教学设计 选修4-5-《不等式的基本性质》教学设计
- 格式:doc
- 大小:107.81 KB
- 文档页数:4
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
3. 引导学生通过观察、分析、归纳等方法,自主学习不等式的性质。
二、教学内容:1. 不等式的概念及表达方式。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式性质在实际问题中的应用。
三、教学重点与难点:1. 教学重点:不等式的基本性质及其应用。
2. 教学难点:不等式性质的推导和理解。
四、教学方法:1. 采用自主学习、合作探讨的教学方法,让学生在实践中掌握不等式的基本性质。
2. 利用多媒体课件,直观展示不等式的性质,提高学生的学习兴趣。
3. 结合生活实例,让学生感受不等式在实际问题中的应用。
五、教学过程:1. 导入新课:通过简单的例子,引导学生认识不等式,激发学生的学习兴趣。
2. 自主学习:让学生自主探究不等式的基本性质,教师巡回指导。
3. 课堂讲解:讲解不等式的概念、表达方式,详细阐述不等式的性质1、性质2、性质3。
4. 巩固练习:布置相关练习题,让学生巩固所学的不等式性质。
5. 应用拓展:结合实际问题,让学生运用不等式性质解决问题。
6. 课堂小结:总结本节课的主要内容,强调不等式性质的重要性。
7. 作业布置:布置适量作业,巩固所学知识。
8. 课后反思:教师对本节课的教学情况进行反思,为下一节课的教学做好准备。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对不等式基本性质的理解和掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评价其应用能力和创新意识。
3. 收集学生对教学过程的意见和建议,以促进教学方法的改进和教学质量的提高。
七、教学反馈:1. 课后及时批改学生作业,了解学生对不等式基本性质的掌握情况。
2. 根据学生作业中出现的问题,进行有针对性的辅导和讲解,确保学生理解透彻。
3. 定期与学生交流,了解他们在学习不等式过程中的困惑和问题,及时给予解答和指导。
不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。
课 题: 不等式的基本性质三维目标:1.知识与技能:掌握不等式的基本性质,会应用基本性质进行简单的不等式变形。
2.过程与方法:通过实例探究不等式基本性质应用3.情感态度与价值观:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 教学重点:探索不等式的基本性质,并能灵活地掌握和应用 教学难点:能根据不等式的基本性质进行简单应用教学设计:一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为ma mb ++,只要证m a m b ++>ab 即可。
怎么证呢? 二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
人教版高中选修4-51.不等式的基本性质课程设计一、教学目标1. 知识与技能•掌握不等式的定义和基本性质;•掌握一次不等式和二次不等式的解法;•能够解决实际问题中的不等式问题。
2. 过程与方法•通过讲解和练习,学生能够熟练掌握不等式及其解题方法;•通过实例分析让学生能够运用所学知识解决实际问题;•通过课堂互动等方式,激发学生的学习兴趣和积极性。
3. 态度与价值观•培养学生的逻辑思维能力和数学思维能力;•让学生认识到数学对实际生活的重要性和应用价值;•培养学生的创新思维和解决问题的能力。
二、教学重点和难点1. 教学重点•不等式的定义和基本性质;•一次不等式和二次不等式的解法;•实际问题中的不等式问题的解决方法。
2. 教学难点•对不等式的理解与掌握;•二次不等式的解法;•实际问题中的不等式问题的应用。
三、教学方法1. 教学内容整合将课堂教学、练习操作、实际应用等内容整合在一起,以便学生能够更好地理解不等式及其应用方法。
2. 提供实例在课堂上提供大量的实例,让学生通过分析解题,理解不等式的基本性质和应用方法。
3. 积极互动通过课堂互动、小组活动等方式,积极引导学生参与课堂,以提高学生对数学知识的兴趣和掌握程度。
4. 制定练习制定一系列练习,以帮助学生更好地巩固和应用所学知识。
四、教学步骤步骤一:不等式的定义和基本性质1.小组讨论,了解学生对不等式的理解;2.讲解不等式的定义及其基本性质;3.通过几个具体实例帮助学生理解。
步骤二:一次不等式及其解法1.讲解一次不等式的解法;2.指导学生通过实例进行练习和掌握。
步骤三:二次不等式及其解法1.讲解二次不等式及其解法;2.指导学生通过实例进行练习和掌握。
步骤四:实际问题中的不等式1.讲解如何将实际问题转化为不等式问题;2.通过实例讲解不等式的应用方法;3.指导学生通过实例进行练习和掌握。
步骤五:查漏补缺,巩固提高1.综合练习和测试;2.帮助学生查漏补缺,巩固提高。
人教版高中选修4-51.不等式的基本性质教学设计一、教学目标1.理解不等式的含义,知道不等式中的符号及其意义。
2.掌握不等式的性质,包括加减不等式、倍数不等式、倒数不等式、移项变号不等式和乘方不等式。
3.在解决实际问题时,能够用不等式来描述和解决问题。
二、教学内容1.不等式的含义2.不等式的符号及其意义3.不等式的性质4.实际问题的应用三、教学重难点1.不等式中符号的区分与理解。
2.不等式性质的掌握与实际应用。
四、教学方法1.案例分析法2.经验引入法3.解题法五、教学过程1. 不等式的含义(10分钟)1.引入不等式的概念及符号。
2.解释不等式的含义——在两个数(或算式)之间,用符号表示它们的大小关系。
2. 不等式的符号及其意义(30分钟)1.掌握不等式中的符号“<”、“≤”、“>”、“≥”及其意义。
2.通过例子消除学生对符号的掌握障碍。
3. 不等式的性质(50分钟)3.1 加减不等式1.引入加减不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握加减不等式的性质。
3.2 倍数不等式1.引入倍数不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握倍数不等式的性质。
3.3 倒数不等式1.引入倒数不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握倒数不等式的性质。
3.4 移项变号不等式1.引入移项变号不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握移项变号不等式的性质。
3.5 乘方不等式1.引入乘方不等式的概念和基本原理。
2.通过例子来帮助学生理解和掌握乘方不等式的性质。
4. 实际问题的应用(30分钟)1.引入实际问题,帮助学生运用所学知识解决实际问题。
2.通过例子来帮助学生更好地掌握不等式的性质和应用。
六、教学评价1.课堂练习2.讨论答题3.知识测试4.作业七、教学资源1.人教版高中数学选修4教材2.视频、PPT等多媒体资源八、教学反思本节课通过引入实例和案例,帮助学生更好地掌握不等式的性质和应用。
不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。
b. 不等式两边乘(除)同一个正数,不等号方向不变。
c. 不等式两边乘(除)同一个负数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。
2. 教学难点:不等式性质的灵活运用,解决实际问题。
四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。
3. 小组讨论,培养学生的合作意识。
五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。
2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。
2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师点评答案,解答学生疑问。
四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。
2. 各小组汇报讨论成果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。
2. 教师补充讲解,强调重点知识点。
六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。
2. 结合生活实际,解决相关问题。
六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。
2. 举例说明:如购物时比较价格、比赛成绩排名等。
七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。
2. 教师点评答案,解答学生疑问。
八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。
不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。
2) 不等式的两边乘除同一个正数,不等号的方向不变。
3) 不等式的两边乘除同一个负数,不等号的方向改变。
3. 运用不等式的基本性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。
2. 教学难点:不等式性质3的理解与应用。
四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 通过例题讲解,让学生学会运用不等式解决实际问题。
3. 利用小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。
2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。
3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。
5. 课堂小结:总结不等式的基本性质及运用方法。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。
2. 练习题解答:检查学生运用不等式解决实际问题的能力。
3. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。
2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。
八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。
2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。
九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。
2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。
课题不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 不等式的概念及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的应用。
三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。
2. 教学难点:不等式的应用,不等式性质的推导。
四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握不等式的基本性质。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实例,培养学生运用不等式解决实际问题的能力。
五、教学过程:1. 导入新课:通过复习数轴,引入不等式的概念。
2. 自主学习:学生自主探究不等式的表示方法,了解不等式的基本性质。
3. 合作交流:分组讨论,让学生在实践中归纳总结不等式的基本性质。
4. 课堂讲解:教师讲解不等式的性质1、性质2、性质3,并通过例题演示。
5. 应用拓展:学生运用不等式解决实际问题,培养运用能力。
6. 课堂小结:教师引导学生总结不等式的基本性质及应用。
7. 课后作业:布置相关练习题,巩固所学知识。
8. 教学评价:通过课堂表现、作业完成情况,评价学生对不等式知识的掌握程度。
六、教学设计:1. 教学目标:让学生能够理解并应用不等式的传递性质。
2. 教学内容:不等式的传递性质及其应用。
3. 教学重点与难点:理解不等式的传递性质,并能够运用到具体问题中。
4. 教学方法:采用案例分析法,让学生通过具体例子理解并掌握不等式的传递性质。
5. 教学过程:1) 导入:通过一个具体的例子,引导学生思考不等式传递性质的概念。
2) 自主学习:学生通过自学了解不等式传递性质的定义和证明。
3) 合作交流:分组讨论,让学生通过案例分析来应用不等式的传递性质。
4) 课堂讲解:教师通过讲解进一步巩固学生对不等式传递性质的理解。
不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。
教学重点:1. 不等式的基本性质;2. 不等式的运算规则。
教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。
教学准备:1. 教学课件;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。
三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。
四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。
教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。
七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。
2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。
九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。
不等式的基本性质数学教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。
3. 培养学生合作学习、积极探究的学习态度。
二、教学内容:1. 不等式的概念2. 不等式的基本性质3. 不等式的解法三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的解法。
2. 教学难点:不等式的性质在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究不等式的基本性质。
2. 利用实例分析,让学生学会解决实际问题。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学过程:1. 导入新课:通过复习相关知识,引导学生进入不等式学习。
2. 讲解不等式的概念,引导学生理解不等式的基本性质。
3. 实例分析:运用不等式的基本性质解决实际问题。
4. 练习巩固:让学生独立完成练习题,检测学习效果。
6. 布置作业:让学生课后巩固所学知识,提高解题能力。
六、教学评价:1. 课后作业:通过布置相关的习题,评估学生对不等式基本性质的理解和应用能力。
2. 课堂互动:观察学生在小组讨论和回答问题时的表现,评估他们的参与度和理解程度。
3. 知识测试:通过书面测试或口头提问,检验学生对不等式基本性质的记忆和运用。
七、教学拓展:1. 对比等式的性质,引导学生探讨不等式与等式的异同。
2. 引入绝对值不等式和分式不等式,为学生提供更多不等式解题方法。
八、教学资源:1. PPT课件:展示不等式的基本性质,方便学生理解和记忆。
2. 练习题库:提供丰富的习题,帮助学生巩固所学知识。
3. 实际问题案例:用于引导学生将不等式应用于解决实际问题。
九、教学反馈:1. 课堂反馈:课后与学生交流,了解他们对不等式基本性质的理解程度。
2. 家长反馈:与家长沟通,了解学生在家中的学习情况。
3. 自我反馈:教师根据学生的作业和测试成绩,反思教学效果,调整教学策略。
十、教学改进:1. 根据学生的学习情况,调整教学进度和难度,确保学生能够跟上课程。
《不等式的基本性质》教学设计课 题: 不等式的基本性质教学目标:1.理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。
2.掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,分析法证明简单的不等式。
教学重点:应用不等式的基本性质推理判断命题的真假;利用不等式的性质求范围。
教学难点:灵活应用不等式的基本性质。
教学过程:一、引入:人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知: 0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:.对称性:a>b ⇔b<a.②.传递性:a>b ,b>c ⇒a>c.③.(1)可加性:a>b ⇔a +c>b +c.(2)同向可加性:a>b ,c>d ⇒a +c>b +d.④.(1)可乘性:a>b ,c>0⇒ac>bc; a>b ,c<0⇒ac<bc.(2)同向同正可乘性:a>b>0,c>d>0⇒ac>bd.⑤.乘、开方法则:a>b>0⇒nn b a >,n n b a >(n ∈N ,n ≥2).2)≥n ,N ∈(n ,b >a 有,b >a 为奇数时,n 地,当特n n n n b a >也条件可放宽为:别⑥.倒数性质:a>b ,且ab>0⇒ba 11<.三、典型例题: 例1、设A=x 3+3,B=3x 2+x,且x>3,。
不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。
3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:不等式的性质。
2. 教学难点:不等式性质的应用。
三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。
2. 学生准备:课本、练习本、文具。
四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。
1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。
2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。
2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。
3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。
3.2 学生自主练习,教师巡回指导。
4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。
4.2 学生总结练习中的经验教训。
五、课后作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。
3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。
七、巩固练习1. 出示巩固练习题,学生独立完成。
2. 教师批改并讲解,学生总结解题思路和方法。
八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。
2. 学生分享学习收获和感受。
九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。
2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。
十、布置作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维能力。
二、教学内容:1. 不等式的概念及其表示方法。
2. 不等式的基本性质:加减乘除同一数或式子,不等号方向不变;乘除相反数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。
2. 教学难点:不等式性质的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
五、教学步骤:1. 引入不等式的概念,让学生了解不等式的表示方法。
3. 利用PPT展示不等式的基本性质,让学生直观地感受性质的应用。
4. 进行课堂练习,让学生巩固所学的不等式基本性质。
5. 结合实际问题,让学生运用不等式基本性质解决问题。
7. 布置课后作业,巩固所学知识。
六、教学评价:1. 课后收集学生的课堂练习和课后作业,评价学生对不等式基本性质的掌握程度。
2. 在下一节课开始时,让学生分享自己解决实际问题的经历,评估学生运用不等式基本性质解决实际问题的能力。
七、教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对不等式基本性质的理解和运用能力。
八、课后作业:1. 完成练习册上的相关习题。
2. 举出生活中的不等式实例,并与同学分享。
九、教学进度安排:本节课计划用1课时完成。
十、教学资源:1. PPT课件。
2. 练习册。
3. 实际问题案例。
六、教学活动设计:1. 导入新课:通过复习上一节课的内容,引导学生回顾不等式的基本性质。
2. 小组讨论:让学生分组讨论,每组选择一个实际问题,运用不等式的基本性质解决问题,并分享解题过程和答案。
3. 案例分析:教师展示一些典型的问题案例,让学生分析并解释不等式基本性质在解决问题中的作用。
4. 练习巩固:学生完成一些有关不等式基本性质的练习题,教师及时给予指导和反馈。
人教版高中选修4-51.不等式的基本性质课程设计一、教学目标1.了解不等式的概念、符号及其性质;2.掌握不等式的基本运算,3.学会使用不等式解决实际问题;4.发展学生的思维能力,提高学生的数学素养。
二、教学重点和难点教学重点1.不等式的概念、符号及其性质;2.不等式的基本运算;3.利用不等式解决实际问题。
教学难点1.利用不等式解决实际问题;2.思维方法的发展。
三、教学内容及安排1. 不等式的基本概念1.1. 不等式的概念不等式是数学中一个十分重要的概念,是指数字之间的大小关系。
在不等式中,等于也是一种特殊的情况。
当两个数字相等时,我们可以使用等号。
1.2. 不等式的符号不等式有以下主要符号:•大于:>•小于:<•大于等于:$\\geq$•小于等于:$\\leq$1.3. 不等式的性质不等式的性质包括传递性、对称性和反对称性等,并通过例子和练习加深理解。
2. 不等式的基本运算2.1. 不等式的加减法两边同时加或减一个数不改变不等式的大小关系。
2.2. 不等式的乘除法•两边同时乘或除一个正数,不改变不等式的大小关系;•两边同时乘或除一个负数,不仅改变不等式的大小关系,而且反向(‘大于’变为‘小于’,‘小于’变为‘大于等于’,‘大于等于’变为‘小于’,‘小于等于’变为‘大于’)。
2.3. 系数不等于0的不等式如果一个不等式中的系数不等于0,则可以对两边进行乘除法。
3.不等式的解法针对问题式的不等式,使用不等式的基本运算得出解。
4. 实际问题的应用通过实际问题的例子,让学生学会运用不等式解决问题。
四、教学方法通过教材中的例题和练习,让学生掌握不等式基本概念、符号、基本运算等。
在此基础上,通过实际问题进行训练,让学生掌握如何使用不等式解决实际问题。
同时,鼓励学生独立思考,发展出自己解决问题的思维方法。
五、教学手段1.PowerPoint2.教师讲授3.学生讨论六、教学评价1.作业评价2.课堂测试3.期中考试4.学生反馈七、教学现场操作流程1. 授课前准备1.教材及相关辅助教材2.教学课件3.学生练习册4.教学工具2. 教学流程1.定义不等式;2.介绍不等式的符号和性质;3.讲解不等式的基本运算,如加减法和乘除法;4.练习不等式的基本运算;5.解答实际问题;6.课堂测试。
教学设计选修4-5-《不等式的基本性质》教学设计本教学设计旨在帮助学生掌握不等式的基本性质,理解用两个实数差的符号来规定两个实数大小的意义。
教学目标包括理解不等式研究的基础,掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用比较法,分析法证明简单的不等式。
教学重点为应用不等式的基本性质推理判断命题的真假,利用不等式的性质求范围。
教学难点在于灵活应用不等式的基本性质。
引入部分介绍了现实世界中的不等关系,说明了本章知识的地位和作用。
不等式的基本性质部分分为六个小点,包括实数的运算性质与大小顺序的关系,对称性、传递性、可加性、可乘性、乘、开方法和倒数性质。
通过例题演示了“差比法”的应用,引导学生灵活运用不等式的基本性质。
本教学设计的目的是帮助学生全面掌握不等式的基本性质,理解实数大小的比较方法,能够应用不等式的基本性质推理判断命题的真假,利用不等式的性质求范围。
1.差比法和商比法是比较大小的常用方法。
差比法指如果A减去B大于0,则A大于B;如果A减去B等于0,则A 等于B;如果A减去B小于0,则A小于B。
商比法指如果A和B都大于0,则A除以B大于1,则A大于B;如果A 除以B等于1,则A等于B;如果A除以B小于1,则A小于B。
2.在命题判断中,第一题中的命题错误,因为无法确定c 和d的大小关系;第二题中的命题正确,因为如果a除以b大于1,则a大于b;第三题中的命题错误,因为无法确定a和b的大小关系;第四题中的命题错误,因为无法确定c和d的大小关系;第五题中的命题正确,因为如果a小于b小于c,则a小于c。
3.在例3中,已知c大于a大于b大于0,可以通过分析得出证题思路。
因为a除以c大于b除以c,所以a减去b除以c减去b大于0,即(a-b)/(c-b)大于0.又因为c减去a除以c 减去b小于1,即(c-a)/(c-b)小于1.因此,可以得出a小于c乘以b除以a小于b小于c。
4.在例4中,已知-π/2小于等于α小于β小于等于π/2,需要求α加β除以α减去β除以2的范围。
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对不等式的学习,培养学生的逻辑推理和运算能力。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法、基本性质及运算规则。
2. 教学难点:不等式基本性质的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
3. 运用小组合作学习,培养学生之间的交流与协作能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感知不等式的存在。
2. 新课讲解:讲解不等式的表示方法,阐述不等式的基本性质,引导学生理解和记忆。
3. 例题解析:分析典型例题,让学生运用不等式的基本性质解决问题。
4. 课堂练习:设计相关练习题,巩固学生对不等式基本性质的掌握。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,鼓励学生深入研究不等式的应用。
6. 教学反思:根据学生课堂表现和作业情况,对教学效果进行评估,为下一步教学提供调整依据。
六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对不等式基本性质的理解和应用能力。
2. 关注学生在解决问题时的思维过程,考察其逻辑推理和运算能力。
3. 结合学生的小组合作学习和课堂参与度,评价其协作和沟通能力。
七、教学资源:1. 教学PPT:展示不等式的定义、表示方法和基本性质。
2. 练习题库:提供不同难度的练习题,用于巩固所学内容。
3. 实例素材:收集与不等式相关的实际问题,用于课堂讨论和练习。
八、教学进度安排:1. 第1-2课时:介绍不等式的概念和表示方法。
2. 第3-4课时:讲解不等式的基本性质。
3. 第5-6课时:通过例题解析和练习,巩固不等式的基本性质。
不等式的基本性质教案不等式的基本性质教案1一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。
2.运用不等式的基本性质对不等式进行变形。
(二)过程与方法1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。
2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。
(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。
二、教学重难点教学重点:探索不等式的三条基本性质并能正确运用它们将不等式变形。
教学难点:不等式基本性质3的探索与运用。
三、教学方法:自主探究——合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。
( 1 ) 若x-6=10, 则x=16( )( 2 ) 若3x=15, 则 x=5 ( )( 3 ) 若x-6>10 则 x>16( )( 4 ) 若3x>15 则 x>5 ( )【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。
温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。
教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。
问题2.你能通过实验、猜想,得出进一步的结论吗?同学通过实例验证得出结论,师生共同总结不等式性质1。
问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。
估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。
《不等式的基本性质》教学设计
课 题: 不等式的基本性质
教学目标:
1. 理解用两个实数差的符号来规定两个实数大小的意义,建立不等式研究的基础。
2. 掌握不等式的基本性质,并能加以证明;会用不等式的基本性质判断不等关系和用
比较法,分析法证明简单的不等式。
教学重点:应用不等式的基本性质推理判断命题的真假;利用不等式的性质求范围。
教学难点:灵活应用不等式的基本性质。
教学过程:
一、引入:
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
二、不等式的基本性质:
1、实数的运算性质与大小顺序的关系:
数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知: 0>-⇔>b a b a
0=-⇔=b a b a
0<-⇔<b a b a
得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:
.对称性:a>b ⇔b<a.
②.传递性:a>b ,b>c ⇒a>c.
③.(1)可加性:a>b ⇔a +c>b +c.
(2)同向可加性:a>b ,c>d ⇒a +c>b +d.
④.(1)可乘性:a>b ,c>0⇒ac>bc; a>b ,c<0⇒ac<bc.
(2)同向同正可乘性:a>b>0,c>d>0⇒ac>bd.
⑤.乘、开方法则:a>b>0⇒n
n b a >,n n b a >(n ∈N ,n ≥2).
2)
≥n ,N ∈(n ,b >a 有,b >a 为奇数时,n 地,当特n n n n b a >也条件可放宽为:别⑥.倒数性质:a>b ,且ab>0⇒b a 11<.
三、典型例题:
例1、设A=x 3+3,B=3x 2+x,且x>3,。
试比较A 和B 的大小。
分析:通过考察它们的差与0的大小关系,得出这两个多项式的大小关系。
解 :)
(x x x B A +-+=-233)3( )
1)(1)(3()1(3)1(22-+-=---=x x x x x x 01,01,033>->+>-∴>x x x x
0>-∴B A
B A >故
归纳:“差比法”的四个步骤:作差、变形化简、定号、下结论。
变式训练:
的大小。
与试比较且设a b b a b a b a b a b a ,,0,0≠>>
(引导学生利用“差比法”和“商比法”)
点拨:两实数的大小比较方法:
1. “差比法”:A>B ⇔A -B>0;A =B ⇔A -B=0;A<B ⇔A -B<0.
2. “商比法”:若A>0,B>0,则A>B ⇔
1>B
A
例2、判断下列命题是否正确,并说明理由。
;bc >ac ,则b >a 若)1(22 (×)
;)2(2
2b a c b c a >>,则若
(√) ;11,0)3(b
a a
b b a <≠>则,若 (×) ;则,若bd a
c
d c b a <>>,)4( (×) ;11,0)5(b
a b a ><<则,若 (√) ;,||)6(22b a b a >>则,若 (×)
.||||,)7(c b c a c b a >>>则,若 (×)
(目的:让学生回答,训练学生对不等式性质的准确理解,方便以后的应用)
例3、.0b c b a c a b a c ->->>>:
,试用不等式性质证明已知 利用“分析法”,得出证题思路。
教师再输出过程。
证明:∵b a
> ∴b a -<- 又0>>>b a c
∴b c a c -<-<
0 011>->-⇒b
c a c . 又0>>b a ∴b
c b a c a ->-.
例4、.2-222-的范围,,求已知β
αβαπ
βαπ
+≤<≤
解:∵-π2 ≤α < β ≤π2
, ∴-π4 ≤ α2 < π4,-π4 < β2 ≤π4⇒2
22πβαπ<+<-. ∴-π4 ≤-β2 < π4
. ∴-π2 ≤ α-β2 < π2
. 又∵α<β,∴α-β<0,∴-π2≤α-β2
<0. 误区警示: 1.2
222-πβππαπ≤<-<≤,,等号没完全传递. 2.不要忽略隐含条件α<β,而得出错误结论-π2≤α-β2≤π2
.
变式训练:
的求值范围。
,分别求,已知b
a b a b a ,3286--<<<< 注意:不等式性质的准确应用,没有同向相减性和同向相除性。
本题中特别讲清“同向同正可乘性”与“可乘性”的区别。
四、课堂练习:
1:已知3>x ,比较x x 113+与662+x 的大小。
2:已知a>b>0,c<d<0,求证:d b a c
a b -<-。
五、课后作业:
课本9P 第1、2、3、4题
六、教学后记:。