不动点在高中数学中的若干应用
- 格式:pdf
- 大小:226.17 KB
- 文档页数:3
关于函数不动点的研究及其应用相关概念:定义:一般地,对于定义在区间D 上的函数()y f x =(1)若存在0x D ∈,使得00()f x x =,则称0x 是函数()y f x =的一阶不动点,简称不动点;(2)若存在0x D ∈,使00(())f f x x =,则称0x 是函数()y f x =的二阶不动点,简称稳定点; 说明:(1)不动点实际上是方程组⎩⎨⎧==xy x f y )(的解),(00y x 的横坐标,或两者图象的交点的横坐标(2)稳定点是函数图象与它的反函数(可以是多值的)的图象的交点的横坐标.(3)令()0f x t =,则()()00f t x x t =≠,故函数()y f x =有两个二阶不动点0,x 则 二元方程()()00f x t f t x =⎧⎪⎨=⎪⎩有解,即点()()00,,,t x x t 都在函数()y f x =图象上,所以()y f x =得二阶不动点就是函数()y f x =图象上关于直线y x =对称两点的横坐标。
(4)若0x 为函数)(x f y =的不动点,则0x 必为函数)(x f y =的稳定点,但稳定点不一定就是不动点,但若函数()y f x =单调递增,则它的不动点与稳定点是完全等价的。
(证明)相关习题:1.(2013年四川文科).设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若存在]1,0[∈b 使b b f f =))((成立,则a 的取值范围是( )A. ],1[eB. ]1,1[+eC. ]1,[+e eD.]1,0[分析:题目的等价于()y f x =存在二阶不动点]1,0[∈b ,而易知()y f x =在定义域内为单调递增函数,故二阶不动点与一阶不动点等价,进而转化为()y f x =存在一阶不动点]1,0[∈b ,即[]0,1x ∃∈,使得x a x e x f x =-+=)(在]1,0[∈x 有解,整理可得,2x x e a x -+=,在]1,0[∈x 有解令2)(x x e x g x -+=,]1,0[∈x∵021121)(=-+>-+='x e x g x ,∴)(x g 在]1,0[∈x 单调递增 1)0(=g ,e g =)1(,],1[e a ∈,故选择A变式:(2013四川理科)设函数a x e x f x -+=)((R a ∈,e 为自然对数的底数). 若曲线x y sin =上存在点),(00y x 使00))((y y f f =成立,则a 的取值范围是( )A. ],1[eB. ]1,1[1--eC. ]1,1[+eD. ]1,1[1+--e e2.如果函数()()2f x x a a R =+∈的二阶不动点恰是它的一阶不动点,求实数a 的取值范围。
利用“不动点”法巧解高考题—对2006年全国高考理科试卷(II )第22题的深入研究确定数列的通项公式,对于研究数列的性质是非常重要的。
有了数列的通项公式,可以求出数列中任意指定的一项,也有利于对数列性质的深入研究。
求数列的通项公式是高考数学压轴题目命题的重要内容,由于复杂的数列常常是一些简单的基本数列或特殊性质的数列构成的,因此,我们在求某些数列的通项公式时,除要运用各种方法与技巧外,还要熟练掌握一些简单的基本数列的通项公式。
另一方面,数列是一种特殊的函数,我们可以利用对函数不动点问题的研究结果,简化对数列通项公式问题的探讨。
笔者在长期的教学实践,不断总结探究和反思,对数列通项公式问题的求解,形成利用函数不动点知识探究的规律性。
本文是笔者对2006年全国高考理科试卷(II )第22题的研究,撰写成文供广大数学爱好者欣赏。
一、 基础知识设()f x 是一个关于x 的代数函数,我们称方程()f x x =的根为函数()f x 的不动点。
设0x 是函数()f x 的一个不动点,则()00f x x x x -=-成立。
二、 典型例题例.设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一概1n S -,1,2,3,n =。
(1) 求12,a a(2) 求数列{}n a 的通项公式。
(2006年全国高考理科试卷(II )第22题的) 解:(1)当n=1时,112a =;当n=2时,易解得216a = (2)由题设知:()()2110n n n n S a S a ----=即2210n n n n S S a S -+-=当2n ≥时,将1n n n a S S -=-代入上式整理得:1210n n n S S S --+=()1122n n S n S -∴=≥-记()12f x x=-,令()f x x =得不动点1x =11112n n S S -∴-=--,即11112n n n S S S ----=- 111112*********n n n n n n S S S S S S -------+∴===-+---- 11n S ⎧⎫∴⎨⎬-⎩⎭是以首项为2-,公差为1-的等差数列。
不动点定理及其应用不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ;②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素.则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈?∈x x T ,以及()[]()1,01∈?<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<="">定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点.证任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0??≤??? ??=??? ??x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==??<即所以ρ.证毕.注(i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得(4)此即误差的先验估计,它指出近似解n x 与精确解* x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ,此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5)的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少.如设(]1,0=X ,定义T 如下:2 xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件.如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- ,(6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 ,(7)该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<定理1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈?a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈?有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证只需证明(),,B x B B T ∈?? ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ?∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ,(8)那么T 在X 中存在唯一的不动点.证由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限.定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈?-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈?<≤∈?使得则{}n x 收敛.证①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛.证只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+?n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根.注该题体现了不动点定理证明方程解的存在性.例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈?+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<="" p="" x="">k n因为01lim01=--∞→x x k k n n ,所以εε<--<->>?+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()() """"*>≥可该为会自动满足()I x ∈?1,这时f 的不动点存在必唯一从而*x A =,证(分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =.② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈?<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ?与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-++-c x x c c x c x x c cx c x cx c x x c xc x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n ,(10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛.② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证(1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证(利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明①b ?使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><="" (即f="" ,故g="">② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<.证毕.<="" bdsfid="663" f="" g="" p="" x="" ,即),(x="">4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性.例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμ?d x t k t t x b a )(),()()(?+=,(11)其中[]b a L ,2∈?为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞a b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证令τττμ?d x t k t t Tx ba )(),()()(?+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(≤??ττττd x dt d t k ba ba b a 22)(),(=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12d t k a ba b a ττμ,于是 2/12))()()(,(),(??-??=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -≤ττμ()),(),(2/12y x dtd t k b a b aρττμ??=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解.注该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ?τττμ+?= (12)对任何[]b a C ,∈?以及任何常数μ存在唯一的解[]b a C x ,0∈.证作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=?τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]?-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-?= -++[]),()(!/2111x x ds a s k M k t a k k ρμ-?≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性.例8 设),(τt k 是[][]b a b a ,,?上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +?=τττλ,(14)当λ充分小时对每一个取定的)(t f 有唯一解.证在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +?=τττλ (15)当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()?-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,m ax max ,τττλd t y x t k b a bt a )()(),(max -≤≤≤),(y x M ρλ?≤此处ττd t k M ba bt a ),(max ?=≤≤.故当λ1<="">[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=?τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ?-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(?+=λ []()1,0∈t 的连续解.解法一据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =?+=λ,其中??≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ?+==λ)(1t x n +()()()∑?=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-?= )2(≥n ,从而 ??≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n--++-+-++=--+011221!1!21λλλλΛ,故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→?+==λλ法二令ds s x t y t)()(0?=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程=+=0)0()()()('y t y t f t y λ (16)易知方程(16)的解为 ds s f e t y s t t )()()(0-?=λ再令 ()()()()()()?-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0?=,由(17)知ds s x t f t x t )()()(0?+=λ,故ds s f e t f t x s t t )()()()(0-?+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性.例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==? (20)可知,当n i a aii nj,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记=------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性.例11 考察微分方程()y x f dxdy,=,00y y x =,(21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线.证微分方程(21)加上初值条件00 y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00?+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=?000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]?-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()?-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ?+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。
高考学习网课群:109758709,超过3000G 网课关于函数不动点的研究及其应用相关概念:定义:一般地,对于定义在区间上的函数D ()y f x =(1)若存在,使得,则称是函数的一阶不动点,简称不动点; 0x D ∈00()f x x =0x ()y f x =(2)若存在,使,则称是函数的二阶不动点,简称稳定点;0x D ∈00(())f f x x =0x ()y f x =说明:(1)不动点实际上是方程组的解的横坐标,或两者图象的交点⎩⎨⎧==x y x f y )(),(00y x 的横坐标(2)稳定点是函数图象与它的反函数(可以是多值的)的图象的交点的横坐标.(3)令,则,故函数有两个二阶不动点 ()0f x t =()()00f x t x t =≠()y f x =0,x t 就是二元方程有解,即点都在函数图象上,所以()()00f x tf t x =⎧⎪⎨=⎪⎩()()00,,,t x x t ()y f x =得二阶不动点就是函数图象上关于直线对称两点的横坐标。
()y f x =()y f x =y x =(4)若0x 为函数的不动点,则0x 必为函数的稳定点,但稳定点不一定)(x f y =)(x f y =就是不动点,但若函数单调递增,则它的不动点与稳定点是完全等价的。
(证明()y f x =)相关习题:1.(2013年四川文科).设函数(,为自然对数的底数). 若a x e x f x -+=)(R a ∈e 存在使成立,则的取值范围是( )]1,0[∈b b b f f =))((a A.B.C.D.],1[e ]1,1[+e ]1,[+e e ]1,0[分析:题目的等价于存在二阶不动点,而易知在定义域内为单()y f x =]1,0[∈b ()y f x =调递增函数,故二阶不动点与一阶不动点等价,进而转化为存在一阶不动点()y f x =,即,使得在有解,]1,0[∈b []0,1x ∃∈x a x e x f x =-+=)(]1,0[∈x 整理可得,,在有解 2x x e a x -+=]1,0[∈x 令,2)(x x e x g x-+=]1,0[∈x ∵,∴在单调递增021121)(=-+>-+='x e x g x )(x g ]1,0[∈x ,,,故选择1)0(=g e g =)1(],1[e a ∈A高考学习网课群:109758709,超过3000G 网课变式:(2013四川理科)设函数(,为自然对数的底数).a x e x f x -+=)(R a ∈e 若曲线上存在点使成立,则的取值范围是( )x y sin =),(00y x 00))((y y f f =a A .B. C. D.],1[e ]1,1[1--e]1,1[+e ]1,1[1+--e e2.如果函数的二阶不动点恰是它的一阶不动点,求实数的取值范围()()2f x x a a R =+∈a 。
热点08 利用“不动点”法巧解数列问题规律方法总结由递推公式求其数列通项历来是高考的重点和热点题型,对已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究.经典例题解析1.不动点的定义一般的,设()f x 的定义域为D ,若存在0x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点,或称00(,)x x 为()f x 图象的不动点. 2.求线性递推数列的通项定理1 设()(01)f x ax b a =+≠,,且0x 为()f x 的不动点,{}n a 满足递推关系1()n n a f a -=,2,3,n =,证明0{}n a x -是公比为a 的等比数列.证:∵0x 是()f x 的不动点,所以00ax b x +=,所以00b x ax -=-,所以na 0101010()()n n n x a ab x a a ax a a x ----=+-=-=-··,∴数列0{}n a x -是公比为a 的等比数列.例1 已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈(1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即15166n n a a -=+(2)n ≥,记51()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:151(1)(2)6n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列.(2)解略.3.求非线性递推数列的通项 定理2 设()(00)ax bf x c ad bc cx d+=≠-≠+,,且12x x 、是()f x 的不动点,数列{}n a 满足递推关系1()n n a f a -=,2,3,n =,(ⅰ)若12x x ≠,则数列12{}n n a x a x --是公比为12a x c a x c --的等比数列;(ⅱ)120x x x ==,则数列01{}n a x -是公差为2ca d +的等差数列.证:(ⅰ)由题设知111111111()ax b b dx x x dx b a cx x cx d a cx +-=⇔=-⇔-=-+- 同理222().dx b a cx x -=-∴111122n n n n n n aa b x a x ca daa b a x x ca d+++--+=+--+1122()()n n a cx a b dx a cx a b dx -+-=-+-1122n n a x a cx a cx a x --=⋅--, 所以数列12{}n n a x a x --是公比为12a cx a cx --的等比数列. (ⅱ)由题设知ax bcx d ++=x 的解为120x x x ==,∴且00b dx a cx --=0x -.所以100011()n n n n n ca d aa b a x a cx a b dx x ca d ++==+--+--+00000()()()()n n n n ca d ca db dx a cx a x a cx a a cx ++==----+-000000001()()n n n ca cx d cx d cx c a cx a x a cx a cx a x -+++==+⋅-----00122n a dd c c c a d a cx a x a c c-+⋅=+⋅----⋅000112n n c c a cx a x a x a d =+=+---+,所以数列01{}n a x -是公差为2ca d+的等差数列.例2 设数列{}n a 的前n 项和为n S ,且方程20n n x a x a -⋅-=有一根为1n S -*()n N ∈.求数列{}n a 的通项公式. 解:依题112a =,且2(1)(1)0n n n n S a S a --⋅--=,将1n n n a S S -=-代入上式,得112n n S S -=-,记()12f x x=-,令()f x x =,求出不动点01x =,由定理2(ⅱ)知:12111111n n n n S S S S +-==-+---,所以数列11n S ⎧⎫∴⎨⎬-⎩⎭是公差为1-的等差数列,所以1n n S n =+,因此数列{}n a 的通项公式为11n a n =+. 例3 已知数列{}n a 中,1111,.n na a c a +==-(1)设51,22n n c b a ==-,求数列{}n b 的通项公式. (2)求使不等式13n n a a +<<成立的c 的取值范围 . 解:(1)依题1525122n n n n a a a a +-=-=,记52()2x f x x-=,令()f x x =,求出不动点121,22x x ==;由定理2(ⅰ)知:11112222n n nna a a a+--=-=⋅,12111222n n n na a a a +--=-=⋅ ; 两式相除得到1122111422n n n n a a a a ++--=⋅--,所以212n n a a ⎧⎫⎪⎪-⎨⎬⎪⎪-⎩⎭是以14为公比,112212a a -=--为首项的等比数列,所以,112132,2,14242n n n n n a a a ---⎛⎫=-⋅=-⎪+⎝⎭-从而124.33n n b -=--(2)解略.定理3 设2()(0)2ax bf x a ax d+=≠+,且12x x 、是()f x 的不动点,数列{}n a 满足递推关系1()n n a f a -=,2,3,n =,则有2111122()n n n n a x a x a x a x ++--=--;若11120a x a x ->-,则12ln n n a x a x ⎧⎫-⎨⎬-⎩⎭是公比为2的等比数列.证:∵12x x 、是()f x 的不动点,∴211dx b ax =-,222dx b ax =-.21112122(2)(2)n n n n n n a x a a b a a d x a x a a b a a d x ++-⋅+-⋅+=-⋅+-⋅+2211222222n n n n a a b a a x ax ba ab a a x ax b⋅+-⋅⋅+-=⋅+-⋅⋅+-22211122222(2)()(2)n n n n n n a a a x x a x a a a x x a x -⋅+-==-⋅+-,又11120a x a x ->-,则120n n a x a x ->-, ∴111122ln2ln n n n n a x a x a x a x ++--=--,故12ln n n a x a x ⎧⎫-⎨⎬-⎩⎭是公比为2的等比数列.例4已知数列{}n x 满足14x =,21324n n n x x x +-=-.⑴求证:3n x >;⑵求证:1n n x x +<;⑶求数列{}n x 的通项公式. 证:⑴、⑵证略;⑶依题21324n n n x x x +-=-,记23()24x f x x -=-,令()f x x =,求出不动点121,3x x ==;由定理3知:2213(1)112424n n n n n x x x x x +---=-=--,2213(3)332424n n n n n x x x x x +---=-=--,所以2111133n n n n x x x x ++⎛⎫--= ⎪--⎝⎭,又111413343x x --==--,所以133111log 2log 33n n n n x x x x ++--=--. 又1311log 13x x -=-,令31log 3n n n x a x -=-,则数列{}n a 是首项为1,公比为2的等比数列.所以12n n a -=.由31log 3n n n x a x -=-,得133n a n n x x -=-.所以11121231313131n n n n a n a x --++--==--. 利用函数“不动点”法求解较复杂的递推数列的通项问题,并不局限于以上三种类型,基于高考数列试题的难度,本文不再对更为复杂的递推数列进行论述,以下两个定理供有兴趣的同学探究证明.定理4 设222()(0),4b bf x ax bx a a-=++>且0x 是()f x 的最小不动点,数列{}n a 满足递推关系1()n n a f a -=,2,3,n =,则有2010().n n a x a a x --=-定理5 设23322()(0),3273b b bf x ax bx x a a a a=+++-≠且0x 是()f x 的不动点,数列{}n a 满足递推关系1()n n a f a -=,2,3,n =,则有3010().n n a x a a x --=-跟踪训练一、填空题1. 已知数列{}n a 满足11a =,21n nn a a a +=+,数列{}n b 的前n 项和n S ,1n n n a b a +=.若()100S k k Z <∈,则k 的最小值为_______________. 【答案】1 【解析】【分析】由题意,可得111n n n n a b a a +==+,转化21n n n a a a +=+为11111n n n a a a +=-+,可得10012100122310010110111111111111111S a a a a a a a a a a =+++=-+-++-=-+++,结合101a 的范围即得解.【详解】由1n n n a b a +=,可得1n n n a b a +=,由21n n n a a a +=+,可得111n n n a a a +=+,故11n n b a =+. 因为()1111111n n n n n a a a a a +==-++,所以11111n n n a a a +=-+, 所以10012100122310010110111111111111111S a a a a a a a a a a =+++=-+-++-=-+++. 由题意可知0n a >,则210n n n a a a +-=>,故{}n a 为递增数列.因为11a =,所以101101a <<,故()100101110,1S a =-∈,所以k 的最小值为1. 【点睛】本题考查了数列的递推公式以及裂项求和法,考查了学生综合分析,转化与划归,数学运算能力,属于中档题2. 设数列{}n a 的前n 项和为n S ,且11a =,2211,n n n n a a a n a +=-=-,则100S =__________. 【答案】1189 【解析】【分析】由2211,n n n n a a a n a +=-=-,两式相加得221+1n n a a n +=-,然后进一步通过迭代法可求得答案【详解】解:因为2211,n n n n a a a n a +=-=-, 所以221+1n n a a n +=-,所以234598994849()()()014811762a a a a a a ⨯++++⋅⋅⋅++=++⋅⋅⋅+==, 由2211,n n n n a a a n a +=-=-,可得3110a a =-=所以100502512631210111212a a a a a a =-=-=-=-=-=, 所以100123459899100()()()S a a a a a a a a =+++++⋅⋅⋅+++11176121189=++=,故答案为:1189二、解答题3. 数列{}n a 满足:11a =,点()1,n n n a a ++在函数1y kx =+的图像上,其中k 为常数,且0k ≠(1)若124,,a a a 成等比数列,求k 的值; (2)当3k =时,求数列{}n a 的前2n 项的和2n S .【答案】(1)2k =;(2)223n S n n =+.【解析】【分析】(1)首先由条件,列式表示为2a k =,31a k =+,42a k =,再根据数列是等比数列求k 的值;(2)由条件,归纳可知()2123211n n a a n -+=-+,再求数列{}n a 的前2n 项的和2n S . 【详解】解:(1)由11n n a a kn ++=+可得121a a k +=+,2321a a k +=+,3431a a k +=+, 所以2a k =,31a k =+,42a k =.又1a ,2a ,4a 成等比数列,所以2214a a a =,则22k k =,又0k ≠,故2k =.(2)3k =时,131n n a a n ++=+,∴124a a +=,3410a a +=,…,()2123211n n a a n -+=-+, 224624106232n n S n n n n +-=++⋅⋅⋅+-==+. 【点睛】关键点点睛:本题考查等比数列,并项求和,本题第二问的关键是根据递推公式131n n a a n ++=+,求得()2123211n n a a n -+=-+,再求2n S 即可迎刃而解. 4. 已知数列{}n a 、{}n b 满足110a b ==,()()1121212n n n n n a a +++=++,当2n ≥时,131n n b a =+.(1)求数列{}n a 、{}n b 的通项公式;(2)若1n n c b +=,数列{}n c 的前n 项和为n S ,证明:56n S <. 【答案】(1)223nn a -=,0,11,221n n n b n =⎧⎪=⎨≥⎪-⎩;(2)证明见解析.【解析】【分析】(1)由已知条件推导出1111121212121n n n n n n a a +++=+-++++,利用累加法可求得数列{}n a 的通项公式,进一步可求得数列{}n b 的通项公式; (2)分析可得当2n ≥时,11112121122n n n n c +++≤==-+,然后分1n =、2n ≥两种情况讨论,结合等比数列的求和公式可证得结论成立. 【详解】(1)()()()()()111122121221211nn n n n n n n n a a a ++++=++-+=++++,所以,1111121212121n n n n n n a a +++=+-++++,即1111121212121n n n n n n a a +++-=-++++,所以,31121223212121212121212121n n n n n n a a aa a a a a --⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭223111111111212121212121321n n n-⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭,所以,223n n a -=.因为当2n ≥时,131n n b a =+,故0,11,221n n n b n =⎧⎪=⎨≥⎪-⎩;(2)1121n n c +=-时,当2n ≥时,11112121122n n n nc +++≤==-+,当1n =时,11536c =<; 当2n ≥时,11211111111115421482332612n n n n S c c c c -⎛⎫- ⎪⎝⎭=++⋅⋅⋅+≤+++⋅⋅⋅+=+<+=-.综上所述,对任意的n *∈N ,56n S <. 【点睛】方法点睛:已知数列的递推关系求通项公式的典型方法: (1)当出现1n n a a m -=+时,构造等差数列; (2)当出现1n n a xa y -=+时,构造等比数列; (3)当出现()1n n a a f n -=+时,用累加法求解;(4)当出现()1nn a f n a -=时,用累乘法求解. 5. 已知数列{}n a 的前n 项和为n S ,11a =,22a =,公比为2的等比数列{}n b 的前n 项和为n T ,并且满足()12log 12n n n a T S ++=. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)已知1121n n n n n a c T T -++=,规定00a =,若存在n *∈N 使不等式123...1n c c c c nλ++++<-成立,求实数λ的取值范围.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)67λ<. 【解析】【分析】(Ⅰ)由递推式,令1n =求11b =,写出{}n b 的通项公式及n T ,结合已知条件求{}n a 通项公式.(Ⅱ)应用裂项求和求123...n c c c c ++++,即有21min 21n n n λ+⎛⎫+< ⎪-⎝⎭,进而求λ的范围.【详解】(Ⅰ)由题设,2211log (1)2a T S +=,即2211log (1)2a b a +=,可得11b =,又等比数列{}n b 的公比为2,∴12n n b -=,故21nn T =-,即12n n S na +=,当2n ≥时,112()2(1)n n n n n S S a na n a -+-==--,即()11n n na n a +=+, 当1n =时,212a a =,∴n *∈N 上有()11n n na n a +=+,即101n n a a n n,而111a =, ∴{}n an 是常数列且1n a n=,即n a n =;(Ⅱ)由题意,()()()11121121212121n n n n nn n n n c ++-++==-----, ∴1231122311...1...11337212121n n n n n n n c c c c nλ++++++++=-+-++-=-<----,对n *∈N 有解,则21min21n n n λ+⎛⎫+< ⎪-⎝⎭, 令2121n n n nd ++=-,故2211212121(1)(1)2(1)[(2)22](1)()21212121(21)(21)n n n n n n n n n n n n n n n n n d d n ++++++++++++++---=-=+-=------,∴当1n =时,21d d >;当2n ≥时,1n n d d +<,知:2d 为n d 的最小项, ∴267d λ<=.【点睛】关键点点睛:第二问,利用裂项求和求123...n c c c c ++++,将有解问题转化为21min21n n n λ+⎛⎫+< ⎪-⎝⎭,利用数列的性质求最小项,即可得参数范围.。
不动点定理及应用张石生不动点定理是数学分析中的一个重要定理,也是实分析的基础之一。
它是通过将函数与自身的某个值进行比较,来研究函数性质的一个方法。
在实际问题中,不动点定理具有广泛的应用,如经济学、物理学、计算机科学等领域。
不动点定理的基本概念是,对于一个给定的函数f(x),如果存在一个点c使得f(c)=c,那么c就是f的一个不动点。
换句话说,不动点是指函数f的输入和输出相等的点。
不动点定理的核心思想是通过迭代法逼近不动点。
最著名的不动点定理是B a n a c h不动点定理(也称为完备性原理),它的形式是:在完备度量空间中,任何一个压缩映射都有唯一的不动点。
其中,完备度量空间指的是一个具有一个完整的度量的空间,而压缩映射指的是一个将空间元素映射到自身并保持距离不变的映射。
不动点定理的应用非常广泛。
以下列举一些典型的应用领域。
1.经济学:在经济学中,不动点定理常常用于证明经济学模型中的均衡存在和稳定性。
例如,通过将供求函数模型转化为一个演化方程,可以证明在某些条件下存在一个不动点,表示市场均衡;而通过分析不动点的稳定性,可以研究市场的长期发展趋势。
2.物理学:在物理学中,不动点定理常用于分析非线性方程的解的存在性与性质。
例如,在动力系统的研究中,可以将动力学方程表示为一个不动点问题,通过分析不动点的性质来研究系统的稳定性和演化行为。
3.计算机科学:在计算机科学中,不动点定理常常用于程序的求解和优化。
例如,在编译器优化中,可以将程序转化为一个抽象语法树,通过对抽象语法树的变换来求解程序的不动点,以达到提高程序性能的目的。
4.几何学:在几何学中,不动点定理常用于证明几何变换的存在性和特性。
例如,在拓扑学中,可以通过不动点定理来研究拓扑空间的连续映射和同胚映射的性质。
综上所述,不动点定理是数学分析中的一个重要定理,它通过引入不动点的概念,研究函数的性质和方程的解的存在性。
在实际应用中,不动点定理被广泛用于经济学、物理学、计算机科学等领域,为解决实际问题提供了有力的工具和方法。
数列问题不动点法的运用
有一位名叫ZeroToss的网友给我提出下列的数列问题,问我如何解决?
其实,本题可用“不动点法”求数列的通项公式。
首先,我们要知道,什么叫做函数的“不动点”?
对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”。
巧用“不动点”法求数列的通项公式,是高考中的一种比较特殊的方法。
为了让同学们好好理解并掌握这一方法。
下面我们以典型例题来加以说明(由于篇幅的关系,我们只讲步骤和方法,至于详细的证明,同学们可以在相关的《高中数学竞赛教程中》找到)。
当函数有两个“不动点”时,请同学们看下面的几个例题,即可掌握方法。
从上面的方法中,大家可以概括总结出函数“不动点”法求数列通项公式的基本方法了吗?
其实,第二种题型,相应的函数有两个不动点的,一般是形如
a(n+1)=(pan+m)/(qan+u)这样的数列求通项.这样的数列相应的函数的不动点为f(x)=(px+m)/(qx+u)=x的解x1=u,x2=v,最后一般都化归为:数列{(an-u)/(an-v)}是等比数列来求通项的问题。
我们现在再来看网友ZeroToss提出的数列问题的解答:。
不动点的性质与应用一、不动点:对于函数()()f x x D ∈,我们把方程()f x x =的解x 称为函数()f x 的不动点,即()y f x =与y x =图像交点的横坐标.例1:求函数12)(-=x x f 的不动点. 解:有一个不动点为1例2:求函数12)(2-=x x g 的不动点. 解:有两个不动点121、- 二、稳定点:对于函数()()f x x D ∈,我们把方程[()]f f x x =的解x 称为函数()f x 的稳定点,即[()]y f f x =与y x =图像交点的横坐标.很显然,若为函数)(x f y =的不动点,则必为函数)(x f y =的稳定点.证明:因为00)(x x f =,所以000)())((x x f x f f ==,故也是函数)(x f y =的稳定点. 例3:求函数12)(-=x x f 的稳定点.解:设12)(-=x x f ,令x x =--1)12(2,解得1=x 故函数12-=x y 有一个稳定点1【提问】有没有不是不动点的稳定点呢答:当然有 例4:求函数12)(2-=x x g 的稳定点.解:令[()]g g x x =,则018801)144(21)12(2242422=+--⇒=--+-⇒=--x x x x x x x x , 因为不动点必为稳定点,所以该方程一定有两解1,2121=-=x x⇒18824+--x x x 必有因式12)12)(1(2--=+-x x x x可得0)124)(12)(1(2=-++-x x x x ⇒另外两解4514,3±-=x , 故函数12)(2-=x x g 的稳定点是1、21-、451451--+-、,其中451±-是稳定点,但不是不动点 下面四个图形,分别对应例1、2、3、4.由此可见,不动点是函数图像与直线x y =的交点的横坐标,稳定点是函数))((D x x f y ∈=图像与曲线))((D y y f x ∈=图像交点的横坐标(特别,若函数有反函数时,则稳定点是函数图像与其反函数图像交点的横坐标).由图1和图3,我们猜测命题:若函数))((D x x f y ∈=单调递增,则它的不动点与稳定点或者相同,或者都没有.证明:(1)ο1若函数))((D x x f y ∈=有不动点0x ,即00)(x x f =000)())((x x f x f f ==⇒,故也是函数)(x f y =的稳定点;ο2若函数))((D x x f y ∈=有稳定点0x ,即00))((x x f f =,假设0x 不是函数的不动点,即00)(x x f ≠①若f (x 0)>x 0,则 f (f (x 0))>f (x 0),即x 0>f (x 0)与f (x 0)>x 0矛盾,故不存在这种情况; ②若f (x 0)<x 0,则f (f (x 0))<f (x 0),即x 0<f (x 0)与f (x 0)<x 0矛盾,故不存在这种情况; 综上,f (x 0)=x 0⇒x 0是f (x )的不动点.(2)ο1若函数))((D x x f y ∈=无不动点,由(1)知若函数有稳定点,则函数必有不动点,矛盾,故函数无稳定点;ο2若函数))((D x x f y ∈=无稳定点,由(1)知若函数有不动点,则函数必有稳定点,矛盾,故函数无不动点;综上,若函数))((D x x f y ∈=单调递增,则它的不动点与稳定点或者相同,或者都没有.121例5、对于函数f (x ),我们把使得f (x )=x 成立的x 称为函数f (x )的不动点。
不动点理论及其应用主要内容:●不动点理论—压缩映像原理●不动点理论在微分方程中的应用●不动点理论在中学数学中的应用目录:一、引言二、压缩映像原理三、在微分方程中的应用四、在中学数学中的应用五、其它一、 引言取一张照片,按比例缩小,然后把小照片随手放在大照片上,那么大小两张照片在同一个部位,一定有一个点是重合的。
这个重合点就是一个不动点。
函数的不动点, 在数学中是指被这个函数映射到其自身的一个点, 即函数)(x f 在取值过程中, 如果有一个点0x 使00)(x x f =,则 0x 就是一个不动点。
二、 压缩映像原理定理:(Banach 不动点定理—压缩映像原理)设 ),(ρX 是一个完备的距离空间, T 是),(ρX 到其自身的一个压缩映射,则T 在X 上存在唯一的不动点。
这里有三个概念:距离空间,完备的距离空间,压缩映射距离空间又称为度量空间。
定义:(距离空间)设 X 是一个非空集合。
X 称为距离空间,是指在X 上定义了一个双变量的实值函数 ),(y x ρ, 满足下面三个条件:(1)。
0),(≥y x ρ, 而且0),(=y x ρ, 当且仅当 y x =; (2)。
),(),(x y y x ρρ=;(3)。
),(),(),(z y y x z x ρρρ+≤, (X ,,∈∀z y x )。
这里 ρ 叫做 X 上的一个距离,以 ρ 为距离的距离空间 X 记作),(ρX 。
定义:(完备的距离空间)距离空间),(ρX 中的所有基本列都是收敛列,则称该空间是完备的。
定义:(压缩映射)称映射 ),(),(:ρρX X T → 是一个压缩映射,如果存在 10<<a , 使得 ),(),(y x a Ty Tx ρρ≤ ),(X y x ∈∀成立。
三、 在微分方程中的应用定理:(存在和唯一性)考虑如下初值问题⎪⎩⎪⎨⎧==.00)(),,(y x y y x f dx dy假设 ),(y x f 在矩形区域b y y a x x R ≤-≤-||,||:00内连续,而且对 y 满足Lipschitz 条件,则上述问题在区间],[00h x h x I +-= 上有且仅有一个解,其中.|),(|max },,min{),(y x f M Maa h R y x ∈>=(1)。
不动点在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子。
用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.1求数列的通项公式定理1 已知数列{}n x 满足()()dcx bax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明 因为p 是()x f 唯一的不动点,所以p 是方程dcx bax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得ap cp pd b cda p -=--=2,2 所以()()()()dcx p x pc a dcx apcp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()px cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把 cda p 2-=代入上式,得: px d a c p x n n -++=--1121令 d a ck +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1 若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式.解 根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理 可知2,1,1,0=-===d c b a , 则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为()()n n a n -=--+-=-21112111 解得nna n 2123--=又11-=a 也满足上式.所以{}n a 的通项公式为nna n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx bax x f x f x n n ++==-,1 ,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c+2的等差数列.推论 已知数列{}n x 满足()()b ax x f x f x n n +==-,1 ,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2 若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解 根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论 可知3,2==b a , 则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列, 则当2≥n 时,有n n a 23=+, 故32-=n n a 又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.2 数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3 函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析 函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明 当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;假设k n =时有11<<+k k a a ,因为()x f 是增函数()1,0∈x ,所以()()()111=<<+f a f a f k k ,即121<<++k k a a ,当1+=k n 时结论也成立.故原不等式成立这类问题可以以各种类型的函数与数列为载体.考查导数、单调性、方程的根等问题.对学生综合能力有较高的要求,在2010年的高考中此类问题进一步拓展,又有了一些新变化:利用数列的有界性求含参数列中参数的取值范围.例4 已知数列{}n a 中,nn a c a a 1,111-==+,求使不等式31<<+n n a a 成立的c 的取值范围.解:该数列应该是向其某个不动点收敛.不妨设该不动点为0x ,则有310≤<x ,即方程()x x f =在(]3,1有一个实根.我们继续用不动点的思路方法解决该问题.因为31<<+n n a a 对任意自然数都成立,所以首先应有321<<a a ,可得42<<c . 设()xc x f 1-=,则()x f 是增函数,()+∞∈,0x . 令()x x f =,即01,12=+-=-cx x x xc .当2>c 时,该方程有2个不等的实数根.设为2121,,x x x x <,由韦达定理121=x x ,可知211x x <<只要让32≤x 即可.令()()31003,12≤⇒≥+-=c g cx x x g . 即当310≤c 时,()x f 在(]3,1上存在不动点0x (0x 就是2x )所以c 的取取范围是⎥⎦⎤ ⎝⎛310,2.再用数学归纳法证明结论的正确性:因为310≤<x 且()x c x f 1-=在()+∞,0是增函数,所以当3102≤<c 时, 有()()002111x f x f a a =<=<=.假设k n =时,有301≤<<+x a a k k .因为()x f 是增函数,故()()()01x f a f a f k k <<+,即021x a a k k <<++,当1+=k n 时结论也成立,所以当c 的取值范围是⎥⎦⎤⎝⎛310,2时, ()xc x f 1-=有在区间(]3,1内的不动点0x ,数列{}n a 单调递增向该不动点收敛. 3 数列的单调性及收敛性近几年一些地区高考试题对利用不动点解决递推数列的问题比较青睐,如求数列的通项公式,利用不动点研究数列的单调性等等.下文利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.3.1 关于数列单调性、收敛性的重要结论定义1 设R I f →:,其中I 是R 的一个区间,数列{}n x 由a a =1和递推关系()n n x f x =+1来定义.则数列{}n x 称为递推数列.()x f 称为数列{}n x 的特征函数,()x f x =称为数列{}n x 的特征方程,a x =1称为初始值.若设f 是连续的,若{}n x 收敛而且有极限0x ,()()010lim lim x f x f x x n n ===+.因此问题就变为寻找方程 ()x f x =解(即f 的不动点),并验证数列是不是收敛于数 0x .定理 2设f 是定义在I 上的一个压缩映射,则由任何初始值[]b a x ,1∈和递推数列。
“不动点法”解决递推型数列不等式问题数列不等式历来是高中数学的重点和难点,常出现在高考压轴题中,具有极高的思想性和技巧性。
尤其是浙江省的高考,最近几年压轴题中连续考到递推型数列不等式,解决递推型数列不等式的一般方法是利用“不动点”来解决问题,要计算变比()n q a 在不动点处的函数值来进一步判定数列的类型是“裂项相消型”还是“等比型”,从而进行进一步地放缩。
一、知识方法1、不动点的定义:一般地,设函数()f x 的定义域为D ,若存在实数0x D ∈,使()00f x x =成立,则称0x 为函数()f x 的不动点。
对定义的理解:代数角度:0x 为方程()f x x =的实数根;几何角度:0x 为函数()y f x =与y x =图像交点的横坐标。
2、简单迭代数列任取初始值1a ,并且()()*1n n a f a n N +=∈,则得到数列{}n a 。
二次递推:()2f x ax bx c=++一次分式递推:()ax b f x cx d+=+根式递推:()f x d =+双勾递推:()()0,0bf x ax c a b x=++>>等等。
3、“五步法”求解递推型问题模型:已知数列{}n a 满足1a a =,()()*1n n a f a n N +=∈。
第1步:找出迭代函数()f x ;第2步:求出迭代函数的不动点:由()f x x =,得0x x =;通过猜想式画图或特殊值法得到n a 的初始范围。
第3步:“中心化”再作商得到“变比”()n q a ,研究数列在不动点附近的性质:求出()10n n n a x q a a x +-=-,分析()n q a (由变比的同号法则先证n a 的初始范围中和不动点有关的这边,然后再利用作差法或作商法或数学归纳法证明n a 的单调性,即得n a 的初始范围中和首项有关的这边)。
第4步:计算“变比”()n q a 在不动点处的函数值,判定数列类型:(1)若()01q x =,则数列为“裂项相消型”。
巧用不动点法求数列的通项公式不动点法是解决函数方程和递归式问题的一种有效方法。
在数学中,如果一个函数f(x) 恰好等于x,那么x 就是这个函数的不动点。
巧用不动点法,我们也可以用来求解数列的通项公式。
通过这种方法,我们可以更加轻松地理解与求解数列的通项公式。
一、不动点法的概念及定理:不动点法早在古希腊数学家Euclid时代就已经被使用,但真正的发展是在20世纪50年代,康托尔和斯考特对其进行了重要的发展。
不动点法主要应用于非线性方程及函数不动点领域。
在数学中,一个函数的不动点是指一个值x,满足f(x) = x。
这个概念的重要性体现在不动点存在定理上。
这个定理告诉我们,任何连续、紧、单调的函数都有一个不动点。
这个定理的应用范围极广,包括了不少基本的方程难题。
二、利用不动点法求解数列的通项公式的思路:利用不动点法求解数列的通项公式,我们首先要找到数列中存在的不动点。
对于一个数列{a1, a2, a3, ...} ,我们可以对其进行递推求解,得到{a1, a2, a3, ...} 的确切关系式(称为递推式),然后你可以进行转化以便寻找不动点。
我们要利用某些方法来确定这个递推式的不动点,即一个数x等于这个数列中每一项。
(即满足a(x)=x)。
最终我们可以得到一个只含有x的方程,此方程就是这个数列的通项公式。
三、一个示例:举一个最简单的例子。
有一个数列{1, 2, 3, 4, 5, ...},这个数列的递推式为an = an-1 + 1,即每一项是前一项加1。
我们尝试用不动点法来计算这个数列的通项公式。
首先对这个数列进行递推,我们可以得到an = a1 + (n - 1),即第n项等于首项加上公差乘以n-1。
到这里我们已经成功地将递推式从" an = an-1 + 1 " 修改为" an = a1 + (n-1) "。
接下来,我们要寻找这个递推式的不动点。
将an+1 = a1 + n 代入an = a1 + (n - 1) 中,可以得到a1 + n = a1 + (n - 1) + 1 ,消去a1 ,我们可以得到n =n。
摘要本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用.关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性.AbstractThisarticlefirstlPintroducedtheFiGpointTheoreminBanachspace,theone-dimensionaleGtende dformoftheFiGpointTheoreminotherlineartopologicalspaceandtheeGtendedformingeneralcomplete metricspace.Then,wesummarizedtheproblemonsequenceofnumberusingFiGpointTheorem,analPzin gthecharacteristicsoftestsemergedonmathpapersofallpartsofourcountrPrecentPears,includingthepro blemofgeneraltermandboundednessofasequenceofnumber.Atlast,attractivefiGpointandrejectionfiG pointinFiGpointTheoremwereintroducedwhichcansolvetheproblemaboutthemonotonicitPandastrin gencPofsequenceofnumber.KePwords:BanachfiGedpointtheorem,Sequence,Boundedness,MonotonicitPConvergence.目录第1章绪论 (1)1.1导论 (1)1.1.1 选题背景 (1)1.1.2 选题意义 (2)1.1.3 课题研究内容 (2)1.2 研究现状 (2)1.3本章小结 (3)第2章不动点定理 (4)2.1 有关概念 (4)2.2 不动点定理和几种推广形式 (4)2.3 本章小结 (7)第3章不动点定理在数列中的应用 (8)3.1 求数列的通项公式 (8)3.2 数列的有界性 (9)3.3 数列的单调性及收敛性 (11)3.3.1数列的单调性、收敛性的重要结论 (11)3.3.2数列的单调性、收敛性的证明 (14)3.4 本章小结 (17)第6章结束语 (18)参考文献 (19)第1章绪论1.1导论不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].不动点理论一个发展方向是只限于欧氏空间多面体[5]上的映射,不动点理论的另一个发展方向是不限于欧氏空间中多面体上的映射,而考察一般的距离空间或线性拓扑空间上的不动点问题.最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像原理发展了迭代思想,并给出了Banach 不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、积分方程、隐函数理论等中的许多存在性与唯一性问题均可以归结为此定理的推论.1.1.1选题背景不动点定理在微分方程、函数方程、动力系统理论等中有极为广泛的应用.函数的"不动点"理论虽然不是中学教材的必修内容,但是它的存在确实使一些数学问题在无法想象中得到了解决.已知递推公式求其数列通项,数列有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.因此,它就自然成为各类数学竞赛和选择性考试必选的内容之一,尤其在近年的高考中对该定理的应用越来越频繁.1.1.2选题意义利用“不动点”法巧解高考题,递推公式求数列的通项,证明数列的有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此本文对函数“不动点”问题的研究结果,来简化求数列的通项公式、数列的有界性、数列的单调性及收敛性等问题具有指导意义和理论意义.1.1.3课题研究内容本文通过介绍不动点定理的证明,不动点定理的迭代思想和不动点定理的推论,研究了以下的内容:①利用不动点定理的迭代思想,简化求递推数列的通项问题.②以不动点定理为指导思想,证明数列的有界性.③利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.1.2研究现状不动点理论一直是一个既比较古老的问题,又比较有新生命力的领域,它的历史悠久,却又是近现代一个发展较快的理论定理.自不动点理论问世以来,特别是最近的二三十年来,由于学术上的不断发展和数学工作者的不懈努力,这门学科的理论及应用的研究已经取得了重要的进展,不断有新的不动点理论研究成果涌现,并日臻完善.不动点的有关理论是泛函分析中最重要的原理之一,它依据于著名的巴拿赫(Banach )压缩映射定理,如今已广泛应用于数学分析的各个方面.许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()f x ()f x 把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x ∈,使00()f x x =.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题.近年来,有不少人研究中学数学中所涉及到的不动点问题,将拓扑学不动点定理的一些基本思想,采用通俗易懂的语言和形象生动的例子运用到初等数学中去,扩大中学生的知识领域,加深中学生对数学基础知识的掌握.在中学中,不动点有关知识常常用来解决一些初等数学中的问题,例如以“不动点”为载体、将函数、数列、不等式、方程以及解析几何等知识有机地交汇在一起的数学问题,从而体现了用不动点有关知识来求解这些问题有时是非常简单和巧妙的.1.3本章小结本章介绍了选题的背景和意义,并对课题的要求和研究内容作了分析,对不动点定理的现况作了概要性的说明,是不动点定理及其应用的前期研究基础.第2章不动点定理2.1有关概念函数的不动点,在数学中是指被这个函数映射到其自身的一个点,即函数()f x 的取值过程中,如果有0x ,使0()f x x =.就称0x 为()f x 的一个不动点.对此定义,有两方面的理解:⑴代数意义:若方程00()f x x =有实数根0x ,则00)(x x f =有不动点0x . ⑵几何意义:若函数)(x f y =与x y =有交点),(00y x ,则0x 为()y f x =的不动点.为了介绍不动点的一般概念,本文先介绍以下相关概念.定义1[7]度量空间:设X 是一个集合,R X X →⨯:ρ.如果对于任何X z y x ∈,,,有 ⑴(正定性)(,)0x y ρ≥,并且(,)0x y ρ=当且仅当y x =;⑵(对称性)(,)(,)x y y x ρρ=;⑶(三角不等式)(,)(,)(,)x z x y y z ρρρ≤+,则称ρ是集合X 的一个度量,偶对()ρ,X 是一个度量空间.定义2[7]压缩映射:给定()ρ,X 如果对于映射T :X X →存在常数K ,10<<K 使得(,)(,)Tx Ty K x y ρρ≤,(,)x y X ∀∈则称T 是一个压缩映射.定义3[7]CauchP 列:给定(,)X ρ,{}n x X ⊂,若对任取的0>ε,有自然数N 使对εN n m >∀,,都成立(,)m n x x ρε<则称序列{}n x 是CauchP 列.定义4[7]完备度量空间:给定(,)X ρ,若X 中任一CauchP 列都收敛,则称它是完备的.定义5[8]不动点:给定度量空间(,)T ρ及X X →的映射T 如果存在X x ∈*使**xTx =则称*x 为映射T 的不动点.定义6[9]凸集:设X 是维欧式空间的一点集,若任意的两点X x X x ∈∈21,的连线上的所有的点)10(,)1(21≤∂≤∈∂-+∂X x x ;则称X 为凸集.2.2不动点定理和几种推广形式不动点理论是关于方程的一种一般理论.数学里到处要解方程,诸如代数方程、微分方程、函数方程等,种类繁多,形式各异,但是它们常能改写成()f x x =的形状这里的x 是某个适当的空间X 中的点,f 是X 到X 的一个映射,把每个x 移到()f x .方程()f x x =的解恰好就是在f 这个映射下被留在原地不动的点,故称不动点,于是解方程的问题就是化成了找不动点的这个几何问题,不动点理论就是研究不动点的有无、个数性质与方法.首先,本文介绍Banach 不动点定理的证明定理l (Banach 不动点定理——压缩映射原理[10])设(,)X ρ是一个完备的度量空间T 是(,)X ρ到其自身的一个压缩映射,则T 在X 中存在惟一的不动点.证明首先,证明T 存在不动点取定X x ∈0以递推形式n n Tx x =+1确定一序列{}n x 是CauchP 列.事实上,由1111221210(,)(,)(,)(,)(,)(,)m m m m m m m m m m m x x Tx Tx K x x K Tx Tx K x x K x x ρρρρρρ+------=≤=≤≤≤任取自然数n m ,,不妨设n m <那么 1111101010(,)(,)(,)()(,)1()(,)(,)11m m n m n m m n n n m mm x x x x x x K K K x x K K K x x x x K Kρρρρρρ-----≤++≤+++-=≤-- 从而知{}n x 是一CanchP 列,故存在X x ∈*使*x x n →且*x 是T 的不动点,因为******1(,)(,)(,)(,)(,)()n n n n x Tx x x x Tx x x K x x n ρρρρρ-≤+=+→→∞故**(,)0x Tx ρ=,即**x Tx =,所以*x 是T 的不动点.其次,下证不动点的惟一性设T 有两个不动点*1*,x x ,那么由**x Tx =及*1*1x Tx =有 ******111(,)(,)(,)x x Tx Tx K x x ρρρ=≤设*1*x x ≠,则**1(,)0x x ρ>,得到矛盾,从而*1*x x =,唯一性证毕. 作为Brouwer 不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder 不动点定理I :定理2设E 是Banach 空间,X 为E 中非空紧凸集,X X f →:是连续自映射,则f 在X 中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意X x ∈,()x f 是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集,有下面定理,我们称其为Schauder 不动点定理II :定理3设E 是Banach 空间,X 为E 中非空凸集,X X f →:是紧的连续自映射,则f 在X 中必有不动点.定义6设E 是线性拓扑空间,如果E 中存在由凸集组成的零邻域基,则称E 是局部凸的线性拓扑空间,简称局部凸空间.1935年,TPehonoff 进一步将Sehauder 不动点定理I 推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为TPehonoff 不动点定理:定理4设E 是局部凸线性拓扑空间,X 是其中的非空紧凸集,X X f →:是连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.1950年,Hukuhara 将Schauder 不动点定理II 与TPehonoff 不动点定理结合起来得到下面的定理,我们称其为Sehauder--TPchonoff 不动点定理:定理5设E 是局部凸线性拓扑空间,X 是其中的非空凸集,X X f →:是紧连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.从20世纪30年代起,人们开始关注集值映射的不动点问题.所谓集值映射的不动点, 定义如下:定义7设X 是拓扑空间,X X T 2:→是集值映射,其中X2表示X 的所有非空子集的集合.若存在X x ∈0,使00()x T x ∈,则称0x 是T 的不动点.1941年,kllcIltani 把Bmuwer 不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani 不动点定理:定理6设m R X →是凸紧集,且X X T 2:→是具闭凸值的上半连续集值映射,则T 必有不动点.1950年,Botmenblust ,Karlin 把Sehauder 不动点定理I 推广到集值映射的情形: 定理7设E 是Banach 空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1952年,Fan ,Glicksberg 分别把TPehonoff 不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg 不动点定理或K-F —G 不动点定理.即: 定理8设E 是局部凸的Hausdorff 线性拓扑空间,X 是E 中的非空紧凸集,XX T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点. 1968年,Browder 又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder 不动点定理:定理9设X 是Hausdorff 线性拓扑空间E 中的非空凸紧子集,集值映射XX S 2:→满足:(1)对任意X x ∈,()S x 是X 中的非空凸集(2)对任意{}1,():()y X S y x X y S x -∈=∈∈是Z 中的开集则存在X x ∈0,使00()x S x ∈.本章小结本章详细介绍了Banach 不动点定理及其证明,概况了对不动点定理的几种推广形式.第3章不动点定理在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子以全国卷I 为例,20PP 年,20PP 年、20PP 年高考的压轴题都是可以用“不动点”的方法比较容易地去解决.用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.3.1求数列的通项公式定理10已知数列{}n x 满足()()d cx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明因为p 是()x f 唯一的不动点,所以p 是方程d cx b ax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得ap cp pd b cd a p -=--=2,2 所以 ()()()()d cx p x pc a dcx ap cp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()p x cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把cd a p 2-=代入上式,得: px d a c p x n n -++=--1121 令d a c k +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式. 解根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理可知2,1,1,0=-===d c b a ,则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为 ()()n n a n -=--+-=-21112111 解得nn a n 2123--= 又11-=a 也满足上式.所以{}n a 的通项公式为nn a n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c +2的等差数列. 推论已知数列{}n x 满足()()b ax x f x f x n n +==-,1,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论可知3,2==b a ,则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列,则当2≥n 时,有n n a 23=+,故32-=n n a又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.3.2数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3(20PP 年全国II )函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;。
不动点定理及应用毕业论文不动点定理是数学中的一个重要定理,它在很多领域中有着广泛的应用。
本文将介绍不动点定理的概念、证明及其在不同领域中的应用,并分析其对毕业论文的可能帮助。
不动点定理是由德国数学家孟德尔逊(Ernst Friedrich Ferdinand Zermelo)于1913年提出的。
它是一个关于映射的定理,指出在某些特定条件下,一个映射必然存在一个不动点。
所谓不动点,即是在映射下保持自身不变的点。
具体来说,对于一个映射f(x),若存在一个x使得f(x) = x,那么x就是f的一个不动点。
下面我们给出不动点定理的详细证明。
首先,假设f是一个定义在[a, b]区间上的连续函数,并且满足f(a) >= a及f(b) <= b这两个条件。
根据这个假设,我们可以构造一个数列x0, x1, x2, ...,其中x0 = a,x1 = f(x0), x2 = f(x1),以此类推,我们可以得到xn = f(xn-1)。
根据归纳法,我们可以证明这个数列是一个单调递增的数列,并且有一个上界b。
根据实数完备性定理,我们可以知道这个数列收敛到一个值x。
由于f是一个连续函数,我们可以计算出f(x) = x,即x就是f的一个不动点。
因此,根据孟德尔逊不动点定理的证明,我们可以得出在一定条件下,存在一个不动点。
不动点定理在实际问题中有着广泛的应用。
首先,它在函数逼近问题中起到重要作用。
对于一个复杂函数,如果我们可以构造一个映射将其逼近到一个简单的不动点,这样对于问题的求解会更加简便。
例如,在数值计算中,我们可以使用迭代法求解方程f(x) = x的根,这就是通过不动点定理将方程的求解转化为对应映射的不动点求解。
另外,在优化问题中,不动点定理也可以用来找到函数极小值的点。
其次,不动点定理在经济学和博弈论中也有着重要应用。
例如,在经济学中,通常会遇到某个映射代表市场供求关系或者经济变量之间的关系。
通过不动点定理,我们可以找到这个映射的不动点,从而分析经济系统的稳定状态。
利用“不动点”法巧解高考题由递推公式求其数列通项从来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这种问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情形,因此咱们能够利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探讨。
笔者在长期的教学实践中,不断总结探讨反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探讨的规律性总结,以期对同窗们解题有所帮忙.1 不动点的概念一样的,设()f x 的概念域为D ,假设存在0x D ∈,使f x x ()00=成立,那么称x 0为f x ()的不动点,或称00(,)x x 为f x ()图像的不动点。
2 求线性递推数列的通项定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 知足递推关系1()n n a f a -=,2,3,n =,证明{}a x n -0是公比为a 的等比数列。
证:∵x 0是f x ()的不动点,因此ax b x 00+=,因此b x ax -=-00,因此a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。
例1 (2020上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即15166n n a a -=+(2)n ≥,记51()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:151(1)(2)6n n a a n --=-≥,又a 1-1= -15 ≠0,因此数列{a n -1}是等比数列。