数值分析7-3(迭代法的加速)
- 格式:ppt
- 大小:282.00 KB
- 文档页数:12
数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。
第4章 非线性方程与非线性方程组的迭代解法--------学习小结一、本章学习体会本章我们主要学习了非线性方程的几种解法,主要有对分法、简单迭代法、steffensen 迭代法、Newton 法、割线法等。
这几种方法都有其思想,并且它们的思想彼此之间有一定的联系。
本章的思路大致可以理解为:1.如何选取迭代公式;2.如何判断迭代公式的收敛速度;3.如何进行迭代公式的修正,以加速收敛;4.如何选取最适合的迭代方法 。
二、本章知识梳理具体求根通常分为两步走,第一步判断根是否存在,若存在,确定根的某个初始近似值;第二步,将初始近似值逐步加工成满足精度要求的结果。
求初始近似值,即确定根的大致区间(a, b ),使(a, b )内恰有方程的一个根。
本章的学习思路:针对一种迭代方法,找出迭代公式,并判断其收敛性,一般选取收敛速度最快的迭代公式,所以自然的提出了如何使收敛加速的问题。
4.1非线性方程的迭代解法非线性方程的迭代解法有:对分法、简单迭代法、steffensen 迭代法、Newton 法、割线法等。
4.1.1对分法设()[]()()0,<∈b f a f b a C x f 且,根据连续函数的介值定理,在区间()b a ,内至少存在有一个实数s ,使()0=s f 。
现假设在()b a ,内只有一个实数s ,使()0=s f 并要把s 求出来,用对分法的过程: 令b b a a ==00, 对于M k ,....,2,1,0=执行计算2kk k b a x +=若()ηε≤≤-k f a b k k 或,则停止计算取k x s ≈否则转(3)()()k k k k k k b b a a a f x f ==<++11,,0则令()()k k k k k k b b x a a f x f ==>++11,,0则令 若M k =则输出M 次迭代不成功的信息;否则继续。
对分法的局限:对分法只能求实根,而且只能求单根和奇数重根,不能求偶数根和复数根4.1.2简单迭代法及其收敛性迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度要求的解。
§2简单迭代法——不动点迭代(iterate)迭代法是数值计算中的一类典型方法,被用于数值计算的各方面中。
一、简单迭代法设方程f(x)=0 (3)在[a,b]区间内有一个根*x ,把(3)式写成一个等价的隐式方程x=g(x) (4)方程的根*x 代入(4)中,则有)(**=x g x (5)称*x 为g的不动点(在映射g下,象保持不变的点),方程求根的问题就转化为求(5)式的不动点的问题。
由于方程(4)是隐式的,无法直接得出它的根。
可采用一种逐步显式化的过程来逐次逼近,即从某个[a,b]内的猜测值0x 出发,将其代入(4)式右端,可求得)(01x g x =再以1x 为猜测值,进一步得到)(12x g x =重复上述过程,用递推关系——简单迭代公式求得序列}{k x 。
如果当k →∞时*→x x k ,}{k x 就是逼近不动点的近似解序列,称为迭代序列。
称(6)式为迭代格式,g(x)为迭代函数,而用迭代格式(6)求得方程不动点的方法,称为简单迭代法,当*∞→=x x k k lim 时,称为迭代收敛。
构造迭代函数g(x)的方法:(1)=x a x x -+2,或更一般地,对某个)(,02a x c x x c -+=≠;(2)x a x /=; (3))(21xa x x +=。
取a=3,0x =2及根*x =1.732051,给出三种情形的数值计算结果见表表 032=-x 的迭代例子问题:如何构造g(x),才能使迭代序列}{k x 一定收敛于不动点?误差怎样估计?通常通过对迭代序列}{k x 的收敛性进行分析,找出g(x)应满足的条件,从而建立一个一般理论,可解决上述问题。
二、迭代法的收敛性设迭代格式为),2,1,0()(1 ==+k x g x k k而且序列}{k x 收敛于不动点*x ,即∞→→-*k x x k (0时)因而有)3,2,1(1 =-≤-*-*k xx x x k k (7)由于),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ当g(x)满足中值定理条件时有),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ (8)注意到(8)式中只要1)(<<'L g ξ时,(7)式成立.经过上述分析知道,迭代序列的收敛性与g(x)的构造相关,只要再保证迭代值全落在[a,b]内,便得:假定迭代函数g(x)满足条件(1) 映内性:对任意x ∈[a,b]时,有a ≤g(x) ≤b ;(2) 压缩性:g(x)在[a,b]上可导,且存在正数L<1,使对任意 x ∈[a,b],有L x g <')( (9)则迭代格式)(1k k x g x =+对于任意初值0x ∈[a,b]均收敛于方程x=g(x)的根,并有误差估计式011x x LL x x kk --≤-*(10)证明 :收敛性是显然的。
6.5迭代法的加速一、教学目标及基本要求通过对本节的学习,使学生掌握方程求根迭代法的加速。
二、教学内容及学时分配本章主要介绍线性方程求根的迭代法的加速方法。
要求1.了解数值分析的研究对象、掌握误差及有关概念。
2.正确理解使用数值方法求方程的解的基本思想、数学原理、算法设计。
3.了解插值是数值逼近的重要方法之一,正确理解每一种算法的基本思想、计算公式、算法设计、程序框图设计和源程序。
4.掌握数值积分的数学原理和程序设计方法。
5.能够使用数值方法解决一阶常微分方程的初值问题。
6.理解和掌握使用数值方法对线性方程组求解的算法设计。
三、教学重点难点1.教学重点:非线性方程迭代收敛性与迭代加速、牛顿法。
2.教学难点:迭代的收敛性。
四、教学中应注意的问题多媒体课堂教学为主。
适当提问,加深学生对概念的理解,迭代加速的算法实现。
五、教案正文6.1 迭代公式的加工迭代过程收敛缓慢,计算量将很大,需要进行加速。
设 x k是根x*的某个近似值,用迭代公式校正一次得x k 1x k,假设' ( x)在所考察得范围内变化不大,其估计值为L ,则有:x *xk 1L( x * x k )x * 1 L xk 1L x k1 1 L有迭代公式 x k 11 x k 1Lx k ,是比 x k 1 更好的近似根。
这样加工后1 L1 L的计算过程为:迭代 x k 1 x k改进 x k 11L x kx k 11L1 L合并的 x k 11 [ ( x k )Lx k ]1 L例 3 P1336.2 埃特金算法上述加速方法含有导数'x ,不便于计算。
设将迭代值 x k 1x k 再迭代~x k 1 ,由于 x *~L ( x *x k1)一次,又得 x k 1xk 1又 x * x k 1L( x *x k ) ,消去 L 得x * xk 1x *x k~ ~x k 1 ) 2x *( x k 1*~x *xk 1xk 1~2x k 1x kx x k 1xk 1计算过程如下:迭代 x k1x k~1xk 1迭代 x k~~1x k 1 ) 2改进 x k( x k1x k1~2x k 1 x kx k 1小结:这节课我们主要介绍了线性方程组迭代法加速的基本思想及其常用的几种迭代方法。