凝结水精处理
- 格式:doc
- 大小:174.00 KB
- 文档页数:16
凝结水精处理系统流程
凝结水精处理系统流程主要包括以下几个步骤:
1. 凝结水通过前置过滤器进行初步处理,去除大颗粒杂质。
2. 经过过滤的凝结水进入高速混床进行进一步的处理。
混床中装有树脂,能够吸附和去除水中的离子和杂质。
3. 经过处理的凝结水进入树脂捕捉器,截留少量跑出的树脂,保证水质。
4. 精处理装置设有旁路装置,在精处理装置故障、机组异常、凝结水超温、超压等异常情况时,旁路装置会自动或手动开启,以免损坏设备和树脂。
5. 凝结水经过上述处理后,水质达到要求,可以供给给用户使用。
以上是凝结水精处理系统的大致流程,具体操作可能因设备型号和工艺流程有所不同,需要根据实际情况进行调整。
凝结水精处理系统一、概述1.1.1 凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。
实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。
由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。
因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。
1.1.2 凝结水精处理的目的凝结水由于某些原因会受到一定程度的污染,大概有以下几点:1)凝汽器渗漏或泄漏凝结水污染的主要原因是冷却水从凝汽器不严密的部位漏至凝结水中。
凝汽器不严密的部位通常是在凝汽器内部管束与管板连接处,由于机组工况的变动会使凝汽器内产生机械应力,即使凝汽器的制造和安装质量较好,在使用中仍然可能会发生循环冷却水渗漏或泄漏现象。
而冷却水中含有较多悬浮物、胶体和盐类物质,必然影响凝结水水质。
2)金属腐蚀产物的污染凝结水系统的管路和设备会由于某些原因而被腐蚀,因此凝结水中常常有金属腐蚀产物。
其中主要是铁和铜的氧化物(我公司热力系统设备基本上没有铜质材料)。
铁的形态主要是以Fe2O3、Fe3O4为主,它们呈悬浮态和胶态,此外也有铁的各种离子。
凝结水中的腐蚀产物的含量与机组的运行状况有关,在机组启动初期凝结水中腐蚀产物较多,另外在机组负荷不稳定情况下杂质含量也可能增多。
3)锅炉补给水带入少量杂质化学水处理混床出水即为锅炉补给水,一般从凝气器补入热力系统。
由于混床出水在运行中的严格控制,补给水杂质含量很少,其水质要求:DD≤0.2μs/cm ,SiO2≤20μg/L。
如果混床出水不合格,就可能对凝结水造成污染。
由于以上几种原因,凝结水或多或少有一定的污染,而对于超临界参数的机组而言,由于其对给水水质的要求很高,所以需要进行凝结水的更深程度的净化,即凝结水精处理。
1.1.3 凝结水精处理设备介绍凝结水精处理系统采用中压凝结水混床系统,具体为前置过滤器与高速混床的串连,每台机组设置2×50%管式前置过滤器和3×50%球形高速混床,混床树脂失效后采用三塔法体外再生系统,其中1、2号机组精处理共用一套再生装置。
凝结水精处理技术凝结水精处理技术主要包括膜分离技术和离子交换技术。
欧梅塞尔是同时拥有膜和离子交换树脂两大技术和产品的公司。
从蒸汽凝结水零排放到炼油废水处理,从电子超纯水到海水淡化处理,欧梅塞尔膜和离子交换技术和产品都能够为用户提供各种需求的水资源解决方案。
中国蒸汽凝结水回收率不足30%。
其中很主要的原因是所回收的凝结水中含有过量油类等污染物,包括动植物油脂,石油烃类,环烷酸,酚醛等衍生物。
高温凝结水中水和油的比重、粘度降低、油水分散的阻力减少。
除悬浮状态的机械分散油(15〜100um)外,高温凝结水中油主要以乳化油(0.5〜15um)和溶解油(0.005um)形式存在。
通常分散由悬浮在水面上,乳化油稳定分散在水中,溶解油则完全溶解在水中。
蒸汽输送管线材质一般为碳钢,碳钢容易在有氧和酸性环境下腐蚀。
腐蚀产物主要为悬浮态和胶体态的Fe3O4、Fe2O3,少量不溶性的Fe(OH)3以及离子形式的Fe2+和Fe3+。
蒸汽凝结水中铁离子由于氧腐蚀和酸腐蚀。
根据蒸汽凝结水实际温度、流量、水质状况、生产工艺特点以及用户资金状况,可采用不同处理技术进行优化组合。
以满足低压锅炉(含油量W2mg/L,含铁量W0.3mg/L)、中压锅炉(含油量W1mg/L,含铁量W0.05mg/L)、高压锅炉(含油量W0.3mg/L,含铁量W0.03mg/L)的水质标准要求。
前置过滤技术前置过滤装置作为凝结水经处理系统的预处理部分,是去除凝结水中的悬浮物、胶体、金属氧化产物等粒径较大的杂质,起到预处理的作用,保护下游膜分离或离子交换设备免受颗粒无损伤和污染,提高周期制水量。
前置过滤装置可根据蒸汽凝结水的水质实际情况可选择采用精密过滤器、在线自动清洗过滤器、盘式过滤器、多介质过滤器、电磁过滤器等多种过滤方式实现。
除油技术陶瓷中空纤维超滤膜分离技术陶瓷中空纤维超滤膜采用耐温性,机械强度和化学稳定性都极强的a-AL2O3无机材料,超长使用寿命,从容应对各种极端运行条件。
电厂化学凝结水精处理篇第一章总则1.1凝结水精处理的目的凝结水在形成过程中会因为凝汽器渗漏或泄漏、热力系统腐蚀、汽机负荷变化等原因受到不同程度的污染。
凝结水是给水的主要组成部分,为了提高给水水质,适应我厂亚临界高参数大容量机组对给水水质的严格要求,不仅需要对锅炉补给水进行净化除盐处理以及对炉水进行加药调节处理,还需对凝结水进行深化处理,彻底除去凝结水中的各种盐份、胶体、金属氧化物、悬浮物等杂质,从而保证给水的高纯度,保证机组在凝汽器发生少量泄漏时,能满负荷运行;在较大泄漏时,能给予申请停机所需时间。
1.2系统概况我厂二期2×300MW机组对全容量凝结水进行除盐处理,凝结水处理采用中压系统。
每台机组各有一个混床单元,配备两台高速混床(含旁路与再循环),正常情况下两台混床均处于连续运行状态,设备没有备用。
每台混床出口设置树脂捕捉器,确保破碎树脂不会被带入热力系统。
每台高速混床处理水量正常为380m3/h,最大流量为456m3/h,机组正常运行时,两台混床流量达760 m3/h,可满足单台300MW机组凝结水量的处理。
混床设计温度50℃,正常运行温度≤50℃,装填树脂允许温度为55℃,设计压力为3.5 Mpa。
每台机组还设置有一台再循环泵,同时设置一个可调节旁路阀。
混床为球形高速混床,采用美国陶氏公司的中压大孔均粒树脂。
阳树脂为型号MonoplusSP112H,阴树脂为MonoplusMP500,阳、阴树脂体积比为3:2。
两个混床单元共用一套体外再生装置,设计压力为0.6 Mpa,再生系统采用FULLSEP高塔分离法,具有较高的分离度,可以保证阴阳树脂分离后,使阴树脂中的阳树脂和阳树脂中的阴树脂的交叉污染保证值小于0.1%,可满足氨化运行对树脂高分离度的要求。
中压除盐系统和低压再生系统的连接树脂管道上装有带筛网的压力安全阀,筛网可以泄放压力而不让树脂漏过。
该系统程控部分由两台可编程控制器、主控盘、可编程计算机系统软件组成。
凝结水精处理的作用
凝结水精处理的作用是将水中的悬浮固体物、浮油、悬浮质和其他杂质去除,使水质达到一定的清洁、安全、可用性标准。
具体作用包括:
1. 去除悬浮固体物:凝结水精可以使水中的悬浮固体物质聚集成较大的团块,便于后续的沉淀或过滤处理。
2. 去除浮油:凝结水精可以与水中的浮油发生反应生成较大的团块,从而使其分离出水体,并减少水中浮油的含量。
3. 除去悬浮质:凝结水精可以与水中的悬浮质发生反应,使其凝聚成为较大的团块,从而加速悬浮物质与水体的分离。
4. 去除其他杂质:凝结水精还可以与水中的其他杂质如矿物质、无机盐等发生作用,使其沉淀或通过过滤等方式去除。
综上所述,凝结水精处理可以有效地改善水质,去除水中的悬浮固体物、浮油、悬浮质和其他杂质,使水可用于不同的工业生产、饮用等需求。
凝结水精处理存在问题及对策分析摘要:随着当前社会的不断发展,各行业对水质提出了更加严格的要求:相关发电企业在进行各类高参数机组建设研究的过程中,要做好凝结水精处理研究工作,安装现代化的处理装置,全面提高系统水质处理效果。
提高水质量,改善水质的品质,同时安装相关的线路缓冲装置,保证机组的稳定运行。
关键词:凝结水;精处理;问题及对策1凝结水精处理的相关概述1.1作用。
凝结水主要包括汽轮机内蒸气做功产生的凝结水和锅炉的补给水:相关机械企业在进行生产建设的过程中,也要综合考虑凝结水的精处理工作。
了解凝结水在电厂运行过程中的实际作用,同时分析如何进行操作管理,才能够避免凝结水在后续应用过程中受到污染。
制定详细的管理计划,做好凝结水精处理工作,构建完善的处理系统去除热力系统中的一些腐蚀产物以及悬浮的杂质。
在进行处理的过程中,要考虑各种设备的具体使用情况,加大技术方面的引入力度缩短机组的启动运行时间,减少系统运行过程中的能源消耗和成本支出,全面提高企业的经济效益。
仔细观察当前机组的运行情况,要保证整个机组的安全连续性运行,同时要去除录入的一些年份和悬浮的杂质。
进行系统设计时要保证机组能够按照预定的程序停机处理,对各类参数进行合理的设计,全面提高锅炉汽水的品质。
对凝结水精处理系统的运行模式进行分析,对传统的运行内容进行系统化的设计,保证系统运行的安全性和稳定性。
关电力企业在进行凝结水精处理研究和系统设计时,要加大技术和设备方面的投入力度,可以安装相关的前置过滤器。
结合系统的运行情况,对设备的运行模式进行技术化的调整,充分发挥设备的技术使用效果。
1.2常见问题管理人员要了解精处理常见的问题并对问题进行分析,了解程控系统的基本运行模式,对涉及工艺和现场传感器的运行模式进行综合性的分析。
如果工作人员在这一过程中没有按照相关要求进行逐个操作,没有对设计控制模式进行设计和研究就会增加具体的工作量,而且会对后续日常运行管理工作造成不便影响。
第一节系统说明发电厂的凝结水有汽轮机凝汽器凝结水、汽轮机附属热力系统中加热疏水(蒸汽凝结水)。
凝结水是给水中最优良的组成部分,通常也是给水组成部分中数量最大的。
凝结水同补给水汇合后成为锅炉的补水,所以保证凝结水和补给水的水质是使给水水质良好的前提。
凝结水是由蒸汽凝结而成的,水质应该是极纯的,但是实际上这些凝结水往往由于以下原因而有一定程度的污染:1 在气轮机凝汽器的不严密处,有冷却水漏入汽轮机凝结水中。
2 因凝结水系统及加热器疏水系统中,有的设备和管路的金属腐蚀产物而污染了凝结水。
一、凝汽器的漏水冷却水从汽轮机凝汽器不严密的地方进入汽轮机的凝结水中,是凝结水中含有盐类物质和硅化合物的主要来源,也是这类杂质进入给水的主要途径之一。
凝汽器的不严密处,通常出现在用来固定凝汽器管子与管板的连接部位(或称固接处)。
即使凝汽器的制造和安装质量较好,在机组长期运行的过程中,由于负荷和工况变动的影响,经常受到热应力和机械应力的作用,往往使管子与管板固接处的严密性降低,因此通过这些不严密处渗入到凝结水中的冷却水量就加大。
根据对许多大型机组的凝汽器所作的检查得知:在正常运行条件下,随着凝汽器的结构和运行工况的不同,渗入到凝结水中的冷却水量有很大的差别;严密性很好的凝汽器,可以做到渗入的冷却水量为汽轮机额定负荷时凝结水量的0.005%-0.02%。
就是说,即使在正常运行条件下,冷却水也是或多或少地渗入到凝结水中,这种情况称之为凝汽器渗漏。
当凝汽器地管子因制造地缺陷或者因为腐蚀出现裂纹、穿孔和破损时,当管子与管板地固接不良或者固接处地严密性遭到破坏时,那么由于冷却水进入到凝结水中而使凝结水水质劣化的现象就更加显著。
这种现象称为凝汽器泄漏。
凝汽器泄漏时进入凝结水的冷却水量比正常情况下高的多。
随着冷却水进入凝结水中的杂质,通常有Ca2+、Mg2+、Na+、HCO3-、Cl-、SO42-,以及硅化合物和有机物等。
由于进入凝汽器的蒸汽是汽轮机的排汽,其中杂质的含量非常少,所以汽轮机凝结水中的杂质含量,主要决定于漏入冷却水的量和其杂质的含量。
第五章凝结水精处理火力发电厂锅炉的给水由汽轮机凝结水和化学补给水组成,其中凝结水的水量约占给水总量的90%~95%以上。
所以,给水质量在很大程度上取决于凝结水的水质。
由于现代高参数机组,对给水的水质要求很高,故凝结水必须进行深度处理。
由于这是对含杂质很低的水进行处理,因此又称凝结水精处理。
第一节概述一、高参数机组凝结水处理的必要性在火力发电的生产过程中,作为锅炉机组工作介质的水在热力系统中是循环使用的,高质量的水汽品质是热力设备安全经济运行的重要条件之一,尤其是高参数机组。
因此,作为给水重要组成部分的汽轮机凝结水进行净化处理是必要的。
1.机组对水质要求高参数机组对给水质量要求很严格,给水带入的少量盐类都可能导致炉管内结垢,过热器积盐。
由于盐类在蒸汽中的溶解度随蒸汽参数的提高而增大,所以参数越高蒸汽溶解带盐越多,盐类被蒸汽带入汽轮机中,随着作功过程的进行,蒸汽压力逐渐降低,蒸汽中的盐分则会在汽轮机内沉积。
随着机组参数的提高,给水质量对机组安全、经济运行越来越重要,所要求的给水质量也越高,表5-1列出了亚临界汽包锅炉的给水水质标准(DL/T805.4-2004)。
表5-1 亚临界汽包锅炉给水水质标准注:( )号内数字为期望值。
2.凝结水的污染火力发电厂的汽轮机凝结水是蒸汽在汽轮机中作完功以后冷凝形成的。
照理,凝结水应该是很纯净的,但实际上在凝结水形成过程中或水汽循环过程中因某些原因会受到一定程度的污染。
所以在未经处理的凝结水中一般都含有一定量的杂质,这些杂质主要来自以下几个方面。
(1)凝汽器泄漏。
凝结水含有杂质的主要原因之一是冷却水从汽轮机凝汽器不严密的部位漏至凝结水中。
凝汽器不严密部位通常是在凝汽器管与管板的连接处,因为在汽轮机的长期运行过程中,由于工况的变动必然会使凝汽器内产生机械应力。
所以,使用中仍然会发生管子与管板连接处严密性降低,冷却水漏入凝结水中的现象。
当凝汽器的管子因制造缺陷或腐蚀而出现裂纹、穿孔或破损时,或者当管子与管板的固接不良或遭到破坏时,则冷却水漏到凝结水中的量会显著的增大,这种现象称为凝汽器泄漏。
1 凝结水精处理系统1.1 系统概述凝结水采用100%全容量处理,为中压系统。
每台机组设一套凝结水精处理系统,二台机共设一套体外再生树脂系统,再生装置采用高塔分离技术。
精处理系统由混床单元、再生单元和辅助单元组成。
混床单元主要由两台50%管式过滤器、三台50%高速混床、三台树脂捕捉器、一台再循环泵和二套旁路系统组成;再生单元主要由树脂分离塔、阴树脂再生塔、阳树脂再生兼树脂储存塔和树脂捕捉器组成;辅助单元主要由罗茨风机、电热水箱、压缩空气储罐、酸碱喷射器、再生废水泵等组成。
精处理系统设有两个具有100%通过能力的旁路装置:前置过滤器旁路和高速混床旁路,旁路装置包括自动旁路门和手动旁路门,自动旁路门为0-50-100%电动调节蝶阀,手动旁路门为事故人工控制阀。
系统工艺流程如下:1)凝结水精处理系统流程:轴封加热器2)凝结水精处理再生系统流程:1.2 系统运行控制指标1.3 设备规范及运行参数1.3.1 设备规范1.4 系统保护及联锁1.4.1 机组启动初期,当凝结水含铁量小于1000μg/L时,仅投入前置过滤器运行,将凝结水精处理混床旁路,以迅速降低系统中的铁悬浮物含量。
当凝结水含铁量小于300μg/L时,投入混床运行。
1.4.2 当前置过滤器全部停运或第一次投运时,前置过滤器电动旁路门开度为100%;当前置过滤器一台运行,另一台反洗或停运时,前置过滤器电动旁路门开度为50%。
当前置过滤器两台都运行时,前置过滤器电动旁路门关闭;1.4.3 当高速混床停运或第一次投运时,混床电动旁路门100%打开;一台运行,另一台备用或停运时高速混床电动旁路门开度至50%;当两台高速混床运行时,高速混床电动旁路门关闭。
1.4.4 当运行中前置过滤器的旁路压差达0.12MPa时并延时2s后未降低,前置过滤器旁路全开,同时前置过滤器的压差报警;当运行中混床的旁路压差达0.35MPa并延时2s后未降低,混床旁路全开,并且混床压差报警。
凝结水精处理一、凝结水精处理的必要性凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。
实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。
由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。
因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。
1、凝汽器泄漏:凝汽器的泄漏可使冷却水中的悬浮物和盐类进入凝结水中。
泄漏可分两种情况:严重泄漏和轻微泄漏。
前者多见于凝汽器中管子发生应力破裂、管子与管板连接处发生泄漏、腐蚀或大面积的腐蚀穿孔等。
此时,大量冷却水进入凝结水中,凝结水水质严重恶化。
后者多因凝汽器管子腐蚀穿孔或管子与管板连接处不严密,使冷却水渗入凝结水中。
即使凝汽器的制造和安装较好,在机组长期运行过程中,由于负荷和工况的变动,引起凝汽器的震动,也会使管子与管板连接处的严密性降低,造成轻微的泄漏。
当用淡水作冷却水时,凝汽器的允许泄漏率一般应小于%。
严密性较好的凝汽器,泄漏量小于此值,甚至可以达到%。
当用海水作为冷却水时,要求泄漏率小于%。
凝汽器泄漏往往是电厂热力设备结垢、腐蚀的重要原因。
2、金属腐蚀产物带入:火电厂的汽水系统中的设备和管道,往往由于某些腐蚀性物质的作用而遭到腐蚀,致使凝结水中含有金属腐蚀产物,其中主要为铁和铜的氧化物。
进入凝结水中金属腐蚀产物的量与很多因素有关,如机组的运行工况,设备停用时保护的好坏,凝结水的pH值,溶解气体(氧和二氧化碳)的含量等。
凝结水进入锅炉后,其所含的金属腐蚀产物将在水冷壁管中沉积,引起锅炉结垢和腐蚀。
一般情况下,在机组启动和负荷波动时,凝结水中的铁、铜含量急剧上升。
3、补充水带入的悬浮物和盐分:锅炉补充水虽经深度除盐处理,但由于种种原因(如原水中有机物含量高等),除盐水在25℃的电导率不能低于μS/cm,即使电导率小于μS/cm,补充水中仍含有一定量的残留盐分。
此外,除盐水流过除盐水箱、除盐水泵和管道,也会携带少量的悬浮物及溶解气体而进入给水。
4、热电厂返回水夹带的杂质污染从热用户返回的凝结水中通常含有很多杂质。
、生产用汽的凝结水一般含有较多的油类物质和铁的腐蚀产物,返回后需要进一步处理来满足机组对水质的要求。
二、凝结水精处理技术概况凝结水处理设备与热力系统的连接方式1、低压系统连接方式水处理设备串联在凝结水泵和凝升泵之间,见图(a)。
由于凝结水泵在1MPa~压力下运行,所以混床是在较低压力下工作的,为了能将混床处理后的水再经低压加热器送入除氧器,需在混床之后设置凝结水升压泵。
在该系统中为便于除氧器水位的调节,系统中还需设置密封式补给水箱,图:(a)低压系统,1—汽轮机;2—发电机;3—凝汽器;4—凝结水泵(低压);5—凝结水处理设备;6—凝升泵;7—低加;8—凝结水泵(高压)2、中压系统连接方式中压系统连接方式即为水处理设备串联在凝结水泵和轴封加热器之间, 见图(b),压力在~。
采用中压凝结水系统,简化了热力系统,提高了系统的的严密性,能耗省,也为凝结水处理系统布置在汽机房创造了条件。
美国80%的凝结水处理系统采用中压系统运行。
中压凝结水系统要求凝结处理设备的结构强度和防腐衬时能承受较高压力。
离子交换树脂的机械强度要求高,并需采用各种中压电动、气动耐腐蚀阀门,一般需进口。
图(b)中压系统1—汽轮机;2—发电机;3—凝汽器;4—凝结水泵(低压);5—凝结水处理设备;7—轴封加热器;8—凝水泵(高压)三、凝结水处理系统的组成直流炉供汽的机组,100%凝结水处理;亚临界参数以上汽包炉供汽的机组,100%凝结水处理;高压汽包炉供汽、海水冷却的机组以及由超高压汽包炉供汽、海水或苦咸水冷却的机组可进行部分凝结水处理。
凝结水处理系统分为过滤和除盐两大部分,过滤主要除去金属腐蚀产物及悬浮物等杂质;在混床除盐出口处安装后置过滤器即树脂捕捉器,用于截留混床可能漏出的碎树脂。
1 、有前、后置过滤器的水处理系统;前置过滤器+混床+后置过滤器前置过滤是用来除去凝结水中的悬浮物质及油类等物质,以保护除盐设备不受污染。
后置过滤是用来截留除盐设备漏出的树脂或树脂碎粒,防止他们随给水进入锅炉,保证锅炉给水水质。
2 、无前置过滤器的水处理系统:混床+树脂捕捉器无前置过滤器时,离子交换除盐设备本身也起过滤作用。
600MW超临界直流沪应采用有前、后置过滤器的系统前置过滤器:5μm滤芯(保安)过滤器、电磁过滤器、阳床过滤器等。
后置过滤器:离子捕捉器(捕捉混床带出的离子碎片)高速混床:阴、阳树脂混合床四、高速混床对树脂的要求1、机械强度凝胶型树脂的孔径小,交联度低,抵抗树脂“再生——失效”反复转型膨胀和收缩而产生的渗透应力较差,因而易破碎。
大孔型树脂的孔径大,交联度高,抗膨胀和收缩能力强,因而不易破碎。
高速混床的实际运行结果表明,选出用大孔型树脂,混床压降可控制在以下,树脂破损率大大降低。
当混床高流速运行时,树脂要经受较大的水流压力,如机械强度不足以抵抗所受压力时就会破碎,因此用于高速混床的树脂一定要有高的机械强度。
2、树脂的粒径要合适且大小要均匀。
一般要求90%以上重量的树脂颗粒集中在粒径偏差在±0.1mm范围内,这样①减轻树脂的交叉污染。
粒度不均的树脂,在反洗分层后,阳树脂与阴树脂不能有效分离,容易形成小颗粒阳树脂和大颗粒阴树脂互相渗杂的混脂区。
再生时阳树脂中夹杂的阴树脂变成CI型(HCI作再生剂时),阴树脂中夹杂的阳树脂变成Na型(NaOH再生)。
混脂的存在,即使再生非常彻底,由于上述原因,再生混合后,树脂层中有一部分RCI和RNa树脂。
这对凝结水精处理水质影响很大。
表现为混床漏Na和漏CI。
这叫阴阳树脂的交叉污染。
因为小颗粒阳树脂沉降速度与大颗粒阴树脂沉降速度接近,不易水力分开②树脂层压降小。
如果颗粒不均匀,小的填充在大的之间,水流阻力大,压降大,均匀颗粒不存在此问题③水耗低。
均粒树脂颗粒反洗时,无大颗粒树脂拖长时间,所以反洗时间短,用水少。
3、必须选用强酸性和强碱性树脂。
这是因为弱型树脂都有一定是水解度,而且弱碱性树脂还不能出去水中的硅,羧酸型弱酸树脂交换速度慢,而床体的运行流速高,因此不能用弱型树脂。
否则难以保证高质量的出水要求。
4 必须选择适当的阳、阴树脂比例。
阳、阴树脂比例应根据凝结水水质污染状况及机组运行工况来选择。
五、高速混床树脂的再生高速混床失效后应再生,一般采用体外再生。
即把失效的树脂转移到专用的再生器中进行再生,其再生过程与体内再生相同,整个系统由混床、再生器和再生后树脂的贮存器组成。
树脂的移送一般采用水力、气水混合输送。
体外再生的优点:①离子交换树脂在专用设备中进行反洗、分离和再生,有利于获得较好的分离效果和再生效果。
②体外再生简化了高速混床内部的结构,混床中不用设置酸碱管道减少水流阻力,有利于混床高速运行。
③体外再生系统中有已再生好的树脂,这样可缩短混床停用时间,提高设备的利用率。
体外再生的缺点:①增加了树脂输送、再生和贮存设备②管道长、树脂流失及磨损率大。
主要再生系统及流程体外再生系统由树脂分离塔(SPT),阴树脂再生塔(APT)、阳树脂再生兼贮存塔(CRT)以及有关泵、风机等组成。
阴、阳树脂分离塔影响树脂再生度高低的一个极为重要的因素是混床失效树脂再生前能否彻底分离。
当分离不完全时,混在阳树脂中的阴树脂被再生成CI型,混在阴树脂中的阳树再生成Na型,这样在运行中势必影响出水水质。
分离塔的结构见右图。
底部主进水阀、辅助进水阀设置有多个不同流量,提供不同的反洗强度的水流,有利于树脂的分离。
塔上设有多个窥视空,便于观察树脂的分离情况。
顶部进水装置采用支母管式,底部出水装置采用不锈钢双速水嘴。
分离塔的上部是一个锥形筒体。
上大下小;下部是一个较长且直的筒体。
反洗时水能均匀地形成柱状流动,不使内部形成大的扰动;在反洗、沉降、输送树脂时,内部扰动可达最小程度。
1.失效树脂进脂阀;2.阴脂出脂阀3.阳脂出脂阀;4.压缩空气进气阀5.顶部进水阀;6.反洗进水上部辅助阀7.底部进气阀; 8.底部主进水阀9.反洗进水下部辅助阀10.反洗进水中部辅助进水阀11.上部水位调整阀;12.顶部排水阀13.底部排放阀;14.底部辅助进水阀树脂的分离利用阴、阳树脂的湿真密度不同,通过反洗流量的调整,形成树脂的不同沉降速度,从而达到树脂分离的目的。
树脂在分离前必须对树脂进行清洗。
因高速混床具有过滤功能,树脂层中截留了大量的污物,如不清除掉,会发生混床阻力增大、树脂破碎及阴、阳树脂再生前分离困难等问题。
清洗树脂最常用的方法是空气擦洗法,在装有失效树脂的分离塔中多次反复地通入空气,然后正洗的一种操作方法。
擦洗的次数视树脂污染程度而定,至出水清洁时为止。
通入空气的目的是松动树脂层和使污物脱落,正洗是使脱落下来的污物随水流自底部排出。
空气擦洗还可减小静电,防止树脂抱团,减小反洗时间和反洗流量,同时还可将粉末状树脂从树脂表面冲走。
减小运行压降反洗分层时,先用较高的反洗流速来反洗树脂层,然后慢慢降低反洗流速。
先使反洗流速降低到阳离子树脂沉降时,经一定时间,使阳离子交换树脂积聚在上部锥形和下部圆柱的分界面以下,形成阳树脂层,然后再慢慢地降低反洗流速使阳树脂慢慢地、整齐地沉降下来。
阳树脂沉降的同时阴树脂也开始沉降,当反洗流速降低到阴树脂沉降时,经一定时间便得阴树脂积聚在上部锥形和下部圆柱的分界面以下,形成阴树脂层,然后再慢慢降低反洗流速一直到零。
通过水力分层达到阴阳树脂彻底分离的目的(交叉污染均低于% )。
阴再生塔1)作用:对阴树脂进行空气擦洗、反洗及再生。
2)结构及工作原理阴塔上部配水装置为挡板式,底部配水装置为不锈钢碟形多孔板加水帽,既保证了设备运行时能均匀配水和配气,又使得树脂输出设备时彻底干净。
进碱分配装置为T型绕丝支母管结构(又称鱼刺式),其缝隙既可使再生碱液均匀分布又可使完整颗粒的树脂不漏过,并可使细碎树脂和空气擦洗下来的污物去除。
分离塔阴树脂送进阴塔后,通过底部进气擦洗和底部进水反洗阴树脂,直至出水清澈。
然后从树脂上部进碱再生、置换、漂洗。
阳树脂再生兼贮存塔1)作用:对阳树脂进行空气擦洗及再生;阴阳树脂混合;贮存已经混合好的备用树脂。
2)结构及工作原理(结构同阴塔)分离塔阳树脂送进阳塔后,通过底部进气擦洗和底部进水反洗阳树脂,直至出水清澈。
然后从树脂上部进酸再生、置换、漂洗后,阴塔树脂再生合格后,阴树脂送入阳塔中与阳树脂混合,成为备用树脂。
六、设备运行及控制1.设备运行概述1)前置过滤器及混床系统正常运行时,每台机精处理两台前置过滤器运行,无备用,当一台前置过滤器失效时,退出运行进入反洗程序;三台混床两台运行一台备用,当一台混床失效时,投运另一台混床并经再循环泵循环正洗至混床出水合格后投入运行。