电磁场与电磁波理论基础 曹建章 张正阶 李景镇 编著(第6章答案)
- 格式:pdf
- 大小:197.27 KB
- 文档页数:7
1-1由 ⎥⎥⎦⎤⎢⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡B c E Q M L PH D c (1) 得 ⎪⎩⎪⎨⎧H D c M P ==..E E ++Q c L c ..BB(2)1(1)(2)L Q -- −→−11()cD L Q H P L Q M E ---=-−→− 1111D P L Q M E L Q H c c --⎛⎫=-+ ⎪⎝⎭(3)同理得到 1111B Q M E L Q H c c --⎛⎫=-+ ⎪⎝⎭(4)(3)与(4)合并→11111D E P L Q M L Q c B H Q MQ ----⎡⎤⎡⎤⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎣⎦对比,即得证 1-2(a). 三式皆满足波动方程,只要 2200k w με= (b) (i)满足0=⋅∇E(ii)与(iii)不满足0=⋅∇E (c) 对(i) 1)z H wt k z ∧=- 1-3(a).由MaxwellHE tμ∂∇⨯=-∂ (1) EH E tεσ∂∇⨯=+∂ (2) 0=⋅∇H (3) 0=⋅∇E (4)),1(⨯∇并代入(2)-(4)→0222=⎪⎪⎭⎫∂∂- ⎝⎛∂∂-∇E t t μσμε (5) (b )将 )cos(),(wt z k ex t z E R zk I -=-∧代 入(5)→222w k k I R με=- (6)μσ21=I R k k 2ϖ (7)联立角解之: ⎪⎪⎩⎪⎪⎨⎧ ⎝⎛⎪⎪⎭⎫++= ⎝⎛⎪⎪⎭⎫-+=112111212222222222εωσμεωεωσμεωR I k kI -4(a) 将 0(,)c o s ()s i n ()E r t E x k z w t y k z w t ∧∧⎡⎤=---⎢⎥⎣⎦代 入0222=⎪⎪⎭⎫∂∂-∇ ⎝⎛E t με 只要μεω22=k ,即可满足 为左旋圆极化波 (b) 0t =时刻00cos sin x y E E kz E E kz==则有 220012y x x y E E E E π⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ψ-ψ=E 矢量端点轨迹沿z 轴形成右手螺旋线螺距 : P=λπ=k2 2-1.此时,无源Maxwell 方程为:H i B i E0ωμω==⨯∇ (1)E i D i Hωεω-=-=⨯∇ (2)()0D E ε∇=∇= (3)0B ∇= (4)对(1)两边取旋度: H i E⨯∇=⨯∇⨯∇0ωμ220()E E E ωμε∇∇-∇= (5)由(3)得: ()0E E εε∇+∇= E E εε∇∇=- (6)(6)代入(5)得:220()()0()r r r εωμεε⎡⎤∇∇E +E +∇E =⎢⎥⎣⎦2-2. (a) 设I R i εεε+=II R RI R IR I R k k k k ik k i k εμωεμωεεμωεμω020222002)(==-+=+==解之得:2)(2)(220220R I R I I R R R k k εεεμωεεεμω-+=++=传播因子为:zRzIzik ik k ee e-=则 )(211220R IRI p k d εεεμω-+==本题设: 900822 2.51040,12310zR I f H mωππεεεε==⨯⨯===⨯代入,得: m d p 02.0≈。
r a=2r jq 题2-11E 2E 3E 题2-2图()004,,()400P ,,oYZ1r 2r r 1R 2R 18q C=q 题2-3图第二章 静电场 2-1.已知半径为r a =的导体球面上分布着面电荷密度为0cos S S ρρϑ=的电荷,式中的0S ρ为常数,试计算球面上的总电荷量。
解 取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到()220cos sin S S S Q dS r d d p p=r =rq q q j òòòò220022000200cos sin cos sin sin20S S S r d d rd d a d p pp pp =rq q q j=r q q q j =r p q q =òòòòò2-2.两个无限大平面相距为d ,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解 假设上板带正电荷,面密度为S r ;下板带负电,面密度为S -r 。
对于单一均匀带电无限大平面,根据书上例 2.2得到的推论,无限大带电平面的电场表达式为2SE r =e 对于两个相距为的d 无限大均匀带电平面,根据叠加原理 123000SE ,E ,E r ===e2-3.两点电荷18C q =和24C q =−,分别位于4z =和4y =处,求点(4,0,0)P 处的电场强度。
解 根据点电荷电场强度叠加原理,P 点的电场强度矢量为点S 1和S 1处点电荷在P 处产生的电场强度的矢量和,即()112233010244q q R R =+pe pe R R E r 式中11144x z ,R =-=-==R r r e e 22244x y ,R =-=-==R r r e e代入得到()()()()()330444844142x y x z x y z éù-êú-êú=-êúpe êúëûù=+-úûe e e e E r e e e 2-7.一个点电荷+q 位于(-a , 0, 0)处,另一点电荷-2q 位于(a , 0, 0)处,求电位等于零的面;空间有电场强度等于零的点吗?解 根据点电荷电位叠加原理,有120121()4q q u R R r πε⎡⎤=+⎢⎥⎣⎦式中()11y z x a y R =-=+++=R r r e e e()22y z x a y R =-=-++=R r r e e e代入得到()4q u r πε⎡⎤=电位为零,即令0()04q u r πε⎡⎤== 简化可得零电位面方程为()()2233330x a x a y z ++++=根据电位与电场强度的关系,有()()()()()()()()3322222222222222203322332222222()()2422x y z x yx a y z x a y z x a y z x a y z x a y u u u u xy z x a y z z q x a x a y y z z E r r e e e e e πε−−−−−−⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦⎧⎛⎫⎪⎡⎤⎡⎤=−−++− ⎪⎨⎣⎦⎣⎦ ⎪⎪⎝⎭⎩⎛⎫⎡⎤⎡⎤+−+ ⎪⎣⎦⎣⎦ ⎪⎝⎭⎛⎫⎡⎤⎡⎤+−+ ⎣⎦⎣+++−+++++−+++++++⎦ ⎝−⎭z e ⎫⎪⎪⎬⎪⎪⎭要是电场强度为零,必有 000x y z E ,E ,E ===即()()()()()()()()332233222222222222222233222222202020x a x a y y z z x a y z x a y z x a y z x a y z x a y z x a y z −−−−−−+++−+++++−⎧⎡⎤⎡⎤+++++−+−++−=⎪⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎨⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎪⎣⎣⎩+⎦⎦此方程组无解,因此,空间没有电场强度为零的点。
第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题 6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰g g B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()(P r r r a e r σεεωε==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m=、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
解 由题给定的电流方向可知,双线中的电流产生的磁感应强度的方向,在回路中都是垂直于纸面向内的。
第6章 平面电磁波点评:1、6-8题坡印廷矢量单位,2W m ,这里原答案有误!2、6-13题第四问应为右旋圆极化波。
3、6-19题第三问和第四问,原答案错误。
这里在介质一中,z<0。
4、矢量书写一定引起重视,和标量书写要分清,结果若是确切的数值则单位一定要标清楚。
5、马上期末考试,那些对参考答案借鉴过多的同学务必抓紧时间把每道题目弄懂!本章是考试重点,大家务必弄懂每道题。
6-1、已知正弦电磁场的电场瞬时值为()()88,0.03sin 100.04cos 10 3x x z t t kz t kz V m πππ⎛⎫=-+-- ⎪⎝⎭E e e试求:⑴ 电场的复矢量;⑵ 磁场的复矢量和瞬时值。
解:(1)()8,0.03cos 102x z t t kz ππ⎛⎫=-- ⎪⎝⎭E e +80.04cos 103x t kz ππ⎛⎫-- ⎪⎝⎭e所以电场的复矢量为32()0.030.04 j j jkz x z e e e V m ππ---⎡⎤=+⎢⎥⎣⎦E e(2) 由复数形式的麦克斯韦方程,得到磁场的复矢量3200054321()0.030.04 7.610 1.0110j j jkz x y yj j jkz y E j kz e e e j z k e e e A mππππωμωμωμ--------⎡⎤∂=-∇⨯==+⎢⎥∂⎣⎦⎡⎤=⨯+⨯⎢⎥⎣⎦H E e e e磁场的瞬时值则为()5848(,)7.610sin 101.0110cos 103y z t k t kz t kz πππ--⎡⎤⎛⎫=⨯-+⨯-- ⎪⎢⎥⎝⎭⎣⎦H e6-2、真空中同时存在两个正弦电磁场,电场强度分别为1110jk z x E e -=E e ,2220jk z y E e -=E e ,试证明总的平均功率流密度等于两个正弦电磁场的平均功率流密度之和。
解:由麦克斯韦方程11111001()jk z xyy E jk E e j zωμ-∂∇⨯==-=-∂E e e H 可得111100jk z yk E e ωμ-=H e故2*11011101Re 22zk E ωμ⎡⎤=⨯=⎢⎥⎣⎦S E H e 同理可得22222002()y jk z xx E jk E e j zωμ-∂∇⨯=-=--=-∂E e e H222200jk z xk E e ωμ-=-H e2*22022201Re 22zk E ωμ⎡⎤=⨯=⎢⎥⎣⎦S E H e 另一方面,因为12=+E E E 0y x x y E Ej z zωμ∂∂∇⨯=-+=-∂∂E e e H所以212120100jk z jk z xyk k E e E e ωμωμ--=-+H e e22*110220120011Re 22z k E k E ωμωμ⎛⎫⎡⎤=⨯=+=+ ⎪⎢⎥⎣⎦⎝⎭S E H e S S6-5、已知在自由空间中球面波的电场为0sin cos()E t kr r θθω⎛⎫=- ⎪⎝⎭E e ,求H 和k 。
电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+=m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v / (4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πη m A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。
解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。