数值分析 第五版 李庆扬 第6章 解线性方程组的迭代法
- 格式:pdf
- 大小:565.05 KB
- 文档页数:38
李庆扬数值分析第五版习题答案清华大学出版社数值分析是一门研究数值计算方法的学科,它应用于各个领域,解决了许多实际问题。
《李庆扬数值分析第五版习题答案》是一本为读者提供数值分析习题解答的参考书,由清华大学出版社出版。
第一章误差1.1 绝对误差与相对误差在数值计算过程中,由于测量、取近似值和舍入误差等原因,我们常常会得到与真实值有一定偏差的结果。
绝对误差和相对误差是描述数值计算结果与真实值之间误差大小的衡量标准。
绝对误差表示实际值和计算值之间的差别,相对误差则是绝对误差与实际值之比。
1.2 舍入误差与有效数字在数值计算中,由于计算机底层的二进制表示以及计算机在表示无穷和无法精确表示的数字时需要进行近似,会导致舍入误差。
有效数字是用来表示浮点运算结果的一种方式,能够控制舍入误差的影响。
第二章插值与多项式逼近2.1 插值问题的提出插值问题是在有限数据点的基础上,构造一个与这些数据点足够接近的函数。
插值的目的是通过已知数据点之间构造一个函数,使得通过这个函数计算的结果近似于真实的未知数据点的值。
2.2 拉格朗日插值法拉格朗日插值法是通过构造一个基于已知数据点的多项式函数,来实现对未知数据点的预测。
它通过对每个数据点进行加权,以使得插值多项式通过这些数据点。
2.3 牛顿插值法牛顿插值法是通过使用差商的概念,构造一个多项式函数来进行插值。
差商是指由数据点的函数值所决定的差分系数。
第三章数值积分与数值微分3.1 数值积分的基本思想数值积分是通过将区间进行离散化,将连续变量转化为离散变量的和,从而实现对曲线下面积的近似计算。
3.2 复合求积公式复合求积公式将整个区间分割为若干子区间,对每个子区间进行积分,并将结果相加得到最终的数值积分结果。
通过增加子区间的数量,可以提高数值积分的精确度。
3.3 数值微分的基本思想数值微分是通过利用离散数据点之间的差值,来近似计算函数在某个点处的导数。
第四章线性方程组的数值解法4.1 线性方程组的求解线性方程组的求解是数值分析中的一个重要问题。
数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。
(完整word版)迭代法解线性方程组-数值分析实验报告编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)迭代法解线性方程组-数值分析实验报告)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)迭代法解线性方程组-数值分析实验报告的全部内容。
数学与计算科学学院《数值分析》课程设计题目:迭代法解线性方程组专业:信息与计算科学学号: 1309302—24姓名:谭孜指导教师:郭兵成绩:二零一六年六月二十日一、前言:(目的和意义)1.实验目的①掌握用迭代法求解线性方程组的基本思想和步骤.②了解雅可比迭代法,高斯—赛德尔法和松弛法在求解方程组过程中的优缺点。
2。
实验意义迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。
迭代法的基本思想是用逐次逼近的方法求解线性方程组。
比较雅可比迭代法,高斯—赛德尔迭代方法和松弛法,举例子说明每种方法的试用范围和优缺点并进行比较.二、数学原理:设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式f Bx x k k +=+)()1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。
对任意的初始向量)0(x ,由式③可求得向量序列∞0)(}{k x ,若*)(lim x x k k =∞→,则*x 就是方程①或方程②的解。
此时迭代公式②是收敛的,否则称为发散的。
构造的迭代公式③是否收敛,取决于迭代矩阵B 的性 1。
雅可比迭代法基本原理设有方程组),,3,2,1(1n i b x a j j nj ij ==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠从式①中第i 个方程中解出x,得其等价形式)(111j nj j ij ii i x a b a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x =,对式②应用迭代法,可建立相应的迭代公式: )(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x…③ 也可记为矩阵形式:J x J k F B x k +==)()1( …④ 若将系数矩阵A 分解为A=D —L-U ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--=--00000000000000111211212211212222111211n n n nn n nn nn n n n n a a a a a a a a a a a a a a a a a a U L D A式中⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000122311312n n n n a a a a a a U 。
数值分析课程实验报告实验名称 线性方程组的迭代解法Ax b =的系数矩阵对角线元素容许误差。
雅可比(Jacobi )迭代法解方程组的算法描述如下:任取初始向量(0)(0)1(xx =1+,并且 1,2,...,n ,计算 11(ni j ii j ib a a =≠-∑()k x ,结束;否则执行④,则不收敛,终止程序;否则转② 迭代法的算法描述)迭代法中,如果当新的分量求出后,马上用它来代替旧的分量,则可能会更快地接近方程组的准确解。
基于这种设想构造的迭代公式,n ,k = (2)算法可相应地从雅可比(Jacobi )迭代法改造得到(Gauss-Seidel)迭代得到的值进一()()()1((1k i ii k k i i x b a x x ωω==+-1,2,,n ,2,k =(3)为松弛因子(显然当1ω=塞德尔迭代公式) ()k ix 通常优于旧值(1)k ix -,在将两者加工成松弛值时,自然要求松弛因子1ω>,以尽量发挥新值的优势,这类迭代就称为逐次超松弛迭代法。
SOR 迭代的关键在于选取合适的松弛因子,松弛因子的取值对收敛速度影响很大,但如何选取最佳松弛因子的问题,至今仍未有效解决,在实际计算时,通常依据系数矩阵的特点,并结合以往的经验选取合适的松弛因子。
练习与思考题分析解答(0)(1,1,1,1)x =[ -0.999976, -0.999976, -0.999976, -0.999976]x =[ -0.99999, -0.999991, -0.999992, -0.999993]x =塞德尔迭代算法的收敛速度要比雅可比迭代算法的收敛速度快SOR 迭代实质上是高斯原理和基本方法相同。
如果选择合适的松弛因子,它能够加快收敛速度。
SOR 迭代算法更加普通,当选取一个合适的松弛因子后收敛速度明显加快。
迭代算法将前一步的结果[ -0.99999, -0.999991, -0.999992, -0.999993]x =[ -0.999992, -0.999993, -0.999994, -0.999995]x =[ -0.999993, -0.999994, -0.999995, -0.999995]x =[ -0.999992, -0.999993, -0.999994, -0.999995]x =[ -0.999999, -1.0, -1.0, -1.0]x =[ -0.999999, -1.0, -1.0, -1.0]x =因为为了保证迭代过程收敛,松弛因子1.3左右。
数值分析第五版_李庆扬数值分析第五版_李庆扬一、课程基本信息课程中文名称:数值分析课程英文名称:Numerical Analysis课程类别:专业基础课开课学期:秋适用专业:信息与计算科学;应用数学总学时:86学时(其中理论课56学时,上机实习30学时)总学分:5(理论课3学分;上机实习2学分)预修课程(编号):数学分析,高等代数,常微分方程课程简介:本课程是大学本科信息与计算科学和应用数学专业的一门基础课,也是工科研究生的必修课。
本课程的主要内容是研究各种数学问题的数值计算方法的设计、计算误差分析以及有关理论和具体实现的一门数学课程。
是应用数学的重要分支之一。
建议教材:《计算方法》(二版)(邓建中、刘之行),西安,西安交通大学出版社,2001 参考书:[1]数值分析学习指导,关治编,出版社:清华大学出版社,出版时间:2008年;[2]数值分析,何汉林,梅家斌,科学出版社,2007年;[3]《数值计算引论》白峰杉高等教育出版社 2005年[4]《数值分析》(第五版)李庆扬易大义等清华大学出版社2008年[5]Numerical Analysis,R.Kress,世界图书出版公司20036、数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社,2001年。
二、理论课程教育目标通过本课程的教学使学生能了解现代科学计算中常用的数值计算方法及其基本理论,系统掌握数值分析的基本概念和分析问题、解决问题的基本方法,为运用数值分析的理论知识并为掌握更复杂的现代计算方法打好。
三、理论教学内容与要求(含学时)第一章:计算方法的一般概念(4学时)本章教学内容:理解计算方法的意义、研究内容与方法,理解并掌握误差的概念(包括误差的来源、绝对误差、相对误差),掌握有效数字及舍入误差对计算的影响。
第二章:解线性方程组的直接法(8学时)本章教学内容:1、高斯消去法;选主元的高斯消去法;2、矩阵的LR分解;解三对角方程组的追赶法;解方程组的平方根法;矩阵的求逆;3、方程组的数;病态方程组的判断。