初三数学中考复习专题1_数与式
- 格式:docx
- 大小:43.73 KB
- 文档页数:13
中考总复习之数与式超全知识点及经典例题中考总复之数与式本部分内容是初中代数部分的基石,是数学研究历程中重要的延伸。
在小学的基础上,引入了平方根、立方根,从将数扩充到了实数范围。
认识了整式、分式、根式,将特殊的数字延伸到了能表示一般规律的代数式范围,其中涉及的代数式的计算,为今后高中研究奠定基础,也是中考综合题复杂运算必需的技能。
在中考试卷中,该部分内容独立考题所占分值较小,多以选择、填空、计算题出现。
然而在综合题型中,这部分内容的应用却处处存在。
实数的分类实数可以按照定义和正负两个方面进行分类。
其中,正负数的分类包括正整数、负整数、有限小数或有理数、正分数、分数、负分数、正无理数、负无理数。
有理数是指任何一个可以写成p/q形式的数,其中p、q是互质的整数。
无理数则包括开不尽的方根、特定结构的无限不循环小数以及特定意义的数,如π、e、一些三角函数等。
实数中的几个概念相反数是指只有符号不同的两个数,它们互为相反数。
一个实数a的相反数是-a,而a和b互为相反数当且仅当a+b=0.倒数是指一个数的倒数是1/a,而a和b互为倒数当且仅当ab=1.需要注意的是,0没有倒数。
绝对值是一个非负数,实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
n次方根是指平方根、立方根和其他次方根。
平方根是指设a≥0,称±a叫a的算术平方根,其中正数的平方根有两个,它们互为相反数。
负数没有平方根。
立方根是指3次方根,即3√a,其中一个正数有一个正的立方根,而负数的立方根是负数。
其他次方根的计算方法与此类似。
单项式的乘积仍然是单项式。
②单项式乘多项式:将多项式中的每一项与单项式相乘,然后将结果相加得到最终结果。
③多项式乘多项式:将每一项都与另一个多项式中的每一项相乘,然后将结果相加得到最终结果。
专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。
《数与式》考点1 有理数、实数的概念1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有___个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数 考点2 数轴、倒数、相反数、绝对值1、___________的倒数是211-;0.28的相反数是_________. 2、 如图1,数轴上的点M 所表示的数的相反数为_________ M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A .1个B .2个C .3个D .4个5、 ①数轴上表示-2和-5的两点之间的距离是______②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x考点3 平方根与算术平方根.1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、 9的算术平方根是______3、 38-等于_____ 3图1 ∙-2 -1 a 图2 ∙∙b c4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、 由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、 用小数表示:5107-⨯=_____________考点5 实数大小的比较1、 比较大小:0_____21_____|3|--;π. 2、 比较41,31,21---的大小关系:__________________ 3、 已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、 如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________3、 计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷2、 下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与- 3、 计算:)12)(12()12(2-+-+a a a4、 计算:)()2(42222y x y x-÷-考点8 因式分解 1、 分解因式______2=+mnmn ,______4422=++b ab a 2、 分解因式________12=-x考点9:分式 1、 当x _______时,分式52+-x x 有意义 2、 当x _______时,分式242--x x 的值为零 3、 下列分式是最简分式的是( )A .ab a a +22B .axy 36 C .112+-x x D 112++x x 4、 下列各式是分式的是( )A .a 1 B .3a C .21 D π65、 计算:x x ++-11116、 计算:112---a a a考点10 二次根式1、下列各式是最简二次根式的是( )A .12B .x 3C .32xD .352、 下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、 二次根式43-x 有意义,则x 的取值范围_________4、 计算:3322323--+5、 计算:)0(4522≥-a a a6、 计算:5120-7、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第7题)82得【 】 (A ) 2 (B )4x 4-+ (C )-2 (D )4x 4-达标测试:1、实验中学初三年级12个班中共有团员a 人,则a 12表示的实际意义是 ▲ 2、先化简,再求值:2x 2x 11x 1x -⎛⎫⋅+ ⎪+⎝⎭,其中x=12. 3、已知, P=22x y x y x y---,Q=()2x y 2y(x y)+-+,小敏、小聪两人在x 2,y 1==-的条件下分别计算了P 和Q 的值,小敏说P 的值比Q 大,小聪说Q 的值比P 大,请你判断谁的结论正确,并说明理由。
1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。
中考总复习一:数与式中考考点第一部分:实数1.数形结合法去绝对值解绝对值的计算问题时,首先要脱去绝对值符号,化成一般的实数计算.脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值定义脱去绝对值符号,而可以转化为去处理.典型例题: 1.实数a、b、c在数轴上的点如图所示,化简:.2.比较实数大小时,要灵活选择以下几种常见的方法:(1)数轴比较法;(2)绝对值比较法;(3)求差比较法;(4)求商比较法;(5)倒数法;(6)中间值比较法;(7)分子、分母有理化法;(8)平方法.典型例题2.比较大小:与.(二)试题分类1.有理数的运算下列式子中结果为负数的是( ).A. B. C. D.2.倒数、相反数、绝对值和数轴(1)如图,点A、B在数轴上对应的实数分别为m、n,则A、B之间的距离是___________.(用含m、n的代数式表示).(2)如图,数轴上点P表示的数可能是( ).A. B. C.D.3.无理数的算术平方根是___________.4.实数的运算(1)若,则的值是( ).A.0B.1C.D.2007(2)计算:.5.近似数、有效数字和科学记数法北京市申办2008年奥运会,得到了全国人民的热情支持,据统计,某日北京申奥网站的访问人次达到了201 949,用四舍五入法取近似值保留两个有效数字,得( ).A. B. C. D.6.实数综合与创新(1)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的数学排列为:1,1,2,3,5,8,…,那么这列数得第8个数应该是____(2)先阅读下列材料,再解答后面的问题.材料:一般地,n个相同的因数相乘:.如,此时,3叫做以2为底8的对数,记为.一般地,若(且,),则n叫做以为底b的对数,记为(即).如,则4叫做以3为底81的对数,记为(即).问题:①计算以下各对数的值:___________,_________,_________.②观察①中三数4、16、64之间满足怎样的关系式?、、之间又满足怎样的关系式?③由②的结果,你能归纳出一个一般性的结论吗?___________(且,,).④根据幂的运算法则:以及对数的含义证明上述结论.第二部分:代数式(一)解题方法和技巧1.整体思想就是把握条件和结论的关系,用整体的方法来处理问题,从而促进问题的解决.典型例题1.已知x为实数,且,求的值.2.从特殊到一般的思维意识从特殊到一般是我们认识世界的普遍规律.通过对特殊现象的研究而得出一般结论的方法是数学上常用的归纳法.典型例题2.已知:,,,….若(、均为实数),请推测___________,___________.(二)试题分类1.整式(1)若单项式与是同类项,则___________.(2)下列计算中,正确的是( ).A. B.C. D.2.因式分解(1)分解因式:___________.(2)因式分解:___________.(3)把代数式分解因式,下列结果中正确的是( ).A. B. C. D.3.分式(1)若分式的值为零,则x的值等于___________.(2)化简:___________.(3)如果,则___________.4.代数式的值(1)若,则的值为___________.(2)若非零实数、()满足,,则___________.(3)有一道题:“先化简,再求值:,其中“”.小亮同学做题时把“”错抄成了“”,但他的计算结果也是正确的,请你解释这是怎么回事.5.二次根式(1)在下列二次根式中,与是同类二次根式的是( ).A. B. C. D.(2)估计的大小应( ).A.在9.1~9.2之间B.在9.2~9.3之间C.在9.3~9.4之间D.在9.4~9.5之间6.代数式的综合与创新(1)已知,当时,;当时,;当时,;…;则的值为___________.(2)已知:m、n是两个连续自然数(),且,设,则( ).A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数(3)任何一个正整数n都可以进行这样的分解:(s、t是正整数,且),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称是n的最佳分解,并规定:.例如,18可以分解成、、这三种,这时就有.给出下列关于的说法:①,②,③,④若n是一个完全平方数,则;其中正确的说法的个数是( ).A.1B.2C.3D.4(4)数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:.例如把(3,)放入其中,就会得到.现将实数对(,3)放入其中得到实数m,再将实数对(m,1)放入其中后,得到的实数是___________.基础练习一、选择题1.一个代数式减去等于,则这个代数式是( ).A. B. C. D.2.下列去括号正确的是( ).A. B.C.D.3.下列各组代数式中,属于同类项的是( ).A.与B.与C.与D.p与q4.下列计算正确的是( ).A. B. C. D.5.a = 255,b = 344,c = 433,则 a、b 、c的大小关系是( ).A.a>c>bB.b>a>cC.b>c>aD.c>b>a6.如果甲数为,甲数是乙数的倍,则乙数是( ).A. B. C. D.7.一个两位数,十位数字是,个位数字是,如果把它们的位置颠倒一下,得到的数是( ).A. B. C. D.8.如果,则下列等式成立的是( ).A. B. C. D.9.设,都是实数,且,,则,的大小关系是( ).A. B. C. D.10.下列多项式属于完全平方式的是( ).A.x2-2x+4B.x2+x+C.x2-xy+y2D.4x2-4x-111.若,则k的值为( ).A. 2B.C. 1D. –112.若x2+mx+25 是一个完全平方式,则m的值是( ).A.20B.10C. ± 20D.±1013.若代数式,那么代数式的值是( ).A. B. C. D.14.如果,那么x的取值范围是( ).A.x≥3B. x≤2C.x>3D.2≤x≤315.如图所示,下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n盆花,每个图案花盆总数是S,按此推断S与n的关系式为( ).A.S=3nB.S=3(n-1)C.S=3n-1D.S=3n+1二、填空题1.计算:_________.2.36 x4 y8 = (_________)23._________.4.小明在文具店买了三支2B铅笔和五个练习本,2B铅笔每支x元,练习本每个y元,小明共花了_____元.5.一台电视机成本价为元,销售价比成本价增加,因库存积压,所以就按销售价的出售.则每台电视机的实际售价为_________.6.如果与是同类项,则的值为_________,的值为_________.7.若,则ab=_________.8.0.0000057用科学记数法表示为_________.9.三角形三边a=7,b=4,c=2,则周长是_________.10.已知,求_________.11.如果最简二次根式与是同类二次根式,则a=_________.12.把分解因式的结果是_______________________.13.化简=_________.14.在下面由火柴杆拼出的一列图形中,第个图形由个正方形组成:通过观察可以发现,第个图形中有_________根火柴杆.15.观察等式:,,,,….设表示正整数,请用关于的等式表示这个观律为:_________.能力提高1.已知A=-4a3-3+2a2+5a,B=3a3-a-a2,求:A-2B.2.已知x+y=7,xy=2,求:①2x2+2y2的值;②(x-y)2的值.3.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,求剩下的钢板的面积.4.已知A=a+2,B=a2-a+5,C=a2+5a-19,其中a>2.(1)求证:B-A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.5.a、b、c为三边,利用因式分解说明的符号.6.某餐厅中张餐桌可以坐人,有以下两种摆放方式:一天中午,餐厅要接待位顾客共同就餐,但餐厅中只有张这样的餐桌,假设你是这个餐厅的经理,你打算选择哪种拼接方式来摆餐桌?(注:范文素材和资料部分来自网络,供参考。
2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。
- 自然数、整数、有理数的加减法、乘除法的规则。
- 无理数的定义及有理数与无理数的运算。
2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。
- 正数和负数的乘法及除法。
- 负数的概念及运算。
3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。
- 整数的概念及整式的定义。
- 整式的加减法和乘法。
4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。
- 一元一次整式方程的实际应用。
二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。
- 圆的概念、圆心角、弧与弧长的关系。
2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。
- 图形的平移、旋转和镜像的性质及判断。
3. 直线、角、三角- 直线的概念及判断。
- 角的概念、相邻角、对顶角、对角线等性质及判断。
- 三角形的分类、判断和性质。
4. 相交线与平行线- 平行线与相交线的性质及判断。
- 平行线与平行线的性质及判断。
5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。
- 区间的概念及判断。
- 正数指数与幂以及具体问题的表示与计算。
三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。
- 函数的运算规则。
- 函数的自变量与因变量的关系。
2. 一次函数和二次函数- 一次函数的定义、图象及特征。
- 一次函数的性质及应用。
- 二次函数的定义、图象及特征。
3. 方程与函数- 方程与函数的关系及解方程的基本思路。
- 一次方程、二次方程的定义、方法及应用。
4. 极大极小值- 极大极小值的概念、条件。
- 一元二次函数的极大极小值的应用。
5. 图像的平移与缩放- 图像平移的概念、规律及图示。
- 图像缩放的概念、规律及图示。
6. 函数的定义域和值域- 函数定义域的概念及计算。
初三总复习(一)数与式1.(科学计数法)据统计,2014年全国约有939万人参加高考,939万用科学计数法表示为。
2.(去绝对值号)已知a<0<c,ab>0,且|b|>|c|>|a|,化简|a+c|+|b+c|﹣|a﹣b|=.3.(新定义计算)在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为.4.(新定义计算)定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[﹣]=﹣2,按此规定,[1﹣2]=.5.(开方小数点移动规律)已知,则的值约为.6.(二次根式概念与计算)若,则a m=.7、(根式化简易错题)若a、b、c均为实数,且a、b、c均不为0,化简=8.(根式、绝对值化简易错题)若a<﹣3,则|﹣1﹣|=.9.(整式、算数平方根)若a、b均为整数,当x=﹣1时,代数式x2+ax+b的值为0,则a b的算术平方根为.10.(根式、绝对值)若|2017﹣m |+=m ,则m ﹣20172= .11.(二次根式变形)把 a中根号外面的因式移到根号内的结果是 .12.(根式分母有理化)若m =,则m 5﹣2m 4﹣2015m 3= . 13、(幂的运算)(1)已知2=m a ,5=n a ,求n m a23+的值 (2)1211109)34()43()8(125.0⨯+-⨯(3)若34=m ,1116=n ,求n m 234-的值14、(幂的运算)已知3181=a ,4127=b ,619=c ,试比较a 、b 、c 的大小15.(乘法公式,根式)已知x =+1,y =﹣1,则x 2﹣5xy +y 2+6= .16.(乘法公式,根式)计算:= .17.(代数式计算,降幂)已知x 2+x =3,则2015+2x +x 2﹣2x 3﹣x 4= .18、(乘法公式)已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.19、(十字相乘法)若x2+xy+x=14,y2+xy+y=28,那么代数式x+y的值为.20、因式分解:y(2x﹣y)﹣x2+z2=.21、(分式计算)已知=,则代数式的值是.22.(分式计算)若3x﹣4y﹣z=0,2x+y﹣8z=0,则的值为.23.(分式计算)已知x2﹣5x+1=0,则的值是.24.(分式计算)若==,则=或.。
题一:在 02 2数学中考专题复习专题一:数 与 式经典讲义π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简 x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 7 1, 3%, 0.31 ,都是有理数; π 8, ,-cos30°,0.1010010001 都是无理2 数. 题二: 1,-2. 题三: D题四: (1)3x 2+13x +12(2) 6b + 3题五: A题六: 98题七:有道理,理由略 题八: 1 专题 1: 数与式经典精讲课后练习 ( 一)数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5 k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 2 2 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12 数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一:在 02 2π 3.14, 8, 4, ( 3 2) , , cos30 , 2tan 45 , 12 , 7 0.1010010001 , 5 1, 3%, 0.31 中,哪些是有理数 ?哪些是无理数 ?题二:对于任意两个实数对 (a,b)和(c,d),规定:当且仅当 a = c 且 b =d 时,(a,b)= (c,d).定义运算 “ ”: (a,b) (c,d)=(ac - bd, ad +bc).若(1,2) (p,q)=(5,0),则 p = , q = .题三:某校数学课外小组 ,在坐标纸上为学校的一块空地设计植树方案如下: 第 k 棵树种植在点 P k (x k ,y k )x k处,其中 x 1=1,y 1= 1,当 k ≥2时,x k 1 1 5([k 1] 5k 1 k [ k 2 ]),5 2 y ky k 1[ ] [ ]. 5 5其中[a]表示非负实数 a 的整数部分 ,例如 [2.6]=2,[0.2]= 0.按此方案 ,第 2009 棵树种植点的坐标为 ( ). A . (5,2009) B . (6,2010)C .(3,401)D .(4,402)题四:计算:(1)8x 2-(x -2)(3x +1)-2(x +1)(x -5); (2)(a + b -1)(a -b +1)-a +(b +2) .题五:若将代数式中的任意两个字母交换 ,代数式不变 ,则称这个代数式为完全.对.称.式..,如 a +b +c 就是完全对称式.下列三个代数式: ①(a -b)2;②ab +bc + ca ;③ a 2b +b 2c +c 2a .其中是完全对称式的是 (). A .①②B .①③C .②③D .①②③题六:已知 x22 3x 1 0 ,求 x41 x4的值.题七:在解题目 “当 x =1949 时,求代数式 .x 2 4x 4 x 2 4x 2 2x x21+1 的值. ”时,聪聪认为 x 只要任取一 x个使原式有意义的值代入都有相同结果.你认为他说得有道理吗?请说明理由.题八:已知 1< x <2,化简x 22 x 14 4x x 2.专题 1:数与式经典精讲讲义参考答案数学中考专题复习专题一:数 与 式经典讲义8, ,2 (2) 6b + 37题四: (1)3x 2+13x +12数. 题二: 1,-2. 七:有道理,理由略 题三: D 题八: 1 题五: A 题六: 98 题专题 1: 课后练习 ( 一)数与式经典精讲题一: 3.14, 4 , ( 3 2) 0, tan 45 , 12 , 5 1, 3%, 0.31 ,都是有理数;π-cos30°,0.1010010001 都是无理。
京华中学初三数学辅导班资料1《数与式》考点1有理数、实数的概念 【知识要点】1、 实数的分类:有理数,无理数.2、 实数和数轴上的点是 ___________ 寸应的,每一个实数都可以用数轴上的 _________ 表示,反过来,数轴上的点都表示一个 3、 ________________________ H 做无理数.一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无 理数(如V4 ),也不是所有的无理数都可以写成根号的形式 (如)• 【典型考题】1、把下列各数填入相应的集合内:_______ 无理数3、在、、3, 3.14, -,sin45八4中,无理数的个数是34、写出一个无理数 _________ ,使它与V2的积是有理数【复习指导】解这类问题的关键是对有理数和无理数意义的理解•无理数与有 理数的根本区别在于能否用既约分数来表示. 考点2 数轴、倒数、相反数、绝对值 【知识要点】1、若a 0,则它的相反数是 ________ ,它的倒数是 _______ . 0的7.5,15,4,13,2 3,38,0.25, 0.15有理数集{ 正实数,无理数集{2、在实数 4,0,、2 1,、64,3271石中,共有6、①数轴上表示一2和一5的两点之间的距离是_ 示1和一3的两点之间的距离是________________ . ②数轴上表示x 和一1的两点A 和B 之间的距离是 | AB = 2,那么 x 【复习指导】1、若a,b 互为相反数,则a b 0 ;反之也成立•若a,b 互为倒 数,则ab 1;反之也成立.2、关于绝对值的化简(1)绝对值的化简,应先判断绝对值符号内的数或式的值是正、 负或0,然后再根据定义把绝对值符号去掉.相反数是 _________ . 2、一个正实数的绝对值是;一个负实数的绝对值是;0的绝对值是■- |x|3、一个数的绝对值就是数轴上表示这个数的点与 【典型考题】_(x 0) _(x 0) 的距离.1、 2、1___________ ■勺倒数是 1-;的相反数是 _2如图1,数轴上的点M 所表示的数的相反数为M3、-10 12图1(1 m)2 |n 2| 0,则 m n 的值为14、已知 |x| 4,| y| ,且 xy25、实数a,b,c 在数轴上对应点的位置如图 c __ ? I _ -2 ' -1确的有(a c ③ bc ac 个2所示,下 b a -? ---- ? '1 ' 2图2_④abF 列式子中正ac数轴上表,如果(2)已知|x| a(a 0),求x时,要注意x考点3平方根与算术平方根【知识要点】1、______________________________________ 若x2 a(a 0),则x叫a 做的_____________________________________ 记作 _______ ;正数a的__________ H做算术平方根,0的算术平方根是 ____ •当a 0时,a的算术平方根记作_____________ .2、非负数是指__________ 常见的非负数有(1)绝对值|a|_0 ;(2)实数的平方a2—0 ; (3)算术平方根苗—0(a 0).3、如果a,b,c是实数,且满足|a| b2 c 0 ,则有a ______ ,b ______ ,c ______【典型考题】1、下列说法中,正确的是( )的平方根是.3 的算术平方根是7C. 15的平方根是v 15 D 2的算术平方根是(22、_______________________ 9的算术平方根是3、______________ 旷8等于4、|x 2| 历飞0 ,则xy ______________考点4近似数和科学计数法【知识要点】1、精确位:四舍五入到哪一位.2、有效数字:从左起________________ U最后的所有数字.3、______________________________________ 科学计数法:正数:负数:__________________【典型考题】1、据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为_____________2、由四舍五入得到的近似数的有效数字的个数是______ ,精确度是 ______3、用小数表示:7 10 5= _________________考点5 实数大小的比较【知识要点】1、正数>0>负数;2、两个负数绝对值大的反而小;3、在数轴上,右边的数总大于左边的数;4、作差法:若a b 0,则a b;若a b 0,则a b;若a b 0,则a b.【典型考题】1、比较大小:| 3| _______ ; 1迈_________ 0.2、应用计算器比较师与岳的大小是_______________1113、比较丄,丄,1的大小关系:2 3 4 -----------------------------4、已知0 x 1,那么在x,1,辰,x2中,最大的数是 ___________________x考点6 实数的运算【知识要点】1、当a 0时,a0________ ; a n ________ (n是正整数).2、今年我市二月份某一天的最低温度为 5 C,最高气温为13 C,那么这一天的最高气温比最低气温高______________ 3、如图1,是一个简单的数值运算程序,当输入x的值为一1时,则输出的数值为 _____________4、计算(1) ( 2)2 1 (2004 .. 3)0| 1|4、计算:(2x 2y 2)2( x 2y 4)考点7 乘法公式与整式的运算【知识要点】 1、判别同类项的标准,一是 ;二是•2、幕的运算法则:(以下的 m,n 是正整数)(1)a m a n;(2)(am) n;⑶(ab)n(4)a m a n(a 0);⑸ d)n-a3、乘法公式:(1)(a b)(a b) _;(2)(ab)2_•>⑶(a b)24、去括号、添括号的法则是【典型考题】1、下列计算正确的是( )A x 2 x 3x 5B. x 2 x 3 x 63、26C- ( x ) xD.632x x x(2) (1 ,2)0()2 cos302、 F 列不是同类项的是( 2与 -B. 2m 与2nb 2b 与 a 2b D x 2y 2与2x y3、计算: (2a 1)2(2a 1)(2a 1)考点8 因式分解 【知识要点】 因式分解的方法: 1、 提公因式:2、 公式法:a 2 b 2 _____________ ; a 2 2ab b 2 ____________a 2 2ab b 2______【典型考题】1、分解因式 mn mn 2 _________ , a 2 4ab 4b 2 __________2、分解因式x 2 1 _______(1)分子分母都是整式,(2)分母含有字母;2、 分式的基本性质:- a3、 分式的值为0的条件:4、 分式有意义的条件:_5、 最简分式的判定: 考点9:分式【知识要点】1、分式的判别: 山"m 0)a m a m6、分式的运算: 通分,约分 【典型考题】1、当x时,分式 ---- 有意义x 52、当xx 2 4时,分式——4的值为零x 23、下列分式是最简分式的是( ) A 2a2 a2 , B. 6xyC. x 1ab3ax 14、下列各式是分式的是() A 1a 1A - B. C.- a 32D 61 x 1 x26、计算:—a 1a 1考点10 二次根式【知识要点】1、二次根式:如.a (a 0)2、二次根式的主要性质:(1)(2)2(a0)(2) .a2__(a 0) |a| __(a 0)__(a 0)(3) Jab(a0,b 0)(4)(a 0,b0)3、二次根式的乘除法■Va Vb(a0,b 0)■-a、(a 0,b0)4、分母有理化:5、最简二次根式:6、同类二次根式:化简到最简二次根式后,根号内的数或式子相同的二次根式7、二次根式有意义,根号内的式子必须大于或等于零【典型考题】1、下列各式是最简二次根式的是()A 寸12 B. P3x C. T2x3 D j'\ 32、下列根式与,8是同类二次根式的是()5、计算:3、 二次根式J3x 4有意义,则x 的取值范围 _____________4、 若 V3x <6,贝U x = _________5、计算:3.2 ,3 2,2 3、36、计算:5 .. a 2 .4a 2 (a 0)&数a 、b 在数轴上的位置如图所示,化简:、(a 1)2 . (b 1)2 、,(a b )2 .ab___ | _______ I ■ __L_ I」 ■ ,L(第8题)数与式考点分析及复习研究(答案)考点1有理数、实数的概念1、 有理数集{ 7.5,4身,3 8,0.25,0.15}B. ,3C.、5 D (67、计算:20 15无理数集{ .15^ 8, }V 13正实数集{,15, 4, .. 8, -, 3 8,0.25, 0.15}V13 32、23、24、答案不唯一•如(2 )考点2 数轴、倒数、相反数、绝对值21、,0.2832、 2.53、14、85、C6、3,4 ;|x 1|,3或1考点3 平方根与算术平方根1、B2、33、24、6考点4近似数和科学计数法1、4.2 106个2、4,万分位3、考点5实数大小的比较1、v , <2、 5 3 112考点7 乘法公式与整式的运算1、 C2、 B3、 (2a 1)2 (2a 1)(2a 1)11 132 3 41 4x 考点6 实数的运算 1、 18 C 2、 13、 (1) 1 1 解:原式=4+ -- 2 2=4(2)解:原式二 1 +2+ 2解 :原式= (2 a 1)(2a 1(2a 1))(2 a 1)(2a 12a 1)2(2a 1)4a 2( 2 2 22x y )(x 24\y )解 :原式= 4x 4y4/24(x y )考点8 因式分解1、mn(1 n),(a 2b)2、(x 1)(x 1)考点9:分式4、1、x 54x 222、x 23、D4、A5、」—1 x 1 x解:原式=1 X(1 x)(1 x)1 X(1 x)(1 x)1 x 1 x(1 x)(1 x)2(1 x)(1 x)26、— a 1 a 12解:原式=—(a 1)a 1=丄(a 1)(a 1)a 1 a 12 2a (a 1)a 11—a 1考点10 二次根式1、B2、A3、x4、25、3、2 3 2、2 3.3解:原式=3、2 2、、2 ,3 3._3=、、2 2.36、5 a 2 . 4a 2 (a 0)解:原式=5a 2a=3a8 心一1)2「(厂1)2 上―b)2 b 解: a 1,b 1, b aI -3 -2 1 1 J 1 -10123 X (第 8 题) a 1 0,b 1 0,a b 0原式=(a 1) (b 1) (a b)7、 20 1 5 、5 5。