当前位置:文档之家› 功率因数要求及适用范围

功率因数要求及适用范围

功率因数要求及适用范围
功率因数要求及适用范围

按规定月平均功率因数不得低于0.9,低于0.9则按规定的百分数与用户的总电费相乘来增加电费,功率因数越低,增收的百分数越大;高于0.9 则按规定百分数减收用户电费,但减收的百分数比增收的百分数相应要小,当功率因数在0.95?1时,减收的百分数一直为?0.75%,而不再提高了。因此用户的月平均功率因数一般控制在0.9?0.95左右比较适宜,最好不要大于0.95,一方面0.95以上奖励百分数不变,而补偿电容的增加会使用电增加;另一方面要考虑当负荷突变下降时,会造成无功倒送的可能,因为无功电表对正向或反向的无功电量都是累计计量的,因此反而会降低用户的功率因数。三相电机功率因数的范围是08-0.9,单相电机功率因数很低,在0.5以下的功率因数的范围

(1)功率因数0.90标准值适用于:

1)160 kVA以上的高压供电工业客户(包括社队工业客户)。

2)装有带负荷调整电压装置的高压供电电力客户。

3)3200 KVA及以上的高压供电电力排灌站。特别注意点:160 kV?A高压供电工业客户的功率因数标准值为0.85,而不是0.90。

(2)功率因数0.85标准值适用于:

1)100 kV?A(kW)及以上的其他工业客户(包括社队工业客户)。

2)100 kV?A(kW)及以上的非工业客户。

3)100 kV?A(kW)及以上的电力排灌站。

(3)功率因数标准0.80,适用于:

1)100 kV?A(kW)及以上的农业户和趸售客户,但大工业客户未划由电业直接管理的趸售客户功率因数标准应为0.85。。

电机功率因数

什么是电机的功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。 cosφ——功率因数; P——有功功率,kW; Q——无功功率,kVar; S——视在功率,kV。A; U——用电设备的额定电压,V; I——用电设备的运行电流,A。 功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。 (1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。 (2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。 (3)加权平均功率因数:是指在一定时间段内功率因数的平均值. 提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作。 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分利用供电设备和线路的容量,减小设备、线路中的损耗,电机的有效功率会提高。 1) 提高用电质量,改善设备运行条件,可保证设备在正常条件下工作,这就有利于安全生产。 2) 可节约电能,降低生产成本,减少企业的电费开支。例如:当cos?=0.5时的损耗是cos?=1时的4倍。 3) 能提高企业用电设备的利用率,充分发挥企业的设备潜力。 4) 可减少线路的功率损失,提高电网输电效率。 5) 因发电机的发电容量的限定,故提高cos?也就使发电机能多出有功功率。 在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。 在现今可用资源接近匮乏的情况下,除了尽快开发新能源外,更好利用现有资源是我们解决燃眉之急的唯一办法。而对于目前人类所大量使用和无比依赖的电能使用,功率因数将是重中之重。 高功率因数,可提高电机设备出力。 对于3相电动机:P=√3UIcosφ所以功率因素从0.8提高到0.9,出力提高0.1UI√3其它:感应电动机的功率因数有两种,即自然功率因数和总功率因数。自然功率因数就是设备本身固有的功率因数,其值决定

功率因数PF与效率区别

功率因数PF=输入有用功功率S/输入总功率P(视在功率) 转换效率=输出额定功率(Pout)/ 输入有用功功率S×100% 有功功率=电源自身损耗(热量,机械能等)+输出功率 视在功率:即交流电压和交流电流的乘积,用公式表示为:S=UI。 也为有功功率+无功功率 P是有功功率,单位是W(瓦) Q为无功功率,单位是VAR(乏) S视在功率,单位是VA F=COSθ 被称为功率因数,PFs 上式中,S是额定输出功率,单位是VA(伏安),U是额定输出电压,单位是V,如220V、380V等;I是额定输出电流,单位是A。视在功率包括两部分:有功功率(P)和无功功率(Q),有功功率是指直接做功的部分。比如使灯发亮,使电机转动,使电子电路工作等。因为这个功率做功后都变成了热量,可以直接被人们感觉到,所以有些人就产生一个错觉,即把有功功率当成了视在功率,孰不知有功功率只是视在功率的一部分,用式表示:P=SCOS0θ=UICOSθ =UI·F 上式中,P是有功功率,单位是W(瓦),F=COSθ 被称为功率因数,而θ是在非线性负载时电压电流不同相时的相位差。无功功率是储藏在电路中但不直接做功的那部分功率,用式表示:Q=Ssinθ=UIsinθ。上式中,Q为无功功率,单位是var(乏)。 对于计算机和其它一切靠直流电压工作的电子电路,离开无功功率是根本无法工作的。 假如有一台计算机,当交流市电输入后进行整流,就得到脉动直流电压,若不将脉动电压进行任何工,就直接提供给计算机电路,毫无疑问,电路根本无法正常工作。虽然这时计算机的功率因数接近于1,可这又有何用呢。为了让计算机电路能正常工作,必须向其提供平滑了的直流电压。这个“平滑”工作必须由接在计算机电源整流器后面的滤波电容器C来完成。这个滤波器就像一个水库,电容器里面必须储存足够数量的电荷,在整流半波之间的空白时,使电路上的工作电压仍不间断,能保持正常电平。换句话说,即使在两个脉动半波之间无输入电能时,UC的电压电平也无显著的变化,这个功能是靠电容器内的储能来实现的,储存在电容器内的这部分能量就是无功功率。所以说,计算机是靠无功功率的支持,才能保证电路正确运用有功功率实现正常运行的 希望对你有帮助。 Chroma8000所测的效率计算疑问? Uac=264V

功率因素

功率因数(Power Factor是衡量电气设备效率高低的一个系数。它的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感性负载的电路功率因数都小于1。功率因数低,说明无功功率大,从而降低了设备的利用率,增加了线路供电损失。 关于功率因数的讨论网上也有不少文章,但很多人仍然对一些概念存有误解,这将为系统的设计带来诸多危害,有必要在此再加以澄清。 一、功率因数的由来和含义 在电气领域的负载有三个基本品种:电阻、电容和电感。电阻是消耗功率的器件,电容和电感是储存功率的器件。日常所用的交流电在纯电阻负载上的电压和电流是同相位的,即相位差q = 0°,如图1(a)所示;交流电在纯电容负载上的电压和电流关系是电流超前电压90°(q =90°),如图1(b)所示;交流电在纯电感负载上的电压和电流关系是电流滞后电压90°(q = -90°),如图1(c)所示。

图1 不同性质负载上的电流电压关系 功率因数的定义是: (1) 在电阻负载上的有功功率就是视在功率,即二者相等,所以功率因数F=1。而在纯电容和纯电感负载上的电流和电压相位差90°,所以所以功率因数F=cosq = cos90°=0,即在纯电容和纯电感负载上的有功功率为零。 从这里可以看出一个问题,同样是一个电源,对于不同性质的负载其输出的功率的大小和性质也不同,因此可以说负载的性质决定着电源的输出。换言之,电源的输出不取决于电源的本身,就像一座水塔的供水水流取决于水龙头的开启程度。 从上面的讨论可以看出,功率因数是表征负载性质和大小的一个参数。而且一般说一个负载只有一种性质,就像一个人只有一个身份证号码一样。这种性质的确定是从负载的输入端看进去,称为负载的输入功率因数。一个负载电路完成了,它的输入功率因数也就定了。

功率因数补偿方法及LED照明与功率因数的关系

功率因数补偿方法及LED照明与功率因数的关系 LED = Light Emitting Diode,发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光;LED = Large Electronic Display,大型电子展示;LED = Lupus erythematosus disseminatus,播散性红斑狼疮,一种慢性、特发性自身免疫病;led是lead的过去式和过去分词,意为“领导,带领”;俄罗斯Pulkovo机场的IATA 代码。 交流电流过负载时,加在该负载上的交流电压与通过该负载的交流电流产生相位差,人们便从中引出功率因数这一概念。人们生产、生活用电来自电网,电网提供频率为50Hz或60Hz的交流电。作为交流电的负载有电阻、电感、电容三种类型: 1、当交流电通过纯电阻负载时,加在该电阻上的交流电压与通过该电阻的交流电流是同相位的,即它们之间的相位夹角ф= 0°,同时在电阻负载上消耗有功功率,电网要供出能量。 2、当交流电通过纯电感负载时,其上的交流电压的相位超前交流电流相位90°,它们之间的夹角ф= 90°,在电感负载上产生无功功率,电网供给的电能在电感中变为磁场能短暂储存后又回馈到电网变为电能,如此周期性循环,结果电网并不供出能量,故谓“无功功率”,但产生“无功功率”的“无功电流”还是实际存在的。 3、当交流电通过纯电容负载时,亦类似于此,只不过其上的交流电压的相位滞后交流电流相位90°,它们之间的夹角ф= - 90°。 这里,定义相位角度超前为正,相位角度滞后为负。实际负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学式即是:阻抗Z= R+j (XL –XC、。交流电通过感性负载时,交流电压的相位超前交流电流相位(0°电路里的感性元件的感抗值正好等于容性元件的容抗值则可以完全补偿,功率因数补偿的办法就源于此。交流电通过阻抗负载时,产生的总功率S称“视在功率”,视在功率S包括有功功率P和无功功率Q两个分量。其中有功功率P = S*Cosф,无功功率Q = S*Sinф。只有当功率因数Cos

功率因素和供电效率关系

功率因素和供电效率的关系 【摘要】在供电过程中,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约电能和整个供电区域的供电质量。文章介绍影响电网功率因数的主要因素以及低压无功补偿的几种实用方法。【关键词】功率因数;节约电能;供电质量 the relationship between power factor and supply efficiency taizhou motor vehicle inspection center yu shui abstract:druing the process of power supply , power factors are related to the power loss and electric energy loss from the power network , related to loss of voltage and voltage pulsation of charging line and related to the quality of power . this passage tells us the main factors and several practical methods of low tension . key words : power factors , save power , quality of supply 功率因数是指电力网中线路的视在功率供给有功功率的消耗所 占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线

功率因数和效率的区别

功率因数与效率的区别 尽管功率因数和转换效率都是指电源的利用率, 但区别却很大。功率因素是输入视在功率与输入有功功率之比,与效率无关的,功率因数越大表示无功量就小;它是电源对电网的利用率。电源效率是输入有功功率与输出有功功率之比,效率越高表示机电的损耗就小;它指的是转换效率,就是你这个LED灯泡是5W,但是你把这整个灯接上就不是5W,电源本身也要耗电,这个效率就是多少点是真正让灯泡用了,多少是无用的。当然效率越高越好。简单的说,功率因数产生的损耗是电力部门负担,而转换效率的损耗是用户自己负担。一般来讲,功率因数与本设备的效率并没有必然的、直接的联系,但是,功率因数低了的话,会大量占用供电设备的容量,增加电路损耗,提高供电成本。比如,同样是1KW的电器,如果功率因数是0.9,那么占用供电系统的容量 1/0.9=1.1KvA,如果功率因数是0.5,那么占用供电系统的容量是1/0.5=2KVA。因为后者的线路电流较前者大了近一倍,所以线路损耗增加了近三倍。所以使用高功率因数设备的意义在于节约供电设备容量和减少线路损耗。效率,通俗地说就是吃了多少饭,干了多少活。比如一个电源,测得输入的功率是220W,又测得输出各路电压的总功率是190W,那么其效率190/220=86.4%。其效率还是很高的。如果换用一个低效率的电源,由于无论使用什么电源,电脑的实际需要是一定的,仍是190W,但这时测得输入的功率是280W,那么这个电源的效率是190/280=67.9%。很显然,两个效率不同的电源,电脑的工作都是一样的,不同的是,后一个电源比前一个电源多耗电280-220=60W。多了这60W,全部转化为热能,由风扇排出了。如果你有测温的工具,可以明显测出这两个电源工作温度和排出空气的温度是明显不同的。使用高效率的电源,对用户而言,可以节省电费,对供电企业,意义是节省供电设备的容量,减少供电设备的压力电源测量仪是各种生产或测量各种低压电源(常见的是开关电源,灯具电源、等等)的通用仪表,可以测各种参数,包括功率因数、输出电压、输出电流、电源效率、纹波、视在功率、有功功率、无功功率,等等。LED常常是用低压直流工作,所以它有一个电源,用来将交流变成低压直流,称为:“驱动器”,或“电源”。电源效率:是衡量输入电源的交流有功功率,有多少转化为直流功率了(有发热损耗等等)。发光效率:是指电能(或功率)转换成光能的转换效率,用lm/瓦来衡量,就是说同样的电能,

提高功率因数的意义和方法

提高功率因数的意义和方法

提高功率因数的意义和方法 1.功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据,功率因数是衡量电气设备效率高低的一个系数, 功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。 电能占企业成本的5%~30%,有些企业占得更高。因此如何提高电能的利用率和使用效率,保证电能质量,是企业节能提效的重要手段。绝大多数企业是用电动机作为机械的原动机,而电动机是感性负载,功率因数并不高,因此企业的能源消耗中无功能源消耗占了很大成份。尽可能的减少无功能量的消耗,是企业节能的头等大事。对于企业而言,供电损耗主要是电动机损耗、低压线路损耗、高压线路损耗和变压器损耗。安装无功补偿装置后功率因数提高,线路电流会下降,这样线路损耗降低,变压器的有功损失也会降低。电动机损耗(即效率)是电动机本身固有的,目前Y系列的电动机的效率一般都在85%~95%。但电动机的功率因数将影响整个电网的效率。用电系统装设无功补偿设备,提高功率因数,对于企业的降损节电、用电系统的安全可靠运行具有极为重要的意义 2.影响功率因数的主要因素 异步电动机和电力变压器。异步电动机所耗用的无功功率是由其空载时的无 功功率和一定负载下无功功率增加值两部分所组成,改善异步电动机的功率因 数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成 份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企 业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 供电电压。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将 增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功 将增加35%左右,当供电电压低于额定值时,无功功率也相应减少而使它们的功 率因数有所提高。但供电电压降低会影响电气设备的正常工作。 3.提高功率因数的意义 ⑴提高功率因数可以提高设备的利用率 由于有功功率:P=UI COSφ,当U和I为定值时,P∞COSφ,这就是说在电源 提供同样的视在功率UI情况下,有功功率P与功率因数COSφ的大小成正比。 我们知道,电源设备的容量都是根据额定电压UN和额定电流IN确定的,因 此其额定视在功率为SN=UN IN。它表示该设备允许输出的最大有功功率,换句话 说,假如负载COSφ=1,P=UN IN COSφ=UN IN=SN,此时电源的容量全部转换成有

功率因数计算公式及提高功率因数的方法

功率因数计算公式功率因数统计计算公式 视在功率S 有功功率P 无功功率Q 功率因数cos@(符号打不出来用@代替一下) 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方而功率因数cos@=有功功率P/视在功率S 功率因数统计计算公式 可分为提高自然功率因数和采用人工补尝两种方法: 提高自然因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。

5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回等。 人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。一下为理论解释: 在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。 在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90o,而纯电容的电流则超前于电压90o,电容中的电流与电感中的电流相差180o,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,如图1所示,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。 并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。 2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。 优点是电容器利用率较高且补尝效果也较理想(比较折中)。 3.集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母

功率因素的滞后与超前

功率因素表显示的超前与滞后,反映了线路中电压电流的相位关系。滞后,是常见的情况,表示电流的相位滞后于电压的相位,说明线路是感性的,以发电机类的负载为主。超前,是少见的情况,表示电流相位超前电压相位,说明线路呈现容性,负载中电容过大,一般出现在电容补偿补过头了。正常的负载少见容性的。功率因素超前,通常会使电网出现不稳定现象,容易产生震荡,造成电网故障,故要尽量不免出现超前。如果线路中没有容性负载,功率因素显示超前,通常是表计的接线有问题,否则就是表计坏了。 也可以简单地这样说,功率因数表显示超前,是本电气系统向供电电网输送无功电流;功率因数表显示滞后,是本电气系统从供电电网吸入无功电流。 同步发电机的功率因数 一·增加它的励磁电流,电动势E0就增大,同步发电机就会在过励状态下运行。这时,同步发电机定子电流越前端电压(即为电容性),反电势-E0比较大,发电机从电网吸取容性电流和容性无功功率,或者说向电网发出感性电流和感性无功功率。正好补偿了附近电感性负载的余姚,使整个电网的功率因数得到了提高。 二·减小同步发电机的励磁电流,-E0就减小,同步发电机就在欠励状态下运行。这时同步发电机从电网吸收感性电流,对电网来说,就是增加了电感性负载,使负载需要的感性无功电流增加,降低了整个电网的功率因数。 因此同步发电机一般不在欠励状态下运行,是按照过励的运行条件设计的。 同步发电机的励磁电流不能过分加大,因为励磁电流太大会引起定子电流增大,定子和转子损耗都要增加,使电机的温升增加。 同步发电机接入电网后。电网电压和频率是一定的,同步发电机从电网吸收的有功功率的大小由它所带动的负载大小决定的。如果负载不变,调节发电机的励磁电流,就会使定子电流也发生变化。 同步发电机的功率因数是由励磁电流决定的。

功率因数的提高及其效果

功率因数的提高及其效果 在供电过程中,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约电能和整个供电区域的供电质量。对广大厂矿企业来说,功率因数的高低是关系到电能质量和电网安全、经济运行的一个重要问题,应予以充分重视。本文集中讨论了影响电力系统功率因数的几个重要因素,提出了相应的解决措施,并结合我矿的实际情况,对利用并联移相电容提高电网的功率因数进行了探讨。 在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力,减少线路损失,改善电压质量,而且可以提高用户用电设备的工作效率。若能有效地搞好补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。 一、影响功率因数的主要因素 首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

(一)异步电动机和电力变压器是耗用无功功率的主要设备 我矿绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。因此,在选择异步电动机时,既要注意它们的机械性能,又要考虑它们的电气指标,合理选择异步电动机的型号、规格和容量,使其处于经济运行状态,若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故而从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。其次,要提高异步电动机的检修质量,因为异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。 电力变压器的无功功率消耗,是由于变压器的变压过程是由电磁感应来完成的,是由无功功率建立和维持磁场进行能量转换的。没有无功功率,变压器就无法变压和输送电能。变压器消耗无功的主要成分是它的空载无功功率,提高变压器的功率因数就必须降低变压器的无功损耗,避免变压器空载运行或长期处于低负载运行状态。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 (二)供电电压超出规定范围也会对功率因数造成很大的影响

怎样提高功率因数

关于提高功率因数的研究 1、什么叫功率因数? 有功功率和视在功率的比叫功率因数。 2、提高功率因数的意义。 提高功率因数非常重要:①可减少有功损失;②减少电力线路的电压损失,改善电压质量;③可提高设备利用率;④可减少输送同容量有功的电流,因而可使线路及变电设备的容量降低。 3、提高功率因数的方法? 提高功率因数的方法有:①提高自然功率因数,包括合理选择电器设备.避免变压器轻载运行,合理安排工艺流程,改善机电设备的运行状况;②通过人工补偿提高功率因数、最常用的是并联电容器补偿。并不是经补偿后的功率因数越高越好,因为补偿装置消耗有功发出无功,随着补偿容量的增加,其有功损耗也增加,初投资增大。就经济运行角度而言,补偿后的功率因数过高或过低均会使总功率损耗增加;若补偿功率因数恰当,能使总有功损耗最小,此时的补偿容量及功率因数称为按经济运行原则确定的补偿容量及功率因数。 并联移相电容提高功率因数 由于我公司实际生产工艺中没有使用同步电机,所以我们采用并联移相电容器的方式进行功率因数补偿。 (一)、补偿方式的选择: 根据移相电容器在工厂供电系统中的装设位置,①、有高压集中补偿、②、低压成组补偿和③、低压分散补偿三种方式。 高压集中补偿是将高压移相电容器集中装设在变配电所的10KV母线上,这种补偿方式只能补偿10KV 母线前(电源方向)所有线路上的无功功率。 低压分散补偿,又称个别补偿,是将移相电容器分散地装设在各个车间或用电设备的附近。这种补偿方式能够补偿安装部位前的所有高低压线路和变电所主变压器的无功功率,因此它的补偿范围最大,效果也较好。但是这种补偿方式总的设备投资较大,且电容器在用电设备停止工作时,它也一并被切除,所以利用率不高。现有我厂没有采用。 低压成组补偿是将移相电容器装设在车间变电所的低压母线上,这种补偿方式能补偿车间变电所低压母线前的车间变电所主变压器和厂内高压配电线及前面电力系统的无功功率,其补偿范围较大。由于这种补偿能使变压器的视在功率减小从而使变压器容量选得小一些,比较经济,而且它安装在变电所低压配电室内,运行维护方便。同时由于我厂存在谐波源,车间变压器的存在,也起到了隔离和衰减谐波的作用。有利于低压移相电容器的安全稳定运行。 4、影响我厂功率因数的主要原因及对策: 一、异步电动机对功率因数的影响 我厂绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动

电动机的效率 功率因数及其影响因素

电动机的效率、功率因数及其影响因素一、什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cos ψ来表示。cosψ=P/S 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 二、什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。

三、什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为η 1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ) 其中,P—是电动机轴输出功率 U—是电动机电源输入的线电压 I—是电动机电源输入的线电流 COSφ—是电动机的功率因数 2、电动机的输出功率:指的是电动机轴输出的机械功率 3、电动机的输入功率:指的是电源给电动机输入的有功功率: P=√3*U*I*COSφ(KW) 其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高, 影响电动机功率的因素 电动机的损耗包含各种形式,有与负载电流大小基本无关的铁损、由励磁电流产生的定子铜损以及机械损耗,还有与负载电流大小有关的定、转子铜损、杂散损耗等。即使在电动机空载情况下,电动

什么是功率因数

无功功率和功率因数 无功功率 在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。 有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。为了形象地说明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢? 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 无功功率对供、用电产生一定的不良影响,主要表现在: (1)降低发电机有功功率的输出。 (2)降低输、变电设备的供电能力。 (3)造成线路电压损失增大和电能损耗的增加。 (4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。 从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是电网需要装设无功补偿装置的道理。 2功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性

提高功率因数的意义和方法分析

提高功率因数的意义和方法 1.功率因数 在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据,功率因数是衡量电气设备效率高低的一个系数, 功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。 电能占企业成本的5%~30%,有些企业占得更高。因此如何提高电能的利用率和使用效率,保证电能质量,是企业节能提效的重要手段。绝大多数企业是用电动机作为机械的原动机,而电动机是感性负载,功率因数并不高,因此企业的能源消耗中无功能源消耗占了很大成份。尽可能的减少无功能量的消耗,是企业节能的头等大事。对于企业而言,供电损耗主要是电动机损耗、低压线路损耗、高压线路损耗和变压器损耗。安装无功补偿装置后功率因数提高,线路电流会下降,这样线路损耗降低,变压器的有功损失也会降低。电动机损耗(即效率)是电动机本身固有的,目前Y系列的电动机的效率一般都在85%~95%。但电动机的功率因数将影响整个电网的效率。用电系统装设无功补偿设备,提高功率因数,对于企业的降损节电、用电系统的安全可靠运行具有极为重要的意义 2.影响功率因数的主要因素 异步电动机和电力变压器。异步电动机所耗用的无功功率是由其空载时的无功 功率和一定负载下无功功率增加值两部分所组成,改善异步电动机的功率因数就 要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它 的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率 因数,变压器不应空载运行或长其处于低负载运行状态。 供电电压。当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将 增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功 将增加35%左右,当供电电压低于额定值时,无功功率也相应减少而使它们的功 率因数有所提高。但供电电压降低会影响电气设备的正常工作。 3.提高功率因数的意义 ⑴提高功率因数可以提高设备的利用率 由于有功功率:P=UI COSφ,当U和I为定值时,P∞COSφ,这就是说在电源 提供同样的视在功率UI情况下,有功功率P与功率因数COSφ的大小成正比。 我们知道,电源设备的容量都是根据额定电压UN和额定电流IN确定的,因此 其额定视在功率为SN=UN IN。它表示该设备允许输出的最大有功功率,换句话说, 假如负载COSφ=1,P=UN IN COSφ=UN IN=SN,此时电源的容量全部转换成有功功 率,因而电源设备得到充分利用。如果COSφ< 1则电源能提供的功率为P=UN IN

功率因数和转换效率的区别

功率因数和转换效率的区别 经常看到市场上有的电源宣称自己的转换效率高达99%,事实真的如此吗?主动PFC和被动PFC何差? 功率因数和转换效率分别是什么意思? 功率因数损失的电费谁为你来承担? 转换效率损失的电费又是谁为你来承担? 功率因数又叫PFC因数,大功率电源中一般都有PFC电路,市电是交流电,如果不整流成直流电,电脑是无法使用的,而功率因数就是将交流电整流成直流电的能力,这个过程是通过PFC 电路来实现的PFC电路分为主动式PFC(有源)和被动式PFC(无源)两种, 主动式PFC电路由高频电感、开关管和电容等元件构成,组成一个可以将输入电压提高的电路,从而减少电流在流向下级电路过程中的电能损耗。简单地说,主动式PFC电路就是一个升压器,具有体积小、重量轻、输入电压范围宽等优越的电气性能,通常它功率因数可达99%;被动式PFC结构相对简单,它利用电感线圈内部电流不能突变的原理调节电路中的电压及电流的相位差,使电流趋向于正弦化以提高功率因素。相对于主动式PFC电路,被动式PFC电路的功率因数要低得多,一般只有70-80%左右,同时被动PFC结构上和电感类似,在对电流和电压补偿的过程中,始终进行着充放电的过程,因而产生了磁性,最终会和周边的金属元件产生震动进而发出噪音。静音型PFC相当于两个非静音型PFC的叠加,达到震动互相抵消的目的。但是,在消除噪音的手段中,安装是否得当也是对静音效果影响较大的因素。在我们了解上述两种PFC结构后,那么我们在上面提到的

PFC因数究竟是什么呢? 其实电源的PFC因数表示的就是有多少电能被电源利用了(输入电源的实际能量/电网供给电源的能量) 对于主动式PFC电路来讲,功率因数可以达到99%的水平,而被动式PFC 电路只能达到上面所说的70-80%而已。通俗的说假如一款标称400W 的电源,电源需要输入200W电量时,如果它采用了主动式PFC电路,那么电网只需要拉202W(200/0.99)电力过来,几乎没有损失,而如果采用的是被动式PFC电路,那么电网需要拉250W(200/0.8)左右,损失了50W,也就是说PFC因数是影响一款电源的电能利用率的指标,但损失那50W我们用户是不需要付钱的,因为那归属于是电力局线路上损失,电力局是没有权力向你要钱的。电源转换效率:这个概念比PFC因数要复杂一些,电源本身是一个“供电器”,同时它又是一个“耗电器”。输入电源的能量并不能100%转化为供主机内各部件使用的有效能量,未被利用的电能转化为热量散发,这样就出现了一个转换效率的问题。我们可以用这个公式来解释电源转换效率:电源转换效率=电源为主机提供的即时输出功率/输入电源的即时功率×100%,一款电源的转换效率会由于其内在的变压电路、电流转换器以及功能电路都会有所不同,再加上自身的功率本来就不相同,所以不同的电源产品其电源的实际转换效率也会不同。另外,即使是同一款电源产品,在不同的工作状态下,其转换效率也是有变化的。由于电源的输入电压是额定的220V,而输出电压则有+12V、+5V、+3.3V不同的规范,这就表示电源里至少拥有三种不同的变压器,由于三种变压器的功耗不尽相同,就意味着+12V、+5V和+3.3V的电压输出其各自所对应的

提高功率因数的几种方法

提高功率因数的几种方法 提高功率因数的几种方法可分为提高自然功率因数和采用人工补尝两种方法: 一、提高自然功率因数的方法: 1). 恰当选择电动机容量,减少电动机无功消耗,防止“大马拉小车”。 2). 对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改 为三角形接法(或自动转换)。 3). 避免电机或设备空载运行。 4). 合理配置变压器,恰当地选择其容量。 5). 调整生产班次,均衡用电负荷,提高用电负荷率。 6). 改善配电线路布局,避免曲折迂回现象等。 二、人工补偿法: 实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载与电源之间原有的能量交换。在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90o,而纯电容的电流则超前于电压90o,电容中的电流与电感中的电流相差 180o,能相互抵消。 电力系统中的负载大部分是感性的,因此总电流将滞后电压一个角度,将并联电容器与负载并联,则电容器的电流将抵消一部分电感电流,从而使总电流减小,功率因数将提高。

并联电容器的补偿方法又可分为: 1.个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。 适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。2.分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。优点是电容器利用率较高且补尝效果也较理想(比较集中)。 3.集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母线上。在实际中会将电容器接在变电所的高压或低压母线上,电容器组的容量按配电所的总无功负荷来选择。 优点:是电容器利用率高,能减少电网和用户变压器及供电线路的无功负荷。缺点:不能减少用户内部配电网络的无功负荷。实际中上述方法可同时使用。对较大容量机组进行就地无功补尝。

电机效率与功率因数

什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cosψ来表示。 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。 什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为,常用百分数表示,即: 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高,运行最经济。

安装负荷需要系数功率因数计算负荷的关系还有变压器的容量是根据哪个量估算的

安装负荷需要系数功率因数计算负荷的关系还有变压器的容量是根据哪个量估算的 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

安装负荷、需要系数、功率因数、计算负荷的关系,还有变压器的容量是根据哪个量估算的 1、安装容量:系统中所有安装用电设备的标称功率之和,P 2、需用系数:系统中有多个用电设备,同类设备同时满载运行的几率小于1,这个系数成为需用系数,K 3、功率因数:电感性负载引入的参数,cosφ 4、计算负荷:综合以上所有参数,计算出系统需要提供的实际运行电流,Ijs 关系:Ijs=KP/3/220/cosφ这里按380/3相(相电压220V)电源计算 变压器容量选择,按计算负荷Pjs=KP选择,并应使变压器经常处于70~80%负载率状态 (实际选取变压器需考虑更多的因素,仅供参考) 求计算负荷的时候不用乘以同时系数吗 通常民建计算用电K,实际上可以理解为综合了Kx(需用系数)和Kc(同时系数) 工业用电中涉及大功率设备,且设备运行负载率有较大差异,或许才要分别对待 (我见到的民建设计只用Kx) 电容补偿就是无功补偿或者功率因数补偿。电力系统的用电设备在使用时会产生无功功率,而且通常是电感性的,它会使电源的容量使用效率降低,而通过在系统中适当地增加电容的方式就可以得以改善。电力电容补偿也称功率因数补偿!(电压补偿,电流补偿,相位补偿的综合). 工业与民用配电设计手册(第三版)第3页起详细介绍了需求系数。 什么是有功功率、无功功率、视在功率、功率三角形及三相电路的功率如何计算

什么是有功功率、无功功率、视在功率及功率三角形 三相电路的功率如何计算 一、有功功率 在交流电路中,凡是消耗在电阻元件上、功率不可逆转换的那部分功率(如转变为热能、光能或机械能)称为有功功率,简称 “有功”,用“P”表示,单位是瓦(W)或千瓦(KW)。 它反映了交流电源在电阻元件上做功的能力大小,或单位时间内转变为其它能量形式的电能数值。实际上它是交流电在一个周期内瞬时转变为其他能量形式的电能数值。实际上它是交流电在一个周期内瞬时功率的平均值,故又称平均功率。它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有效值的乘积。 二、无功功率 在交流电路中,凡是具有电感性或电容性的元件,在通过后便会建立起电感线圈的磁场或电容器极板间的电场。因此,在交流电每个周期内的上半部分(瞬时功率为正值)时间内,它们将会从电源吸收能量用建立磁场或电场;而下半部分(瞬时功率为负值)的时间内,其建立的磁场或电场能量又返回电源。因此,在整个周期内这种功率的平均值等于零。就是说,电源的能量与磁场能量或电场能量在进行着可逆的能量转换,而并不消耗功率。 为了反映以上事实并加以表示,将电感或电容元件与交流电源往复交换的功率称之为无功功率。 简称“无功”,用“Q”表示。单位是乏(Var)或千乏(KVar)。 无功功率是交流电路中由于电抗性元件(指纯电感或纯电容)的存在,而进行可逆性转换的那部分电功率,它表达了交流电源能量与磁场或电场能量交换的最大速率。 实际工作中,凡是有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。如果没有无功功率,电动机和变压器就不能建立工作磁场。

相关主题
文本预览
相关文档 最新文档