干排渣系统运行及其对锅炉效率的影响
- 格式:doc
- 大小:312.50 KB
- 文档页数:8
关于干排渣系统的运行可靠性问题1、引言八十年代中期,由意大利MAGALDI公司最先发展起来的干排渣技术,是利用一种特制的钢带来输送和冷却炽热的炉底渣。
该设备不需要水,实现了无渣水处理和无污水排放。
我国九十年代在三河电厂2×350MW机组上首先引进干排渣系统。
经消化、吸收该技术目前已实现了国产化。
已成功地使用在北京石景山电厂200MW机组、天津大港2×350MW机组、丰镇电厂2×200MW机组、伊敏电厂2×500MW机组的排渣系统中。
目前,正在建设的机组有伊敏三期2×600MW机组、江苏阚山2×600MW机组、铜川2×600MW机组、巢湖2×600MW机组、沁北二期2×600MW机组、天津北疆2×1000MW机组等。
国内设计制造的干排渣系统其最大出力已达50t/h。
国内设计制造的干排渣系统是在消化吸收国外技术的基础上并有所创新的,只采取部分关键材料和设备仪表进口。
根据有关电厂信息,干排渣系统的造价已和湿排渣系统相当。
2.排渣机理及特点:2.1 典型的风冷干式排渣系统流程如下:2.2排渣机理:炉底热渣通过锅炉渣井及关断门落在风冷干式排渣机的输送钢带上,由输送钢带送出,在送出过程中利用锅炉炉膛负压的抽吸作用,把环境冷空气从风冷干式排渣机外部通过机壳上预先设定的进风口吸入风冷干式排渣机内部,对热渣进行冷却,同时本身被渣加热。
被加热空气通过锅炉喉口进入炉膛,将热渣从锅炉带走的热量重新送回炉膛,从而减少锅炉的热量损失,提高锅炉的效率。
风冷干式排渣机进风口可调,控制最大进风量不超过锅炉理论燃烧空气量的1%。
冷却原理见下图:2.3 风冷干式排渣系统参数见下表:2.4 风冷干式排渣机的结构特点◆渣的输送和冷却同时进行,冷风进入干式排渣机后和热渣接触,将渣冷却;◆输送钢带抗拉强度大,且耐温高,热渣在输送钢带上进行输送和冷却;◆托辊的传动轴承总承外置在设备的机座上,高温影响小,易于拆除、检修、维护方便;◆下部设有清扫刮板,能将从输送钢带上掉下的细渣清扫至设备出口;◆机壳结构紧密,渣不会向外泄漏,干式排渣机为负压系统,细渣粉尘不会对环境造成影响。
风冷干排渣系统对锅炉效率影响的测试与分析范仁东张莲莺(江苏省电力设计院,南京市211102)〔摘要〕根据华能巢湖电厂风冷干排渣系统的实际运行情况,拟定四种工况进行测试,依据测试数据推算,干排渣系统与水封式除渣装置比较,使锅炉效率降低0.5~0.6个百分点以上。
〔关键词〕风冷干排渣系统锅炉效率巢湖自河北三河电厂2×350MW机组引进意大利MAGALDI公司风冷干式除渣设备及系统,于1999年12月投人运行以来,在极短的时间内风冷干式排渣系统获得了大规模应用,至2007年,国内有50多座电厂100多台燃煤锅炉采用干式排渣系统,总装机容量约5000万kW,普遍认为该技术具有节能、节水、环保综合效益好的特点,符合国家的产业政策,同时,风冷干排渣系统已被国家经贸委国家税务总局列人“当前国家鼓励发展的节水设备(产品)目录”。
本文结合部分电厂干式排渣系统的实测资料,特别是作者参与的华能巢湖电厂测试数据,对干排渣系统对锅炉效率影响进行探讨。
1.部分电厂干排渣系统测试报告初步分析1.1、F电厂(1)项目概况F电厂#2和#3机组均为200MW,锅炉是武汉锅炉厂生产的单汽包自然循环、具有一次中间再热、固态定期排渣煤粉炉,锅炉底渣系统原为水浸式刮板捞渣机。
#3锅炉在2005年5月份进行了大修,大修中将锅炉原有的底渣系统改为干式排渣机+负压输送系统方式。
(2)测试报告内容〔1〕#3锅炉改造后的热效率,与同容量的#2锅炉比较,高出0.35个百分点,主要是因为#3锅炉飞灰可燃物含量(2. 21%)和炉渣可燃物含量(0.13%)较低,而#2锅炉飞灰可燃物含量(4.97%)和炉渣可燃物含量(2.61%)较高。
#3锅炉炉渣可燃物含量较低,是因为进行了底渣系统改造。
自然冷风在煤粉锅炉炉膛负压作用下,从干式排渣机外部进入干式排渣机内,将高温、含有大量热量的热渣冷却成可以直接贮存和运输的冷渣。
冷却热渣产生的热风直接进入锅炉炉膛,将热渣含有大量的热量回炉膛中,从而减少了锅炉的热量损失,提高了锅炉的效率。
干式排渣机在电厂除渣系统中的应用摘要:随着我国科学技术的不断进步与发展,我国的电厂除渣系统也从简单单一的灰渣混除水力除灰发展到了更多的种类,比如说气力除灰、干灰干渣处理等。
干灰干渣处理系统因为其自动化水平较高、经济环保以及适应能力较强而广泛应用。
基于此,本文首先简单的介绍一下干式排渣系统,随后对干式排渣机在电厂除渣系统中的应用作简要分析。
以此仅供相关人士进行交流与参考。
关键词:干式排渣机;电厂除渣系统;应用引言:干式排渣机是干灰干渣处理系统中的主要设备,国内最先引进这种机器的是河北三河电厂,至引进到现在,干式排渣机运行状态良好,但是因为其进口费用较高,国内的其他电厂并没有普及干式排渣机。
但是近年来随着可持续发展政策的不断推进,以及我国科学技术的不断进步与发展,干式排渣机已经逐渐国产化,而且国内的干式排渣系统也不断在完善。
一、干式排渣系统简介在1985年左右,意大利的MAGALDI公司结合水泥行业的一种冷却机发明了干式排渣系统,该系统因为不会产生污水、废气等优点逐渐取代了传统的火力除渣系统,促使电厂的除渣技术有了更大的提升。
干式排渣机是干式排渣系统的核心设备,煤粉锅炉炉膛通过负压作用将自然冷风从干式排渣机外部通到干式排渣机内部,从而将高温的热渣冷却到可以运输贮存的温度。
另外冷却热渣产生的热风还能够将炉膛带走的热量再送回炉膛中,从而减少锅炉的热量损失,起到节能环保的作用。
干式排渣系统包括液压关断门、干式排渣机、碎渣机、缓存渣井、进风口、真空压力释放阀等设备(干式排渣系统详见图一)。
锅底炉渣通过渣井进入到干式排渣机,然后自然冷风进入干式排渣机将热渣降温,降温后的热渣直接进入碎渣机进行破碎,然后通过出渣口送至渣仓进行贮存。
而冷却热渣后的热风也将直接进入炉膛,将渣从炉膛带走的热量再次送回,减少能量的损失。
干式排渣系统每个炉都设有两套正压气力输送系统,从而保证输送系统始终能够稳定运行。
(图一)干式排渣系统二、干式排渣机在电厂除渣系统中的应用(一)干式排渣机工作原理干式排渣机是热渣降温的主要场所,热渣通过渣井进入到干式排渣机中,然后自然冷风在锅炉炉膛负压作用下从干式排渣机外部输送到内部,从而直接给热渣降温,直到温度降低到可以进行运输和储存为止,干式排渣机见图二。
干排渣系统运行及其对锅炉效率的影响摘要:以前的火力发电机组大多采用水力除渣,随着科技的发展与现场实际的论证,干式排渣具有水力除渣无法比拟的优点,因而新建机组多采用干式排渣,尤其是水资源相对缺乏的北方。
和水力除渣方式相比,干式排渣具有节水、排出的灰渣经济价值高、系统布置简单、运行管理方便等优点。
关键词:干排渣;系统运行;锅炉效率;影响1干式排渣系统对锅炉运行的主要影响干式排渣系统是对原有水力除渣系统的代替,不是新增的辅机设备,但对锅炉的运行影响具有自己的特点。
1.1系统进风对锅炉运行效率的影响系统进风分为冷却进风和漏风。
冷却进风是包括从手动进风门和电动(或气动)进风门进入封闭的钢带输渣机的冷却灰渣的正常进风。
漏风是包括设备连接部位(如:斗提机与碎渣机、钢带输渣机和炉底排渣装置,渣井和锅炉水冷壁下联箱)和设备本身(如钢带输渣机各标准段连接处)的所有非正常进风。
1.2 系统停运对锅炉负荷的影响干式排渣系统在BMCR工况下停机时间是12 h(燃烧设计煤种情况下),在国内大部分电厂,由于大部分燃烧低品质煤种,则停机时间可能会缩短,这取决于渣量和渣井的容量。
如果想要进一步延长干渣系统停机时间,可以通过降低负荷实现。
2干式排渣机影响锅炉效率的研究2.1测点设置及试验方法锅炉排烟温度:利用空预器出口烟道上的测点用K型热点偶网格法测量,每个工况进行期间间隔10分钟测量一次,取记录数据算数平均值作为该工况排烟温度;炉渣冷却风入炉温度:利用渣斗观察孔,采用抽气电热偶测量炉渣冷却风入炉温度,热电偶引出端接温度显示仪表。
在相关试验工况中,测量一次各渣斗冷却风入炉温度;排渣温度:在中间渣仓处利用抽气热电偶测量,每个工况进行期间间隔测量,取记录数据的平均值作为该工况排渣温度;炉渣冷却风量:利用渣斗现有观察孔,采用靠背管及电子微压计进行测量,如冷却风量超出仪器测量范围,则炉渣冷却风量利用渣量、炉底排渣初始温度、斗轮机入口处渣量、环境温度以及炉底冷却风入炉温度进行测量;表盘数据:每个工况进行期间间隔10分钟记录一次锅炉主要运行参数与各辅机的运行参数。
干排渣系统积渣、堵渣原因以及对锅炉运行的影响01积渣堵渣原因(1)煤质变化,造成锅炉渣量大或严重结焦。
(2)燃烧调整不当长时间高负荷自落焦能力降低增加掉大焦的危险性和可能性;2.1 运行中风煤配比不当,燃料、一二次风配合不当、2.2一次风过高二次风过低2.3过多使用上层磨以及燃烧器位置过高或过低容易出现结焦的现象;2.4另外炉底漏风过大会造成火焰中心升高,炉膛出口结焦。
(3)3.1输渣、挤渣不及时或挤渣不当。
3.2不能及时发现渣井积渣3.3 发现积渣后,挤渣过快造成钢带过负荷;3.4 输渣系统故障致使中间渣仓满而没能及时外排或启动备用输渣系统。
最终导致钢带堵渣。
02渣量变化对锅炉运行的影响2.1锅炉由低负荷升至高负荷由于煤质差低负荷时炉膛挂灰较严重,而低负荷时规程要求不能锅炉本体吹灰;升负荷后煤量大量增加,必须启动上层磨煤机,造成炉膛出口烟温高。
负荷的大幅波动会使附在管壁上的灰渣脱落、煤量增加以及进行本体吹灰的同时进行,一步造成大量灰渣集中落人渣井造成钢带积渣;如果除渣不及时或钢带过载故障打滑,就只能进行人工清理掏渣,掏渣时需要打开很多钢带人孔,特别是开启钢带尾部大观察门时,造成炉底漏风大大增加,使得火焰中心上移,主、再热蒸汽温度高减温水增加,同时排烟温度及氧量增加、锅炉各风机出力增大厂用电量增加,锅炉效率大大降低。
2.2锅炉由高负荷降至低负荷如果长时间高负荷锅炉本体管壁上附着的大量灰焦,由于负荷降低管壁温度变化很大,可能会使大面积的灰焦同时脱落剥离下来,在锅炉减负荷、低负荷时,炉膛火焰充满程度差、温度低、强度弱,容易被这大面积脱落灰焦扑灭或很大扰动,这种工况是最危险。
一般来讲这种工况很少出现,但每次长时间高负荷后集中掉渣是经常出现的,对炉膛燃烧有一定的影响,一般不影响锅炉安全运行。
<br/>03应采取的方法3.1根据煤质变化进行相应的燃烧调整。
调整一、二次风配比,适当降低一次风速,加大二次风以防止水冷壁挂灰;3.2尽量少使用上层磨、使火焰中心上移,特别是火焰中心偏低造成大量不完全燃烧的灰渣落入渣井,大量高温热渣堆积冷却后,经常可能形成坚硬无比的礁石,造成无法破碎和清理;3.3运行中应当通过除尘风机电流、入口压力、炉底进风温度变化趋势以及加强炉底挤压头监视器、钢带、清扫链巡视,严密监视炉底落渣情况。