故可使用范德堡法进行电阻率的测量。
在样品四周制作四个极小的欧姆接触电极1,2,3,4。
如图2所示。
14图 1 霍尔效应原理示意图先在1、2端通电流,3、4端测电压,可以定义一个电阻R1=|V34| I12然后在2、3端通电流,1、4端测电压,求R2=|V14| I23理论上证明样品的电阻率与R1、R2的关系为ρ=πdln2R1+R22f可以通过查表可知范德堡因子f与R1/R2的关系,从而求得样品的电阻率。
2实验内容本实验所用仪器为SH500-A霍尔效应实验仪、恒流电源、高斯计。
实验步骤如下:1)连线掌握仪器性能,连接恒流电源与霍尔效应试验仪之间的各组连线。
2)测量霍尔系数,判断样品的导电类型测量半导体样品的霍尔系数。
霍尔效应实验方法【实用版2篇】目录(篇1)1.霍尔效应实验方法的概念与原理2.霍尔效应实验方法的实验器材与材料3.霍尔效应实验方法的实验步骤4.霍尔效应实验方法的实验结果与分析5.霍尔效应实验方法的应用领域正文(篇1)一、霍尔效应实验方法的概念与原理霍尔效应实验方法是一种用于研究半导体材料和电子器件性质的实验技术。
其原理是基于霍尔效应,即当半导体材料中的载流子在电场作用下发生漂移时,会在材料内部产生电势差。
通过测量这个电势差,可以了解半导体材料的载流子浓度、迁移率等重要参数。
二、霍尔效应实验方法的实验器材与材料1.实验器材:直流电源、半导体样品、霍尔元件、电流表、电压表、电阻箱、导线等。
2.实验材料:常用的半导体材料有硅、锗等,也可以使用其他具有霍尔效应的材料。
三、霍尔效应实验方法的实验步骤1.准备实验样品:将半导体材料制成适当的形状和尺寸,接上霍尔元件,组成霍尔器件。
2.连接电路:将霍尔器件与直流电源、电流表、电压表等连接在一起,形成一个完整的电路。
3.施加电压:通过电阻箱调节电路中的电压,使半导体材料内的载流子发生漂移。
4.测量电压:测量霍尔器件两端的电压,得到霍尔电压。
5.计算参数:根据霍尔电压和已知条件,计算半导体材料的载流子浓度、迁移率等参数。
四、霍尔效应实验方法的实验结果与分析实验结果主要表现为霍尔电压与载流子浓度、迁移率之间的关系。
通过改变半导体材料的性质和实验条件,可以得到不同的霍尔电压值。
通过对比实验结果和理论预测,可以对半导体材料的性能进行评价和优化。
五、霍尔效应实验方法的应用领域霍尔效应实验方法广泛应用于半导体材料和电子器件的研究、开发和生产过程中。
例如,在半导体制程中,通过霍尔效应实验方法可以对薄膜厚度、掺杂浓度等关键参数进行实时监测,以保证器件性能的稳定性和可靠性。
目录(篇2)1.霍尔效应实验方法概述2.霍尔效应实验原理3.霍尔效应实验设备与材料4.霍尔效应实验步骤5.霍尔效应实验结果分析6.霍尔效应实验注意事项正文(篇2)一、霍尔效应实验方法概述霍尔效应实验方法是一种用于检测和测量霍尔效应的实验技术。
半导体霍尔效应研究一、实验目的1.了解半导体中霍尔效应产生的物理过程。
2. 掌握霍尔系数和电导率和测量方法,通过对常温下霍尔系数的测定,确定半导体材料的导电类型和掺杂浓度;了解霍数随温度的变化。
3.了解实验环境条件下可能产生的副效应及其消除方法。
二、实验仪器HL-6A霍尔效应仪、C5特斯拉计三、实验原理与方法(一)霍尔效应如图14-1所示,在一块矩形半导体样的X方向均匀地通以电流Ix,处于同一等势面上的A.B两点间的电位差为零;但若在Z方向加上磁场Bz时,则A.B两点将产生电势差 V ,这一现象称为霍尔效应。
其因为由美国物理学家霍尔研究载流导体在磁场中导电的性质发现而得名。
Z yB Z Y X14-1霍尔效应示意图图14-2 P型半导体的霍尔效应为什么会产生霍尔电势差?假设一块P型半导体宽度为 a,厚度为 b,如图14-2所示。
我们首先讨论其中没有温度梯度且只有一种载流子,所有载流子都具有相同的漂移速度,磁场不太强不考虑磁阻的情况。
令V为空穴速度,P为空穴浓度,p为空穴迁移率。
磁场为Z方向,电流为X方向,电流密度为J。
此时沿X方向运动的空穴在磁场B作用下,受洛沦磁力作用使之横向偏转。
由于样品有边界,有些偏转的载流子在边界累积,产生一横向电场E,我们称之为霍尔电场。
霍尔电势差即由此电场而建立。
这时空穴受力为洛沦磁力与电场力的矢量和:F=e(E+V×B) (14-1)达到稳态时,空穴所受的横向电场力与洛沦磁力恰好抵消,即e(v×B)= eE ( 14-2 )又通过样品的电流为I=pevab则空穴的速度为v=I/peab代入(14-2)式得E==两边同乘以a得V=(14-3)系数=R我们称之为霍尔系数。
又因为电流强度I=J.ab ,V=E a , 故有 V=R..a=R R=(14-4)如果是N型半导体,这时电子沿-X方向运动,在磁场B的作用下受到指向-y方向的洛沦磁力,这样载流子在边缘的累积,在-Y 方向建立霍尔电场E,同理我们可以导出E=-JB R== (n为电子浓度) (14-5)(为电子浓度)(14-5)我们在实验中只要能测出样品电流I,磁场强度B,样品厚度 b及霍尔电位差V,就可以求出霍尔系数R。
霍尔效应与半导体器件引言:近年来,随着科技的不断进步,半导体器件作为现代电子设备的核心组成部分,受到了越来越多的关注。
在研究半导体器件时,我们常常会遇到一个非常重要且关键的概念——霍尔效应。
本文将围绕霍尔效应展开探讨,并探究其在半导体器件中的应用。
一、霍尔效应的原理霍尔效应最早由美国物理学家爱德华·霍尔于1879年发现。
它是一种关于材料的电阻率与外加磁场的关系的现象。
简单来说,当一个电流通过某种材料时,在该材料中会产生一个磁场,进而引发电荷的偏转,最终导致材料的电阻发生变化。
这种现象即为霍尔效应。
二、霍尔效应的类型根据材料的不同特性,霍尔效应可分为正霍尔效应和负霍尔效应。
正霍尔效应指的是在应用垂直于电流方向的磁场时,霍尔电压与电流之间存在正比关系;负霍尔效应则正好相反,即霍尔电压与电流之间存在反比关系。
这两种效应的出现取决于半导体材料内部的载流子类型及其漂移方向。
三、霍尔效应的应用1. 电流传感器:借助霍尔效应,我们可以将半导体器件中的霍尔电压与外加电流进行相关计算。
这使得霍尔效应成为电流传感器的一种理想选择。
利用霍尔电感元件可以测量各种电流信号,并将其转化为相应的电压信号,实现对电流的准确测量。
2. 磁场传感器:霍尔效应也可以被用于磁场传感器的制造。
通过将半导体材料与霍尔效应结合,制备出灵敏度高、响应迅速的磁场传感器。
这种传感器广泛应用于导航系统、机器人技术、汽车电子等领域。
3. 光电器件:除了电流和磁场的测量之外,霍尔效应在光电器件中也有着重要的应用。
例如,利用霍尔电感元件的光电流特性,可以实现对光信号的检测和测量,从而实现对光强的精确控制。
四、半导体器件中的霍尔效应霍尔效应在半导体器件中的应用主要集中在两个方面:一是用于半导体材料特性的测量与研究,二是用于制备功能性器件。
1. 特性测量:半导体器件中的霍尔效应常常通过测量材料的霍尔电压和磁感应强度来了解材料的导电特性、载流子浓度等基本参数。
霍尔效应的研究实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪测量霍尔电压、霍尔电流等物理量。
二、实验原理当电流 I 沿垂直于磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场方向的两侧 a、b 之间会产生一个电位差 UH,这一现象称为霍尔效应。
霍尔电压 UH 的大小与电流 I、磁感应强度 B 以及薄片的厚度 d 有关,它们之间的关系为:UH = KHIB (1)其中 KH 称为霍尔元件的灵敏度,它是一个与材料性质和几何尺寸有关的常数。
假设霍尔元件为一个矩形,其长为 l,宽为 w,厚度为 d,则霍尔元件的灵敏度 KH 可以表示为:KH = 1 /(ned) (2)其中 n 为载流子浓度,e 为电子电荷量。
由(1)式可知,如果已知霍尔元件的灵敏度 KH,通过测量霍尔电压 UH 和电流 I,就可以计算出磁感应强度 B。
三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计、霍尔元件等。
四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪、直流电源、毫安表、伏特表等仪器。
确保连接正确无误,避免短路或断路。
2、调节磁场打开特斯拉计,调节磁场强度到所需的值。
在调节过程中,注意观察磁场强度的变化,确保其稳定在设定值附近。
3、测量霍尔电压接通直流电源,调节电流 I 到一定值。
然后,使用伏特表测量霍尔元件两侧的霍尔电压 UH。
改变电流 I 的方向和磁场 B 的方向,分别测量相应的霍尔电压,并记录数据。
4、改变电流和磁场分别改变电流 I 和磁场 B 的大小,重复步骤 3,测量多组数据。
5、数据处理根据测量得到的数据,计算出不同电流和磁场条件下的霍尔电压UH,并利用公式(1)计算出相应的磁感应强度 B。
绘制 B I 曲线,分析实验结果。
五、实验数据记录与处理|电流 I(mA)|磁场 B(T)|霍尔电压 UH(mV)(+I,+B)|霍尔电压 UH(mV)(I,+B)|霍尔电压 UH(mV)(+I,B)|霍尔电压 UH(mV)(I,B)|平均霍尔电压 UH (mV)|||||||||| 100 | 010 | 250 |-248 |-252 | 250 | 250 || 100 | 020 | 502 |-498 |-500 | 500 | 500 || 100 | 030 | 750 |-745 |-752 | 750 | 750 || 200 | 010 | 500 |-495 |-505 | 500 | 500 || 200 | 020 | 1000 |-990 |-1010 | 1000 | 1000 || 200 | 030 | 1500 |-1485 |-1515 | 1500 | 1500 |根据实验数据,计算出不同条件下的平均霍尔电压 UH,并利用公式 UH = KHIB 计算出相应的磁感应强度 B。