飞控系统
- 格式:doc
- 大小:144.00 KB
- 文档页数:5
自动飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。
深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。
产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。
1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。
该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。
这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。
60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。
基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。
这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。
飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
飞控系统的发展与展望一、飞控系统的简介所谓飞机控制系统,是指飞行器在飞行过程中,利用自动控制系统,能够对飞行器的构形、飞行姿态和运动参数实施控制的系统。
该系统可用来保证飞行器的稳定性和操纵性、提高完成任务的能力与飞行品质、增强飞行的安全及减轻驾驶员负担。
飞行控制系统的分类从不同角度出发有不同的分类方法。
根据控制指令由驾驶员发出,另一类是自动飞行控制系统,其控制指令是系统本身自动产生的。
飞机的俯仰、滚转和偏航控制,增升和增阻控制,人工配平,直接力控制以及其它改变飞机的构形控制(如改变机翼后掠角、水平安定面安装角等),它是飞机的一个组成部分,故也属于飞行控制系统。
自动飞行控制系统是对飞机实施自动或半自动控制,协助驾驶员工作或自动控制飞机对抗的响应。
从莱特兄弟的第一架飞机1903年12月升空至今,已经过去了100多年。
100多年来,飞机从最早的多翼/双翼、直机翼,逐步发展到单翼、后掠翼、三角翼等,从活塞发动机到喷气发动机;从正常式布局到鸭式、无尾式、三翼面布局等等。
与之相伴的,飞机的飞行控制系统也在不断地变化,总体来说,飞机的飞行控制系统经历了如此的八个阶段:机械操纵系统、半助力操纵系统、全助力操纵系统、增稳系统、增稳控制系统、半电传系统、电传系统和光传系统。
目前,电传控制系统已经成为主流;光传控制系统已经有小范围的应用,正在处于发展阶段;而诸如机械传动等等较为老的控制系统虽然已经逐渐退出主流,但由于其可靠性高,造价便宜,技术成熟等特点,仍旧在一些特定场合如备份控制系统等使用。
以下我们将对不同阶段的飞机控制系统进行介绍。
二、飞控系统的发展历史首先是机械操纵系统。
在这种操纵系统中驾驶员通过机械传动装置直接偏转舵面。
舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。
这种系统由两部分组成:位于驾驶舱内的中央操纵机构;构成中央操纵机构和舵面之间机械联系的传动装置。
中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。
飞行控制系统的组成飞行控制系统是指用于控制飞机飞行的一系列设备和程序。
它是飞机的重要组成部分,直接影响着飞机的操纵性、稳定性和安全性。
飞行控制系统的主要组成包括飞行操纵系统、飞行指示系统、飞行保护系统和自动飞行控制系统。
一、飞行操纵系统飞行操纵系统是飞行控制系统的核心部分,用于操纵飞机的姿态和航向。
它包括操纵杆、脚蹬和相关的机械传动装置。
操纵杆通过机械传动装置将飞行员的操作转化为飞机的姿态变化,从而实现对飞机的操纵。
脚蹬主要用于控制飞机的航向。
飞行操纵系统的设计需要考虑飞行员的操作感受和操作精度,以及飞机的动力特性和气动特性。
二、飞行指示系统飞行指示系统用于向飞行员提供飞机的状态和参数信息,以帮助飞行员准确地掌握飞机的飞行情况。
飞行指示系统包括人机界面设备和显示设备。
人机界面设备包括仪表板、显示器和按钮等,用于向飞行员显示飞机的状态和参数,并接收飞行员的操作指令。
显示设备一般采用液晶显示屏或投影显示技术,能够实时显示飞机的速度、高度、姿态、航向等信息。
飞行指示系统的设计需要考虑信息的清晰度和可读性,以及对飞行员的操作需求和反馈。
三、飞行保护系统飞行保护系统用于提供飞机的保护和安全功能,防止飞机发生失控或危险情况。
飞行保护系统包括防护装置、警告系统和应急措施。
防护装置主要包括防止飞机过载的装置、防止飞机超速的装置和防止飞机失速的装置等,能够保护飞机免受过载、超速和失速等不安全飞行状态的影响。
警告系统主要用于向飞行员提供飞机的警告和提示信息,以帮助飞行员及时发现和解决飞机的异常情况。
应急措施主要包括自动驾驶和自动下降等功能,能够在紧急情况下自动控制飞机的飞行。
四、自动飞行控制系统自动飞行控制系统是飞行控制系统的高级形式,能够实现自动驾驶和飞行管理功能。
自动飞行控制系统主要包括飞行管理计算机、自动驾驶仪和导航系统等。
飞行管理计算机负责计算飞机的飞行参数和航路信息,并根据飞行员的指令进行飞行计划和航线管理。
无人机飞控系统设计与开发一、介绍无人机飞控系统无人机(UAV)是一种不需要搭载人员而能够自主飞行的飞行器。
由于其具备覆盖面广、灵活性高等优点,因此在军事、民用、科研等领域都得到了广泛应用。
无人机飞行离不开飞控系统的支持,它掌握着飞机的动力、定位控制和传感数据处理等关键技术,从而实现飞行安全和目标精确控制。
二、无人机飞控系统的概述无人机飞控系统通常包括传感器、处理器、存储器、数据通信模块和作业设备。
其中,传感器用于感知外部环境,包括加速度计、陀螺仪、罗盘等,处理器用于运算和控制,存储器则是数据的缓存和存储。
由于无人机需要与人类进行通信,因而数据通信模块也是必不可少的组成部分。
作业设备则依据无人机的实际用途不同而有所差异,例如军用无人机可能装配炸弹和导弹等武器,而民用无人机则主要用于航拍、作物保护等领域。
三、无人机飞控系统设计与开发的关键技术1、传感器选择和定位传感器是无人机飞控系统必不可少的核心组成部分之一。
传感器的选择直接影响系统的性能和稳定性。
由于无人机搭载传感器需满足体积小、重量轻、性能可靠等要求,因此传感器的选择和定位需要经过仔细的考虑和配合。
比较常用的传感器有加速度计、陀螺仪、罗盘、气压计等。
2、信息传输信息传输模块是在飞行途中向地面控制中心传输各种数据的设备。
由于无人机的高速飞行速度和长时间稳定飞行的要求,只有采用高效的数据传输技术,才能保证及时且准确地传递数据。
常用的数据传输技术主要包括无线电波以及蓝牙等短距离无线传输技术。
3、控制器设计控制器是无人机飞控系统的核心部分,其主要特点是强大的运算能力和高度自动化。
控制器可以将传感器探测到的数据进行计算和处理,并产生控制指令,将其传达给飞行器的各项部件。
控制器种类繁多,智能控制器、模糊控制器、PID控制器等都常被应用于无人机飞控系统设计中。
4、程序设计飞控系统的程序设计包括上位机程序和下位机程序两个部分。
上位机程序主要处理PC机或其他设备与飞行器之间的数据传输和控制调度,下位机程序则针对飞机的各项控制任务进行编程,以实现稳定、精准的控制。
飞行控制系统简介自动飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担.深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。
产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。
1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。
该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。
这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。
60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用.基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。
这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能.飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
飞控基础知识嘿,朋友!你有没有想过那些在天空中自由翱翔的飞机、无人机是怎么稳稳地飞在空中的呢?这可就全靠飞控啦。
今天呀,我就来给你唠唠飞控的基础知识,保证让你听得津津有味。
飞控,简单来说,就是飞行控制系统。
就像是飞机或者无人机的大脑一样重要。
我有个朋友小李,他刚开始玩无人机的时候,啥都不懂。
把无人机拿起来就想让它飞,结果那无人机就像个没头的苍蝇一样,乱晃悠。
这就是没有飞控或者飞控没调好的结果。
那飞控到底是怎么工作的呢?这就像我们人走路一样。
我们走路的时候,眼睛会看路,耳朵会听周围的声音,身体会感受平衡。
飞控呢,它也有很多的传感器来获取信息。
比如说,有加速度计。
这加速度计就像是我们身体里的感觉器官,它能感知飞机或者无人机在各个方向上的加速度。
我给你打个比方,如果把飞机比作一辆在天空中行驶的汽车,加速度计就像是汽车里能感受到推背感或者刹车感的那个装置。
还有陀螺仪。
这陀螺仪可神奇了,它能知道飞机的姿态,是倾斜了,还是平着飞呢。
这就好比我们人在黑暗中走路,虽然看不到路,但是我们能感觉到自己的身体是不是站直了。
小李后来就明白了这些道理,他就开始研究他那无人机的飞控。
他发现飞控里的陀螺仪要是出了问题,无人机就没办法保持平稳的飞行姿态,飞起来歪歪扭扭的,就像喝醉了酒的人在走路一样。
飞控还有个重要的部分,那就是控制器。
这控制器就像是飞控这个大脑的指挥中心。
它根据传感器传来的信息,做出决策,然后控制飞机或者无人机的各个部件,像电机、舵机之类的。
这就好比一个乐队的指挥,根据乐谱和乐手们的表现,指挥大家什么时候该大声演奏,什么时候该小声演奏。
我记得有一次,我们一群朋友在讨论飞控。
小王说:“这飞控的传感器这么多,要是有一个坏了,那飞机不就完了?”我就跟他解释说:“这飞控可没那么脆弱。
现在的飞控系统都有冗余设计。
就好比我们有两只眼睛,要是一只眼睛暂时看不见了,另一只眼睛还能让我们大致看清周围的情况。
飞控里的传感器也是这样,一个有点小毛病,其他的还能继续工作,保证飞机不会一下子就掉下来。
简述飞控系统的部件组成
飞控系统是指用于控制飞机飞行的系统,它包含了多个部件,这些部件包括: 1. 控制器:控制器是飞控系统的核心部件,负责接收飞机传感器的输入,并根据预先编写的程序和飞行规则对飞机进行控制。
控制器可以是单个计算机或一组计算机,具体取决于飞控系统的规模。
2. 传感器:传感器用于检测飞机的状态和参数,例如飞行速度、高度、方向、坡度等。
传感器可以是风速传感器、高度计、陀螺仪、磁力计等。
3. 执行器:执行器用于控制飞机的运动,例如油门、刹车、襟翼、机翼等。
执行器通常是电机或液压泵,它们通过控制油液或气体的流动来执行飞控系统的命令。
4. 通信系统:飞控系统需要与其他系统进行通信,例如导航设备、气象设备、其他飞控系统等。
通信系统通常包括无线电、激光通信和卫星通信等。
5. 电源系统:飞控系统需要稳定的电源供应,以便为传感器、执行器和通信系统提供电能。
电源系统通常包括发电机、电池和充电系统。
6. 故障诊断系统:飞控系统需要对故障进行诊断和检测,以便在故障发生时及时采取措施。
故障诊断系统通常包括传感器读数分析、程序校验和故障诊断软件等。
7. 数据管理系统:飞控系统需要对飞机的状态和参数进行记录和存储,以便进行数据分析和故障诊断。
数据管理系统通常包括飞行数据记录器、传感器数据记录器和数据服务器等。
飞控系统的部件组成非常复杂,这些部件相互协作,才能实现飞机的自动控制。
飞控系统的降级保护策略-回复飞控系统的降级保护策略是指在飞行过程中,当飞控系统发生故障或异常时,系统能够自动降级,保证飞机的安全飞行。
降级保护策略是飞行安全的关键保障之一,本文将详细介绍飞控系统的降级保护策略。
一、什么是飞控系统?飞控系统(Flight Control System,简称FCS)是指控制飞机的飞行姿态、航向、高度等参数的系统。
它由飞行控制计算机、飞行控制面、传感器和执行机构等组成。
飞控系统能够检测和计算飞机状态,根据输入的指令控制飞机的运动。
二、为什么需要降级保护策略?飞控系统是飞机的重要组成部分,一旦出现故障或异常,可能会导致飞机失控,危及飞行安全。
因此,飞控系统需要具备降级保护策略,即在出现故障或异常时,自动切换到低级系统或备用系统,保证飞机仍能继续安全飞行。
三、飞控系统的降级保护策略包括哪些方面?飞控系统的降级保护策略主要包括以下几个方面:1.故障检测与诊断(Fault Detection and Diagnosis,简称FDD):飞控系统能够实时检测飞机系统的故障情况,并通过故障诊断算法确定故障的位置和原因。
2.飞控系统切换(Flight Control System Switching):当飞控系统出现故障或异常时,降级保护策略可以自动切换到备用系统或低级系统。
例如,当主飞控计算机故障时,可以切换到备用计算机进行飞行控制。
3.控制表面限幅(Control Surface Limiting):当飞控系统出现故障时,为了避免过大的控制力导致飞机姿态不稳定,降级保护策略可以通过限制控制面的幅度和速度来保持飞机的稳定飞行。
4.传感器冗余(Sensor Redundancy):飞控系统通常配备多个传感器来检测和测量飞机的状态。
当某个传感器故障时,降级保护策略可以自动切换到备用传感器,保证飞机状态的准确性。
5.执行机构冗余(Actuator Redundancy):飞控系统通常配备多个执行机构,如液压马达、电动马达等。
简述飞控系统的部件组成飞控系统是指飞机上用于控制飞行的各种设备和系统的总称。
它是整个飞机的“大脑”,负责飞机的稳定性和操纵性。
飞控系统的部件组成十分复杂,下面将从不同的角度来介绍其中的几个重要部件。
一、传感器传感器是飞控系统的重要组成部分,它们负责采集飞机的各种状态信息,如速度、姿态、高度等。
传感器的种类多样,包括陀螺仪、加速度计、气压计等。
陀螺仪用于测量飞机的姿态,加速度计用于测量飞机的加速度,气压计用于测量飞机的高度。
传感器通过将采集到的信息转化为电信号,传输给飞控系统的计算单元,以供后续的计算和控制。
二、计算单元计算单元是飞控系统的核心,它负责处理传感器采集到的信息,并根据预设的控制算法计算出相应的控制指令。
计算单元通常由嵌入式处理器组成,它具有强大的运算能力和高速的数据处理能力。
在飞控系统中,计算单元起到了“大脑”的作用,它根据传感器采集到的信息来判断飞机的状态,并通过控制算法计算出相应的控制指令,以调整飞机的姿态和飞行状态。
三、执行单元执行单元是飞控系统中的另一个重要部分,它负责执行计算单元计算出的控制指令。
执行单元通常由伺服电机、舵机等组成,它们通过控制飞机的舵面、发动机等来实现飞机的姿态调整和飞行控制。
伺服电机通过控制飞机的舵面,如副翼、升降舵等,来改变飞机的姿态;舵机则通过控制发动机的油门来调整飞机的速度和推力。
执行单元的运动精度和响应速度对飞控系统的性能起到了至关重要的影响。
四、通信设备通信设备是飞控系统中的另一个重要组成部分,它负责与地面指挥中心进行通信,并接收和发送各种控制指令和飞行状态信息。
通信设备通常包括无线电台、数据链等,它们通过无线电波或数据链路来实现与地面的通信。
通过通信设备,飞控系统可以及时获取地面的指令和信息,以便进行相应的飞行控制和调整。
飞控系统的部件组成包括传感器、计算单元、执行单元和通信设备。
传感器负责采集飞机的各种状态信息,计算单元负责处理传感器采集到的信息,并计算出相应的控制指令,执行单元负责执行计算单元计算出的控制指令,通信设备负责与地面指挥中心进行通信。
飞控系统的设计与实现第一章绪论飞控系统是无人机重要的控制系统之一,负责控制飞行器的方向、姿态、高度等参数,在飞行中保证飞行器安全、稳定地完成各项任务。
本文将对飞控系统的设计与实现进行详细的介绍。
第二章飞控系统的结构飞控系统的结构包括硬件结构和软件结构两部分。
硬件结构包括传感器模块、信号调理模块、计算模块和执行模块。
软件结构包括底层固件、中间件和应用程序。
传感器模块是飞控系统的核心部分,能够感知飞行器当前的姿态、方向和高度。
主要包括加速度计、陀螺仪、磁力计和气压计等模块。
信号调理模块负责将传感器的输出信号进行滤波、去噪和校准等处理,以确保传感器模块输出的数据准确可靠。
计算模块是飞控系统的控制中心,负责运算和控制逻辑的处理。
该模块集成了处理器、存储器和外部接口,可以接收传感器模块输出的数据,然后进行分析、计算和控制。
执行模块是飞行器的执行机构,主要负责控制飞行器的运动,包括电机、舵机等组件。
底层固件主要负责控制硬件的初始化和引导作用,为软件提供底层的硬件接口。
中间件是软件结构中的核心部分,负责采集和处理传感器的数据,计算飞行器的姿态和位置,并进行动态控制。
应用程序则是用户系统的入口,提供飞控系统的控制界面和任务执行功能。
第三章飞控系统的工作原理飞控系统的工作原理主要分为传感器数据采集、数据处理、导航控制和飞行执行四个部分。
传感器数据采集模块通过传感器模块采集当前姿态、方向和高度等数据,然后将数据传送给信号调理模块进行滤波、去噪和校准等处理。
数据处理模块将信号调理模块输出的数据进行计算和处理,得出飞行器的姿态、位置和速度等信息。
此外,还根据飞行控制算法进行运算和反馈控制。
导航控制模块通过计算飞行器的位置和速度,确定下一步的飞行方向和轨迹,并通过控制执行模块来实现飞行器的运动。
飞行执行模块是飞行器的执行机构,它通过控制电机、舵机等组件来实现飞行器的转向、前进、加速等功能。
第四章飞控系统的设计飞控系统的设计是一个复杂的过程,需要考虑诸多因素。
飞机飞控集成测试关键技术研究随着航空行业的快速发展,飞机飞控系统的关键性日益凸显。
飞控系统是整个飞机的大脑,负责飞行状态的监测、飞行参数的控制、航向的调整等一系列重要任务。
为了确保飞机的飞行安全和性能稳定,飞控系统需要经过严格的集成测试,以验证其功能完备、稳定可靠。
本文将围绕飞机飞控集成测试的关键技术展开研究,探讨其在实际应用中的重要性和发展趋势。
一、飞机飞控系统概述飞机飞控系统是指控制飞机飞行姿态和方向的关键系统。
其基本组成包括传感器、控制计算单元和执行器。
传感器负责监测飞机的各项参数,如姿态、速度、加速度等;控制计算单元根据传感器数据和飞行任务要求计算出相应的控制指令;执行器根据控制指令调整飞机的飞行状态。
飞机飞控系统的性能对飞机的飞行安全和效率有着直接影响,因此需要经过严格的集成测试来验证其功能和性能。
二、飞机飞控集成测试的概念和目的飞机飞控集成测试是指在飞控系统的硬件、软件及其相关设备集成后,进行一系列的测试验证其符合设计要求的过程。
通过集成测试,可以全面评估飞控系统在复杂环境下的性能,发现潜在问题并保证其稳定可靠运行。
集成测试的主要目的包括:验证飞控系统的功能完备性;验证飞控系统在实际飞行任务中的性能表现;发现系统集成过程中的问题并及时修复;为飞机的首飞和交付提供可靠的技术支持。
1. 数据融合技术飞机飞控系统需要依赖多种传感器来监测飞行状态,如GPS、惯性导航、大气数据传感器等。
这些传感器产生的数据需要进行融合处理,才能得出准确的飞行状态信息。
数据融合技术是飞控集成测试的关键技术之一,其目的是确保不同传感器数据的一致性和准确性。
现代飞控系统通常采用卡尔曼滤波等算法来实现数据融合,通过对传感器数据进行加权、融合和补偿,得出最终的飞行状态信息。
2. 实时仿真技术飞机飞控系统的集成测试需要在实际环境下进行,但由于飞机的复杂性和安全性考虑,真实飞行测试并不容易实现。
实时仿真技术成为了飞控集成测试的重要手段。
APM飞控系统介绍APM飞控是开源飞控系统,能够支持固定翼,直升机,3轴,4轴,6轴飞行器。
在此我只介绍固定翼飞控系统。
飞控原理在APM飞控系统中,采用的是两级PID控制方式,第一级是导航级,第二级是控制级,导航级的计算集中在medium_loop( ) 和fastloop( )的update_current_flight_mode( )函数中,控制级集中在fastloop( )的stabilize( )函数中。
导航级PID控制就是要解决飞机如何以预定空速飞行在预定高度的问题,以及如何转弯飞往目标问题,通过算法给出飞机需要的俯仰角、油门和横滚角,然后交给控制级进行控制解算。
控制级的任务就是依据需要的俯仰角、油门、横滚角,结合飞机当前的姿态解算出合适的舵机控制量,使飞机保持预定的俯仰角,横滚角和方向角。
最后通过舵机控制级set_servos_4( )将控制量转换成具体的pwm信号量输出给舵机。
值得一提的是,油门的控制量是在导航级确定的。
控制级中不对油门控制量进行解算,而直接交给舵机控制级。
而对于方向舵的控制,导航级并不给出方向舵量的解算,而是由控制级直接解算方向舵控制量,然后再交给舵机控制级。
以下,我剔除了APM飞控系统的细枝末节,仅仅将飞控系统的重要语句展现,只浅显易懂地说明APM飞控系统的核心工作原理。
一,如何让飞机保持预定高度和空速飞行要想让飞机在预定高度飞行,飞控必须控制好飞机的升降舵和油门,因此,首先介绍固定翼升降舵和油门的控制,固定翼的升降舵和油门控制方式主要有两种:一种是高度控制油门,空速控制升降舵方式。
实际飞行存在四种情况,第一种情况是飞机飞行过程中,如果高度低于目标高度,飞控就会控制油门加大,从而导致空速加大,然后才导致拉升降舵,飞机爬升;第二种情况与第一种情况相反;第三种情况是飞机在目标高度,但是空速高于目标空速,这种情况飞控会直接拉升降舵,使飞机爬升,降低空速,但是,高度增加了,飞控又会减小油门,导致空速降低,空速低于目标空速后,飞控推升降舵,导致飞机降低高度。
飞控系统工作原理或过程
飞控系统是飞机上的重要部件,它通过控制飞机的姿态、飞行
方向和稳定性来确保飞行安全。
飞控系统的工作原理和过程涉及到
多个方面,我会从多个角度来解释。
首先,飞控系统的工作原理涉及到传感器的使用。
飞控系统通
过安装在飞机上的传感器来获取飞机的姿态、速度、高度等重要参数。
这些传感器包括陀螺仪、加速度计、空速表、高度表等,它们
不断地向飞控系统提供飞机的状态信息。
其次,飞控系统的工作原理还涉及到控制执行器的使用。
一旦
飞控系统接收到传感器提供的飞机状态信息,它会根据预设的飞行
控制逻辑来计算出相应的控制指令。
这些指令会传输给飞机上的执
行器,如副翼、升降舵、方向舵等,以调整飞机的姿态和飞行方向。
另外,飞控系统的工作原理还包括飞行控制逻辑的设计。
飞控
系统中的飞行控制逻辑是由飞行控制计算机来实现的,它根据飞机
的状态信息和飞行任务要求,计算出相应的控制指令。
这些指令可
以是对姿态的调整、对飞行方向的改变,甚至是对发动机推力的调节,以确保飞机的稳定飞行。
此外,飞控系统还涉及到飞行员的操作和干预。
虽然飞控系统
可以自动执行许多飞行任务,但飞行员仍然是飞机上的重要控制者。
飞行员可以通过操纵飞机上的控制杆、脚蹬等来对飞控系统的指令
进行调整和干预,以应对特殊情况或执行特定飞行任务。
总的来说,飞控系统的工作原理和过程涉及到传感器的信息获取、控制执行器的指令传递、飞行控制逻辑的计算和飞行员的操作
干预等多个方面,它们共同确保飞机的安全飞行。
PX4飞控系统支持哪些飞行模式?PX4飞控系统支持多种飞行模式,包括但不限于:
1. 手动模式(Manual Mode):飞行器完全由遥控器控制。
2. 高度和定向模式(Altitude and Position Control Mode):飞行器在保持指定高度和位置的同时,可以自由飞行。
3. 定高模式(Altitude Hold Mode):飞行器会自动维持当前高度。
4. 定点模式(Position Hold Mode):飞行器会自动维持当前位置。
5. 自动模式(Auto Mode):可以通过设定航点来自动飞行。
6. 返航模式(Return to Home Mode):飞行器会自动返回设定的起飞点。
7. 跟随模式(Follow Me Mode):飞行器会跟随地面上的目标移动。
8. 圆周飞行模式(Circle Mode):飞行器会绕着指定的点进行圆周飞行。
9. 航线模式(Mission Mode):可以预先设定一系列航点,飞行器会按照设定的航线飞行。
10. 避障模式(Obstacle Avoidance Mode):飞行器会自动避开障碍物。
这些飞行模式可以根据具体需求进行选择和切换。
1.升降舵载荷感觉定中机构的特点?P246
升降舵一般采用动压载荷感觉装置,该装置除了具有弹簧式感觉定中机构的特性外,还可以将空速的信号引进感觉定中机构中,即随着飞行速度的增加,驾驶员的感觉力也会增加,这样就更加真实地模拟舵面的铰链力矩,使驾驶员在不同的空速情况下,准确控制飞机。
2.为什么采用非线性传动机构操纵系统?P230
操纵系统中,如果没有特殊的机构来改变传动系数,舵偏角随杆行程的变化近似成直线关系,即线性关系。
飞行速度的不同要求操纵系统的传动系数也不同,同一架飞机上不可能安装多套传动系数各异的操作系统,因此在操作系统中设置了专门的非线性传动机构,即杆行程与舵面偏角之间成曲线关系。
3.什么是马赫配平?P247
马赫配平装置是一套自动控制装置,当飞行马赫数达到产生下俯现象的数值时,马赫配平装置自动操纵升降舵向上偏转一个角度,从而避免自动下俯。
4.水平安定面操作方式以及它们的权限?
人工操作(安定面配平手轮)
电动配平(安定面配平电门)
自动驾驶操纵
优先权:手动操纵的优先权最大,自动驾驶仪的优先权最小。
5.升降舵压差感觉电门如何工作?
压差电门监控两路升降舵动压感觉机构提供的与空速成正比的计量液压压力,当两个计量压力相差超过25%时,压差电门工作,压差指示灯亮。
6.四余度系统的组成和功能,3个要求及特点?P231 ?
表决和监控、故障隔离、双故障保护
表决和监控:判断输入信号中有无故障信号,
选择器选择正确的无故障信号
故障隔离:如果任何一个信号被检查出是故障信号后,监控器自动隔离这个故障信号,不使它再输入到后面的舵回路中
双故障保护:如果某一输入信号出现故障,切换器自动切除与助力器的联系,将正确信号接入系统。
7.电传系统优缺点?(P232)
优点:
(1)减轻了操纵系统的重量、体积,节省操纵系统设计和安装时间。
(2)消除了机械操纵系统中的摩擦、间隙、非线性因素以及飞机结构变形的影响。
(3)简化了主操纵系统与自动驾驶仪的组合
(4)可采用小侧杆操纵机构。
(5)飞机操稳特性不仅得到根本改善,且可以发生质的变化。
缺点:
(1)电传操纵系统成本较高。
(2)系统易受雷击和电磁脉冲波干扰影响。
8.飞机的重要操纵面,各操纵什么运动?
副翼操纵飞机产生绕纵轴转动的系统;升降舵操纵飞机绕横轴转动的系统;方向舵操作飞机产生绕立轴转动的系统。
9.飞机操纵系统包括哪几部分?P218
中央操控系统:用于产生操作指令,包括手操纵机构和脚操纵机构
传动机构:用于传递操作指令
驱动机构:用于驱动舵面运动
10.传动系统摩擦力大的原因?P256
活动连接接头表面不清洁或润滑不良,造成锈蚀,造成接头摩擦力增大;
活动连接接头装配过紧;
传动机构和飞机其他部分发生摩擦;
传动机构本身摩擦力过大。
11.电传操纵系统,选择器,监控器,切换器的作用?
参考第6题
12.flap旁通活门作用?
当采用备用方式工作时,应通过备用襟翼电门操纵襟翼收放。
首先,应使旁通活门处在旁通位,防止在传动过程中液压马达产生液压锁紧,该操作通过将备用襟翼电门操纵到“ARM”位实现;然后,操纵备用机翼电门到“DOWN”位,电机转动,驱动输出扭力管转动,从而驱动襟翼放下。
13.地面扰流板作用?(P252)
地面扰流板只能在地面上起减速的作用。
14.后缘襟翼有几种操纵方式?(P248)
襟翼控制手柄操纵襟翼控制活门,使后缘襟翼放出。
采用备用方式即电动马达驱动收放后缘襟翼。
15.自动缝翼作用?
缝翼位于伸出位时,当飞机即将发生失速,自动缝翼功能将前缘装置全伸出,增大升力,使得飞机机头朝下,避免迎角过大。
16.升降舵有几种输入形式?(P245)
驾驶杆的前后移动,操纵升降舵。
自动驾驶仪接通时,可自动操纵升降舵。
马赫配平机构输入
水平安定面的配平会带动升降舵
17.方向舵有几种操纵方式?(P247)
踏方向舵脚蹬。
方向舵操纵系统中的偏航阻尼器根据飞机姿态变化操纵方向舵,防止荷兰滚18.飞行扰流板工作原理及作用?
飞行扰流板即可在地面使用,也可在空中使用,其作用既可减速,也可以协助副翼完成横滚操纵。
一般采用液压伺服系统,当驾驶盘转动角度较小时,飞行扰流板不放出;当驾驶盘转动超过一定角度时,扰流板才放出,并配合副翼操作飞机进行轴向转动。
飞机减速时通过操作减速手柄实现的,减速手柄位于中央操作台左侧。
在地面时,所有扰流板放出;在空中时,飞行扰流板放出。
同时还可以辅助副翼进行横滚操纵。
减速手柄的信号和配合副翼横侧操纵的信号都输送到混合器,混合器将两种信号叠加,然后输送到飞行扰流板。
19.什么是弹性间隙?影响弹性间隙的因素?P224
由于操作系统的弹性形变而产生的“间隙”通常称为弹性间隙。
温度、张力、磨损
20.协调转弯的原理?(P248)
协调转弯即是飞机平稳转弯且高度不变
为了平衡飞机转弯时产生的离心侧滑力,应使飞机横向倾侧一定角度,利用机翼升力在水平方向的分量提供向心力,以平衡转弯离心力。
而由于飞机倾侧,升力在垂直方向上的分量会减小,造成飞机高度下降。
为了抵消飞机下降趋势,在转弯时应向后轻拉驾驶盘,使飞机迎角增加。
21.偏航阻尼器的作用?(P248)
及时根据飞机姿态的变化操纵方向舵,防止产生荷兰滚。
偏航阻尼器驱动方向舵的偏转角小于方向舵脚蹬操纵的方向舵偏转角。
22.液压助力器的原理?(P235)
液压助力器是一种以液压作为工作能源的执行操纵指令的机械液压位置伺服功率放大装置,助力器输出的机械位移,与输入指令的机械位移量成正比。
典型的液压助力器基本组成部分为外筒、传动活塞和配油柱塞。
液压助力器工作时,传动活塞运动的方向、速度、位移,都是随着配油柱塞的运动而变化的。
配油柱塞停止运动,传动活塞也停止。
因此液压助力器是一种液压随动装置,驾驶员只要很小的力,通过驾驶杆带动配油柱塞控制油路,即可利用液压克服很大的舵面载荷,操纵舵面偏转。
舵面偏转的方向、角度、角速度,都随着驾驶杆的运动而改变。