2020年全国卷1函数与导数压轴题一题多解,深度解析
- 格式:docx
- 大小:259.73 KB
- 文档页数:12
2020全国1卷关键试题分析全国Ⅰ卷适用地区:广东、河南、河北、山西、江西、湖北、湖南、安徽、福建【解析】因为PM AB ⊥,所以1222PAM PM AB S PA ∆====,最小值即为M 到直线的距离,此时PM l ⊥,易得(1,0)P -,由切点弦结论选D.【解析】222222log 2log 2log 2a b b a b b +=+<+,由2()2log x f x x =+单增知2a b <,【点评】此题改编于2012浙江卷。
追溯:(2012浙江)设a >0,b >0.下列正确的是A .若2223a b a b +=+,则a b>B .若2223a b a b +=+,则a b <C .若2223a b a b -=-,则a b >D .若2223a b a b -=-,则a b<这属于独立多变量中构造相同结构类型。
参考《高观点下函数导数压轴题的系统性解读》。
【解析】还原三棱锥,根据同一个半平面内位置关系和长度一样,可得各边长,用余弦定理可得14-。
616(文科)数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1____a =,【解析】①当偶数时,231n n a a n ++=-,则246810121416()()()()517294192a a a a a a a a +++++++=+++=,②当21,1,2,,8n k k =-= 时,212164k k a a k +--=-,所以2121212123311()()()k k k k k a a a a a a a a ++---=-+-++-+ 26(12)43k k k k =+++-=- ,即22113k a k k a +=-+。
从而222131513(127)(127)8a a a a +++=+++-++++ 17(71)(271)3288540926a ⨯+⨯⨯+=⨯-+=-,即17a =。
2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。
1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。
2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。
1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。
3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。
1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。
4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。
1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。
5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。
1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。
6.已知函数 $f(x)=e^x-x^2-ax-1$。
1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。
7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。
1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。
导数与函数核心考点目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2.含有e x与lnx的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法题型一 切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f (x )=3x ²e x 在点(1,f (1))处的切线方程. 解:由f (x )=3x ²e x ,得f ′(x )=6x -3x ²e x ,切点为(1,3e ) ,斜率为f ′(1)=3e由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3e ;∴切线方程为y -3e =3e (x -1),即3x -ey =0.例2.求f (x )=e x (1x +2)在点(1,f (1))处的切线方程.解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x ²+1x +2)由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ;∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x1+x 在点(0,f (0))处的切线方程.解:由f (x )=ln1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -11+x由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0.例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x ²4与直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程.解:由题意得:a =x ²4,则x =±2a ,即M (-2a ,a ),N (2a ,a ),由f (x )=x ²4,得f ′(x )=x2,当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0;当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;解题模板一 求在某处的切线方程⑴写出f (x ); ⑵求出f ′(x );⑶写出切点(x 0,f (x 0)); ⑷切线斜率k =f ′(x 0);⑸切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.求过某点的切线方程Step 1 设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为: y -f (x 0)=f ′(x 0)(x -x 0)Step 2 因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2 Step 2 当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1) 当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)例1.求f (x )=13x 3+43过点P (2,4)的切线方程.解:设切点为(x 0,13x 03+43),则切线斜率f ′(x 0)=x 0²,所以切线方程为:y -13x 03+43=x 0² (x -x 0),由切线经过点P (2,4),可得4-13x 03+43=x 0² (2-x 0),整理得:x 03-3x 0²+4=0,解得x 0=-1或x 0=2当x 0=-1时,切线方程为:x -y +2=0; 当x 0=2时,切线方程为:4x -y -4=0. 例2.求f (x )=x 3-4x ²+5x -4过点 (2,-2)的切线方程. 解:设切点为(x 0,x 03-4x 0²+5x 0-4),则切线斜率f ′(x 0)=3x 0²-8x 0+5,所以切线方程为:y -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (x -x 0), 由切线经过点P (2,4),可得4-(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (2-x 0), 解得x 0=1或x 0=2当x 0=1时,切线方程为:2x +y -2=0; 当x 0=2时,切线方程为:x -y -4=0.例3.过A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,求m 的取值范围. 解:设切点为(x 0,x 03-3x 0),则切线斜率f ′(x 0)=3x 0²-3,切线方程为y -(x 03-3x 0)=(3x 0²-3)(x -x 0)∵切线经过点P (1,m ),点P 不在曲线上 点P 在曲线上 点P 在曲线上∴m-(x03-4x0²+5x0-4)=(3x0²-8x0+5) (1-x0),即:-2x03+3x0²-3-m=0,即m=-2x03+3x0²-3∵过点A(1,m)(m≠2)可作f(x)=x3-3x的三条切线,∴方程m=-2x03+3x0²-3,有三个不同的实数根.∴曲线H(x0)=-2x03+3x0²-3与直线y=m有三个不同交点,H′(x0)=-6x0²+6x0=-6x0(x0-1)令H′(x0)>0,则0<x0<1;令H′(x0)<0,则x0<0或x0>1∴H(x0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减,∴H(x0)的极小值=H(0)=-3,H(x0)的极大值=H(1)=-2,由题意得-3<x<-2.例4.由点(-e,e-2)可向曲线f(x)=lnx-x-1作几条切线,并说明理由.解:设切点为(x0,lnx0-x0-1),则切线斜率f′(x0)=1x0-1,切线方程为y-(lnx0-x0-1)=(1x0-1)(x-x0),∵切线经过点(-e,e-2),∴e-2-(lnx0-x0-1)=(1x0-1)(-e-x0),即lnx0=e x0∵y=lnx与y=ex只有一个交点∴方程lnx0=ex0有唯一的实数根∴由点(-e,e-2)可向曲线f(x)=lnx-x-1作一条切线.解题模板二求过某点的切线方程⑴设切点为(x0,f(x0)),则切线斜率f′(x0),切线方程为:y-f(x0)=f′(x0)(x-x0)⑵因为切线过点(a,b),所以b-f(x0)=f′(x0)(a-x0),解得x0=x1或x0=x2⑶当x0=x1时,切线方程为y-f(x1)=f′(x0)(x-x1)当x0=x2时,切线方程为y-f(x2)=f′(x0)(x-x2)3.已知切线方程求参数解题模板三已知切线方程求参数已知直线Ax+By+C=0与曲线y=f(x)相切⑴设切点横坐标为x0,则⎩⎪⎨⎪⎧切点纵坐标=切点纵坐标切线斜率=切线斜率即⎩⎪⎨⎪⎧f (x 0)=-Ax 0+CBf ′(x 0)=-A B⑵解方程组得x 0及参数的值.例1.函数f (x )=alnx x +1+bx 在(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.解:∵f (x )=alnx x +1+bx ,∴f ′(x )=a (x +1)x -alnx (x +1)²-b x ²由题意知:⎩⎪⎨⎪⎧f (1)=1f ′(1)=-12,即⎩⎪⎨⎪⎧b =1a 2-b =-12 ∴a =b =1例2.f (x )=ae x lnx +bex -1 x 在(1,f (1))处的切线方程为y =e (x -1)+2,求a ,b 的值.解:∵f (x )=ae x lnx +be x -1 x ,∴f ′(x )=ae x (1x +lnx )+be x -1(-1x ²+1x )由题意知:⎩⎪⎨⎪⎧f (1)=2f ′(1)=-e ,即⎩⎪⎨⎪⎧b =2ae =e∴a =1,b =2例3.若直线y =kx +b 是y =lnx +2的切线,也是y =ln (x +1)的切线,求b .解:设y =kx +b 与y =lnx +2相切的切点横坐标为x 1,y =kx +b 与y =ln (x +1)相切的切点横坐标为x 2,⎩⎪⎨⎪⎧lnx 1+2=kx 1+b ①1x 1=k ②ln (x 2+1)=kx 2+b ③1x 2+1=k ④,由②③得:x 1=x 2+1,由①-③得:lnx 1-ln (x 2+1)+2=k (x 1-x 2),将上式代入得:k =2∴x 1=12,代入①得:-ln 2+2=1+b∴b =1-ln 2.例4.若f (x )=x 与g (x )=a lnx 相交,且在交点处有共同的切线,求a 和该切线方程.解:设切点横坐标为x 0,则⎩⎪⎨⎪⎧x 0=alnx 0 ①12x 0=a x 0②,由②得x 0=2a ,代入①得:x0=e²,∴a=e2∵切点为(e²,e),切线斜率为12e,∴切线方程为x-2ey+e²=0.例5.已知函数f(x)=x3+ax+14,当a为何值时,x轴为曲线方程y=f(x)的切线.例6.已知函数f(x)=x²+ax+b和g(x)=e x(cx+d)都过点P(0,2)且在P处有相同切线y=4x+2,求a,b,c,d的值.题型二 单调型1.主导函数需“二次求导”型 I 不含参求单调区间例1.求函数f (x )=x (e x -1)-12x ²的单调区间.解:f (x )的定义域为Rf ′(x )=e x (1+x )-1-x =(x +1)(e x +1)令f ′(x )>0,得x <-1或x >0;令f ′(x )<0,得-1<x <0 f (x )的增区间为(-∞,-1)和(0,+∞),减区间为(-1,0)。
《函数与导数》知识点汇总一、选择题1.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-,故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.2.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.3.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.4.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.5.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.6.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x -'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x-'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=,故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.7.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.8.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.9.函数()2sin f x x x x =-的图象大致为( )A .B .C .D .【答案】A 【解析】【分析】分析函数()y f x =的奇偶性,并利用导数分析该函数在区间()0,+∞上的单调性,结合排除法可得出合适的选项. 【详解】因为()()()()()22sin sin f x x x x x x x f x -=----=-=,且定义域R 关于原点对称,所以函数()y f x =为偶函数,故排除B 项;()()2sin sin f x x x x x x x =-=-,设()sin g x x x =-,则()1cos 0g x x ='-≥恒成立,所以函数()y g x =单调递增,所以当0x >时,()()00g x g >=, 任取120x x >>,则()()120g x g x >>,所以,()()1122x g x x g x >,()()12f x f x ∴>,所以,函数()y f x =在()0,+∞上为增函数,故排除C 、D 选项. 故选:A. 【点睛】本题考查利用函数解析式选择图象,一般分析函数的定义域、奇偶性、单调性、函数零点以及函数值符号,结合排除法得出合适的选项,考查分析问题和解决问题的能力,属于中等题.10.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .【答案】B 【解析】 【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果.【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ; 故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.11.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.12.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.13.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -,则可得正六棱柱容器的容积为()())()3233921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -, 所以正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.14.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭. 故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.15.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.31.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.16.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =,据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.17.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =- B .75y x =- C .63=-y x D .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可. 【详解】由函数的解析式可得:()221ln '6xf x x x-=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.18.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A B .C .2D .【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---22()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b +-的最下值为22故答案选D考点:基本不等式.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( )A .(4][2,)-∞-+∞UB .[1,2]-C .[4,0)(0,2]-UD .[4,2]-【答案】D 【解析】 【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a的取值范围. 【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩,解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。
2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题一、单选题1.已知集合{1A y y ==+,{}30B x x =-≤,则A B =I ( )A .[]1,2B .[]1,3C .[]2,3D .()2,+∞【答案】B【解析】首先分别化简集合A ,B ,再求交集即可. 【详解】{{}11A y y y y ==+=≥,{}{}303B x x x x =-≤=≤,所以[]1,3A B ⋂=. 故选:B. 【点睛】本题主要考查集合的交集运算,同时考查了函数的值域,属于简单题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式,设复数cos sin33z i ππ=+,则3z 等于( )A .12- B .1- C .12-D .12-+ 【答案】B 【解析】根据欧拉公式得到3i z e π=,再计算3z 即可. 【详解】由题意得3cossin33iz i e πππ=+=,333()cos sin 1ii z e e i ππππ====-+.故选:B本题主要考查三角函数求值问题,同时复数的概念,属于简单题.3.月形是一种特殊的平面图形,指有相同的底,且在底的同一侧的两个弓形所围成的图形.月形中的一种特殊的情形是镰刀形,即由半圆和弓形所围成的图形(如下图),若半圆的半径与弓形所在圆的半径之比为1:2,现向半圆内随机取一点,则取到镰刀形中的一点的概率为()A.423 3π-B.2313π-C.3πD.31π-【答案】B【解析】首先设半圆半径为r,分别计算半圆的面积和弓形的面积,再代入几何概型公式计算即可.【详解】如图所示:设半圆半径为r,半圆面积为22rπ,221(2)3OO r r r=-=弓形面积为()2221122233623r r r r rππ⨯⨯-⨯=-,概率为2222232312332rr rrπππ-+=-.故选:B本题主要以数学文化为背景考查几何概型,同时考查学生的逻辑思维能力,属于中档题. 4.数列{}n a的前几项是:0、2、4、8、12、18、24、32、49、50⋅⋅⋅其规律是:偶数项是序号平方再除2;奇数项是序号平方减1再除2.如图所示的程序框图是为了得到该数列的前100项而设计的,那么在两个判断框中,可以先后填入()n≤?A.n是偶数?,100n≤?B.n是奇数?,100n<?C.n是偶数?,100n<?D.n是奇数?,100【答案】A【解析】模拟程序框图的运行过程,结合输出的条件,即可得到答案.【详解】根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“n是偶数?”;n=>结束,执行程序框图,当101100n≤?.所以第二个框应该填100故选:A【点睛】本题主要考查程序框图的应用问题,解题时应模拟程序框图的运行过程,属于简单题.5.已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈都有21n n S a =-,设2log n n b a =,则数列{}n b 的前6项之和为( ) A .11 B .16 C .10 D .15【答案】D 【解析】首先根据21n n S a =-得到12n n a -=,代入2log n n b a =,再计算数列{}n b 的前6项之和即可. 【详解】因为21n n S a =-,当1n =时,11121S a a =-=,所以11a =.当2n ≥时,1n n n a S S -=-,所以121(21)n n n a a a -=---,即12n n a a -=. 所以数列{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=,12log 21n n b n -==-,11(2)1n n b b n n --=---=,所以数列{}n b 是以0为首项,以1为公差的等差数列, 数列{}n b 的前6项之和为1656152b d ⨯+= 故选:D 【点睛】本题主要考查由n S 求通项公式n a ,同时考查了等差数列的求和,属于中档题. 6.声音中包含着正弦函数.音的四要素:音调、响度、音长和音色都与正弦函数的参数有关.我们平时听到的音乐不只是一个音在响,是由基音和许多个谐音的结合,其函数可以是()11sin sin 2sin 323f x x x x =++,则()f x 的图象可以是( ) A . B .C .D .【答案】D【解析】首先根据()f x 为奇函数,排除C ,根据42f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,排除B ,根据()11111=236f x <++,排除A ,排除法即可得到答案.【详解】因为()f x 的定义域为R ,1111()sin()sin(2)sin(3)sin sin 2sin 3()2323f x x x x x x x f x -=-+-+-=---=-,所以()f x 为奇函数,排除C .221432f π⎛⎫=+ ⎪⎝⎭,223f π⎛⎫= ⎪⎝⎭,故42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ; 因为()11111=236f x <++,而A 选项的()max 2f x =,排除A. 故选:D 【点睛】本题主要考查根据解析式判断函数的图象,同时考查了函数的奇偶性,特值法以及函数的最值,属于中档题.7.过双曲线M :()22210y x b b-=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且54OB OA OC =+u u u r u u u r u u u r,则双曲线的离心率是( ) A .10B .132C 13D .133【答案】B【解析】首先设出直线l 的方程为1y x =+,与渐近线方程联立得到1(,)11bB b b -++, 1(,)11bC b b --.根据54OB OA OC =+u u u r u u u r u u u r 得到32b =,再计算离心率即可.【详解】由题可知(1,0)A -,所以直线l 的方程为1y x =+. 因双曲线M 的两条渐近线方程为y bx =或y bx =-.由1y bx y x =-⎧⎨=+⎩,解得1(,)11b B b b -++;同理可得1(,)11bC b b --. 又()1,0OA =-u u u r ,1,11b OB b b ⎛⎫=- ⎪++⎝⎭u u u r ,1,11b OC b b ⎛⎫= ⎪--⎝⎭u u u r因为54OB OA OC =+u u u r u u u r u u u r, 所以511b b b b =+-,解得32b =,2c =,2e =.故选:B 【点睛】本题主要考查双曲线离心率的求法,根据题意解出b ,c 的值为解题的关键,属于中档题.8.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,()20192020xf f x ⎡=⎤⎣⎦-.若()2sin 6g x x mx π⎛⎫=++ ⎪⎝⎭在3,22ππ⎡⎤⎢⎥⎣⎦上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(],1-∞- B .[)1,-+∞ C .(],2-∞-D .[]2,1--【答案】B【解析】首先设()2019xt f x =-,得到()2019xf x t =+在R 上的增函数,从而得到()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.再利用导数转化为max [2cos()]6m x π≥-+,即可得到答案. 【详解】由于()f x 连续可导且无极值,故函数()f x 为单调函数, 可令()2019xt f x =-(t 为常数),使()2020f t =成立,故()2019xf x t =+,故()f x 为R 上的增函数.故()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.()2cos 06g x x m π⎛⎫'=++≥ ⎪⎝⎭在3,22x ππ⎡⎤∈⎢⎥⎣⎦上恒成立, 即max [2cos()]6m x π≥-+. 因为3,22x ππ⎡⎤∈⎢⎥⎣⎦所以513,636x πππ⎡⎤+∈⎢⎥⎣⎦,故61cos ,12x π⎛⎫⎡⎤∈ ⎪⎢⎝⎭⎣+⎥⎦,[]2cos 2,16x π⎛⎫-+∈-- ⎪⎝⎭, 所以1m ≥-. 故选:B 【点睛】本题主要考查三角函数的值域问题,同时考查了导数的单调区间和极值,属于中档题. 9.在平面四边形ABCD 中,AB BD ⊥,60BCD ∠=︒,223424AB BD +=,若将ABD △沿BD 折成直二面角A BD C --,则三棱锥A BDC -外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】D【解析】首先根据二面角A BD C --为直二面角得到AB ⊥平面BCD .再将三棱锥的外接球转化为直三棱柱的外接球即可得到表面积. 【详解】 如图所示:因为二面角A BD C --为直二面角,且AB BD ⊥, 所以AB ⊥平面BCD .将三棱锥A BDC -放入三棱柱中,如图所示:1O ,2O 为底面外接圆的圆心,12O O 的中点O 为三棱锥A BDC -外接球的球心.在BDC V 中,2sin 60BD r =o,所以3r =. 因为222222221111()3234R r OO BD AB BD AB =+=+=+ 又因为223424AB BD +=,所以2211234BD AB +=所以22R =,外接球表面积 248S R ππ==. 故选:D 【点睛】本题主要考查三棱锥外接球的表面积,同时考查了二面角,将三棱锥的外接球转化为直三棱柱的外接球为解题的关键,属于中档题.10.若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a <<【答案】A【解析】首先利用指数函数和幂函数的单调性得到b c <和a b >,再构造函数,利用导数得到函数的单调性得到a c <,即可得到答案. 【详解】因为3xy =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()xf x x=,21ln ()xf x x-'=,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数.则()(3)f f π<,即ln ln 33ππ<,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 【点睛】本题主要考查指数和幂的比较大小,利用导数得到函数的单调性来比较大小为解决本题的关键,属于中档题.11.已知F 为抛物线C :28y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AD EB ⋅u u u r u u u r的最小值为( ) A .60 B .62C .64D .66【答案】C【解析】首先设出()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y ,联立直线1l ,2l 和抛物线得到()212242k x x k++=,124x x=,()234412x x k +=+,344x x =.利用向量的减法化简AD EB ⋅u u u r u u u r得到FD FE FA F AD B B E ⋅+⋅=⋅u u u r u u u r ,再利用焦半径公式和基本不等式从而得到最小值. 【详解】 如图所示:设()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y , 直线1l 方程为()()20y k x k =-≠,则直线2l 方程为()12y x k=--, 联立()228y k x y x⎧=-⎨=⎩得()22224840k x k x k -++=,()212242k x x k++=,124x x=;同理()223424211412k x x k k ⎛⎫+ ⎪⎝⎭+==+,344x x =. ()()AD EB FD FA FB FE FD FE FA FB ⋅=-⋅-=-⋅-⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()()()()12342222FD FE FA FB x x x x +++++⋅=+⋅()()12341234822x x x x x x x x =++++++()()2222282161681232163264k k k k k +=+++=++≥+=. 当且仅当1k =±时,取“=”. 故选:C 【点睛】本题主要考查直线与抛物线的位置关系,同时考查了抛物线的焦半径公式和基本不等式,属于中档题.12.已知函数()f x ,()g x 定义域为R ,()()1f x g x +=.若()()()()()()(),, ,,f x f xg x F x g x f x g x ⎧≥⎪=⎨<⎪⎩且()()2222F x x a x a a R =-+∈,则关于x 的方程()()1f x g x -=有两解时,a 的取值范围为( )A.{}1122⎛⎫--⋃ ⎪ ⎪⎝⎭B.2⎡⎤-⎢⎥⎣⎦C.{}112⎛⎤-⋃ ⎥ ⎝⎦D .1,12⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题知()()()()()2f xg x f x g x F x ++-=,根据题意得到:()12F x ≥恒成立且()1F x =有两解.分别讨论0a <和0a >时的情况,根据图象即可得到a 的取值范围. 【详解】由题意知:()()()()()2f xg x f x g x F x ++-=,则()()()210f x g x F x -=-≥对任意的x ∈R 恒成立, 又()()1f x g x -=有两解, 则()12F x ≥恒成立且()1F x =有两解. ()222222()F x x a x a x a a =-+=-+.当0a <时,如图所示:只需21212a ≤<,解得2122a -<≤-. 当0a >时,如图所示:只需212a ≥且221a <或者21a =即可,解得1a =. 综上所述:{}21,122a ⎛⎤∈--⋃ ⎥ ⎝⎦. 故选:C 【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解决本题的关键,属于中档题.二、填空题13.变量x ,y 满足约束条件220,240,10,x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则目标函数232z x y =--的取值范围是______. 【答案】[]3,2-【解析】首先根据不等式组画出可行域,根据可行域化简目标函数得到2633z y x +=-+,再根据z 的几何意义结合可行域即可得到z 的取值范围. 【详解】不等式的可行域如图所示:由图知:0x ≥,02y ≤≤,因此23(2)236z x y x y =+-=+-,此时2633z y x +=-+,直线的纵截距越大,z 越大,纵截距越小,z 越小. 当直线经过点()0,1A 时,min 363z =-=-,联立24010x y x y +-=⎧⎨-+=⎩,解得(1,2)C .当直线经过点(1,2)C 时,max 2662z =+-=, 所以z 的范围为[]3,2-. 故答案为:[]3,2- 【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于中档题.14.设1e u r ,2e u u r 为单位向量,非零向量()12,a xe ye x y R =+∈r u r u u r ,若1e u r ,2e u u r 的夹角为3π,则yar 的最大值等于______.【答案】3【解析】首先计算2a r ,化简22y ar 得到2221()1x x y y y a =++r ,再利用二次函数的最值得到yar 的最大值. 【详解】当0y =时,0ya=r . 当0y ≠时,222222211222=a x e xye e y e x xy y =++++r u r u r u u r u u r g, 则2222221()1y x x x xy y yy a y ==++++r , 因为22133()1()244xx x yy y ++=++≥ 所以()222140133()24y a y x y =≤≠++r所以y a r【点睛】本题主要考查平面向量模长的计算,同时考查了二次函数的最值,属于中档题.15.在数列{}n a ,{}n b 中,()12n n n a a b +=++,()12n n n b a b +=+-11a =,11b =.设11n n mc a b +=,则数列{}n c 的通项公式n c =______. 【答案】22n -【解析】首先让两式()12n n n a a b +=++和()12n n n b a b +=+-别相加和相乘得到212n n n a b -+=和13382n n n n a b --⋅==,再代入n c 即可得到通项公式.【详解】由()12n n n a a b +=++,()12n n n b a b +=+-两式相加可得:()114n n n n a b a b +++=+. 112a b +=,故数列{}nn a b +是以2为首项,4为公比的等比数列.212n n n a b -+=.两式相乘得:()()22211448n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,111a b =,故{}n n a b ⋅是以1为首项,8为公比的等比数列, 13382n n n n a b --⋅==,所以2123311222n n n n n n n n n n a b c a b a b ---⎛⎫+=+===⎪⋅⎝⎭. 故答案为:22n - 【点睛】本题主要考查利用定义求等差数列和等比数列的通项公式,同时考查了学生分析问题的能力,属于中档题.16.已知a R ∈,函数()sin 2cos x f x a a x =-++在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为12,则a的取值范围为______.【答案】1(,]4-∞ 【解析】首先令()sin 2cos xg x x=+,利用导数求出函数的单调区间和最值,再分类讨论a 的范围即可得到答案.【详解】 令()sin 2cos x g x x=+,()()22cos 12cos x g x x +'=+, 0,2x π⎡⎤∈⎢⎥⎣⎦,则()0g x '>,()g x 在0,2π⎡⎤⎢⎥⎣⎦为增函数,()00g =,122g π⎛⎫=⎪⎝⎭,()102g x ≤≤,()12a g x a a -≤-≤-.若0a ≤,()()1[0,]2f xg x =∈,此时()f x 最大值为12,成立; 若12a ≥,()()12[2,2]2f x a g x a a =-∈-,则()max 122x f a ==,14a =,不成立,舍去.若102a <<,()max 1max 2,2f x a ⎧⎫=⎨⎬⎩⎭,只需122a ≤,即104a <≤. 综上所述:14a ≤. 故答案为:1(,]4-∞【点睛】本题主要考查利用导数求函数的最值问题,构造函数()g x 为解题的关键,属于难题.三、解答题17.已知ABC V 的内角为A ,B ,C ,它们的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求角B 的大小;(2)若1cos 7A =,BA BC +=u uu r u u u r ABC V 的面积.【答案】(1)3B π=(2)【解析】(1)首先利用三角函数的诱导公式得到sin cossin 22BBa ab A π-==,再利用正弦定理的边化角即可得到1sin22B =,3B π=.(2)首先根据已知1cos 7A =和3B π=得到53sin 14C =,利用余弦定理得到2211129474c b cb +-=,再根据sin 7sin 5b B c C ==算出b ,c 值求面积即可. 【详解】 (1)因为sinsin 2A Ca b A +=,所以sin cos sin 22B B a a b A π-==, 由正弦定理:sin sin sin a b cA B C ==知,sin cos sin sin 2B A B A =, 而sin 0A ≠,则cos sin 2sin cos 222B B BB ==, 又0B π<<,022B π<<,cos 02B ≠,所以1sin 22B =. 26B π=,3B π=. (2)设ABC V 三边分别为a ,b ,c ,AC 中点为M , 如图所示:因为1cos 7A =,所以43sin A =. 又因为3B π=,()53sin sin sin cos cos sin C A B A B A B =+=+=. 因为1292BA BC BM +==u u u r u u u r u u u u r ,所以1292BM =.由余弦定理知2222cos BM AB AM AB AM A=+-⋅⋅2222111111292427474c b c b c b cb =+-⋅⋅=+-=,因为3sin72sin553b BcC===,75b c=.得到221717129()45754c c+⨯-⨯=解得5c=,7b=.1143sin5710322S bc A==⨯⨯⨯=.【点睛】本题第一问考查利用正弦定理的边化角求角,第二问考查余弦定理解三角形,同时考查正弦定理的面积公式,属于中档题.18.如图,三棱柱111ABC A B C-中,CA CB=,1AA BC⊥,145BAA∠=︒.(1)求证:平面11AA C C⊥平面11AA B B;(2)若122BB==,直线11B C与平面11ABB A所成角为45°,D为1CC的中点,求二面角11B AD C--的余弦值.【答案】(1)证明见解析;(2)31414【解析】(1)首先过点C作1CO AA⊥,垂足为O,根据1CO AA⊥,1AA BC⊥得到1AA⊥平面BOC,从而得到1AA OB⊥.又因为Rt AOC Rt BOC△≌△得到CO OB⊥,CO AO⊥,从而得到CO⊥平面11ABB A,由此即证平面11AA C C⊥平面11AA B B.(2)首先以O为坐标原点,OA,OB,OC所在直线为x,y,z轴,建立空间直角坐标系O xyz-,根据直线11B C与平面11ABB A所成角为45o得到2AB=,1AO BO CD ===,再利用向量法求二面角11B AD C --的余弦值即可.【详解】(1)过点C 作1CO AA ⊥,垂足为O . 因为1AA BC ⊥,BC 交CO 于点C , 所以1AA ⊥平面BOC .又因为OB ⊂平面BOC ,故1AA OB ⊥. 因为145A AB ∠=︒,1AA OB ⊥,所以AOB V 为等腰直角三角形,则OA OB =. 又因为CA CB =,CO CO =,所以Rt AOC Rt BOC △≌△,故90COA COB ∠=∠=︒, 故CO OB ⊥,CO AO ⊥.因为BO ,AO ⊂平面11ABB A ,BO AO O =I ,所以CO ⊥平面11ABB A . 又因为CO ⊂平面11AAC C ,故平面11AAC C ⊥平面11AA B B . (2)由(1)知CO ⊥平面11AA B B .以O 为坐标原点,OA ,OB ,OC 所在直线为x ,y ,z 轴, 建立空间直角坐标系O xyz -.因为直线11B C 与平面11ABB A 成角为45°,而11//BC B C , 所以直线BC 与平面11ABB A 成角为45︒,而CBO ∠是直线BC 与平面11AA B B 所成角,故45CBO ∠=︒.所以AB =,1AO BO CD ===,()1,0,0A ,()0,1,0B ,()0,0,1C ,()11,0,0A -,()12,1,0B -,()1,0,1D - ()2,0,1AD =-u u u r ,()11,1,1B D =-u u u u r设平面1AB D 的法向量为()111,,n x y z =r,则111111200n AD x z n B D x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v v u u u u v v ,令11x =,得()1,3,2n =r .因为OB ⊥平面11AAC C ,所以OB uuu r为平面1AC D 的一条法向量,()0,1,0OB =u u u r .所以cos ,14n OB n OB n OB⋅<>===⋅r u u u rr u u u r r u u u r ,二面角11B AD C --的余弦值为14. 【点睛】本题第一问考查面面的垂直的证明,第二问考查向量法求二面角,同时考查了学生的计算能力,属于中档题.19.某工厂质检部门要对该厂流水线生产出的一批产品进行检验,如果检查到第0n 件仍未发现不合格品,则此次检查通过且认为这批产品合格,如果在尚未抽到第0n 件时已检查到不合格品则拒绝通过且认为这批产品不合格.设这批产品的数量足够大,可以认为每次检查查到不合格品的概率都为p ,即每次抽查的产品是相互独立的. (1)若05n =,求这批产品能够通过检查的概率;(2)已知每件产品质检费用为50元,若04n =,设对这批产品的质检个数记作X ,求X 的分布列;(3)在(2)的条件下,已知1000批此类产品,若11,2010p ⎡⎤∈⎢⎥⎣⎦,则总平均检查费用至少需要多少元?(总平均检查费用=每批次平均检查费用⨯批数)【答案】(1)()51p -(2)详见解析(3)171950元【解析】(1)根据05n =,这批产品能够通过检查说明前5次都通过检查,即可得到()()51P A p =-.(2)根据题意得到1X =,2,3,4,分别计算概率再列出分布列即可.(3)首先计算数学期望,令()()32464f p E X p p p ==-+-+,利用导数求出其最小值,即可得到答案. 【详解】(1)因为05n =,记事件A 为“当05n =时,这批产品能够通过检查”, 则由题意知:()()51P A p =-. (2)由题可知1X =,2,3,4()1P X p ==,()()21P X p p ==-,()()231P X p p ==-,()()341P X p ==-所以X 的分布列为:(3)由(2)可知X 的数学期望为:()()()()2332213141464E X p p p p p p p p p =+-+-+-=-+-+.设()32464f p p p p =-+-+,()2386f p p p '=-+-,因为64720∆=-<,所以()0f p '<, 所以()f p 在11,2010p ⎡⎤∈⎢⎥⎣⎦单调递减, 所以()min 11464 3.43910100010010f p f ⎛⎫==-+-+=⎪⎝⎭所以每批次平均检查费用至少为50 3.439171.95⨯=(元)所以1000批次此类产品总平均检查费用至少需要1000171.95171950⨯=(元)【点睛】本题主要考查离散型随机变量,同时考查了数学期望的应用,利用导数思想求最值为解题的关键,属于中档题.20.平面内与两定点()12,0A -,()22,0A 连线的斜率之积等于14-的点的轨迹,加上1A 、2A 两点所成的曲线为C .若曲线C 与y 轴的正半轴的交点为M ,且曲线C 上的相异两点A 、B 满足0MA MB ⋅=u u u r u u u r.(1)求曲线C 的轨迹方程; (2)求ABM V 面积S 的最大值.【答案】(1)2214x y +=(2)6425【解析】(1)首先设出(),P x y ,根据斜率之积等于14-得到()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-,再化简即可得到曲线C 的轨迹方程. (2)分别讨论AB 的斜率存在和不存在时,根据0MA MB ⋅=u u u r u u u r,设出直线方程与椭圆联立,利用根系关系得到直线恒过30,5N ⎛⎫- ⎪⎝⎭,再将ABM V 面积转化为ABM AMN BMN S S S =+V V V ,利用根系关系和对勾函数的单调性即可得到面积的最大值.【详解】(1)设曲线C 上任意一点(),P x y ,12A P y k x =+,22A P y k x =-, ()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-, 整理得:()22124x y x +=≠±.又曲线C 加上1A ,2A 两点,所以曲线C 的方程是:2214x y +=.(2)由题意可知()0,1M ,设()11,A x y ,()22,B x y , 当AB 的斜率存在时,设直线AB :y kx m =+,联立方程组:2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得到()222148440k x kmx m +++-=,则122814km x x k -+=+,21224414m x x k -⋅=+.()11,1MA x y =-u u u r ,()22,1MB x y =-u u u r,因为0MA MB ⋅=u u u r u u u r,所以有()()1212110x x kx m kx m ⋅++-+-=,()()()()2212121110k x xk m x x m +⋅+-++-=,()()()2222244811101414m km k k m m k k--++-+-=++, ()()()()()22222144811140k mk m m m k +---+-+=化简得到()()1530m m -+=,解得:35m =-或1m =(舍). 当AB 的斜率不存在时,易知满足条件0MA MB ⋅=u u u r u u u r的直线AB 为:0x =.因此,直线AB 恒过定点30,5N ⎛⎫- ⎪⎝⎭.所以1212ABM AMN BMN S S S MN x x =+=-=V V V1212MN x x ==-ABMS =V , 因为35m =-,所以2322514ABM S k =+V .设2t =≥,()2323229494t S t t t t==≥++. 由对勾函数的单调性得到94y t t=+在[2,)+∞为增函数,所以92542t t +≥. 即:6425S ≤(0k =时取到最大值). 所以ABM 面积S 的最大值为6425.【点睛】本题第一问考查圆锥曲线的轨迹方程,第二问考查直线与椭圆的位置关系,同时考查了学生的计算能力,属于难题.21.已知函数()()ln f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[)0,x ∈+∞,有()2f x kx ≤恒成立,求实数k 的最小值;(3)记()12ln 2121nn i S n i ==-+-∑,[]x 为不超过x 的最大整数,求[]n S 的值. (参考数据:ln 20.7≈,ln3 1.1≈,ln5 1.6≈) 【答案】(1)1a =(2)12(3)[]0,1,1, 2.n n S n =⎧=⎨≥⎩ 【解析】(1)首先求导()1x a f x x a+-=+',求出函数的单调区间,根据单调区间得到最小值,即可得到a 的值.(2)当0k ≤时,易证不合题意,当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,()()2121x kx k g x x ⎡⎤---⎣⎦'=+,令()0g x '=,可得10x =,2122k x k-=.分类讨论12k ≥和102k <<时()g x 的单调性和最值即可得到实数k 的最小值.(3)当1n =时,()12ln30,1S =-∈,[]10S =.当2n ≥时,()1122ln 212121nnn i i f n S i i ==⎛⎫==-+= ⎪--⎝⎭∑∑,取12k =,得()21()20f x x x ≤≥,从而得到()()()*222,N 212321f i i i i i ⎛⎫<≥∈ ⎪---⎝⎭,所以12ln 31221nS n <-+-<-.又因为10n n S S -->,得到123012n S S S S <<<<<⋅⋅⋅<<,即可得到[]0,11,2n n S n =⎧=⎨≥⎩.【详解】 (1)()()111x a x a x a f x x a+-=-+'=>-+,令()0f x '=,得1x a =-,()f x 在(),1a a --单调递减,()1,a -+∞单调递增,()()min 110f x f a a =-=-=,所以1a =.(2)当0k ≤时,取1x =,有()11ln 20f =->,故0k ≤不合题意. 当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,求导函数可得()()21211211x kx k g x kx x x ⎡⎤---⎣⎦'=--=++,令()0g x '=,可得10x =,21212kx k-=>-. ①当12k ≥时,1202k k-≤, 所以[)0,x ∈+∞,()0g x '≤恒成立, 因此()g x 在[)0,+∞上单调递减,从而对任意的[)0,x ∈+∞,总有()()00g x g ≤=,即对任意的[)0,x ∈+∞,有2()f x kx ≤成立,故12k ≥符合题意; ②当102k <<时,1202k k->, 对于120,2k x k -⎛⎫∈ ⎪⎝⎭,()0g x '>,因此()g x 在120,2k k -⎛⎫ ⎪⎝⎭内单调递增, 从而当0120,2k x k -⎛⎫∈ ⎪⎝⎭时,()()000g x g ≥=, 即有()200f x kx ≤不成立,故102k <<不合题意.综上, k 的最小值为12. (3)当1n =时,()12ln30,1S =-∈,[]10S =. 当2n ≥时,11222ln 1212121nn i i f i i i ==⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎣⎦∑∑ ()12ln 2121nn i n S i ==-+=-∑由(2)知,取12k =,得()21()20f x x x ≤≥,从而()()()()2*2212222,N 21221232121f i i i i i i i ⎛⎫⎛⎫≤=<≥∈ ⎪ ⎪----⎝⎭⎝⎭-, 所以()()()12222222ln 233212211nnnn i i i S f f fi i i i ===⎛⎫⎛⎫==+<-+ ⎪ ⎪--⎝⎭⎝--⎭∑∑∑ 21112ln 32ln 312232121ni i i n =⎛⎫=-+-=-+-< ⎪---⎝⎭∑. 又()()1112ln 21221n n i S n n i --==--≥-∑, 所以122122ln ln 121212121n n n S S n n n n -+⎛⎫-=-=-+ ⎪----⎝⎭. 令221t n =-,则()0,1t ∈,设()()ln 1h t t t =-+, ()11011th t t t'=-=>++,所以()h t 在()0,1单调递增,则()()00h t h >=,所以{}n S 单调递增,即1230n S S S S <<<<⋅⋅⋅<,又222ln 513S =+->, 所以123012n S S S S <<<<<⋅⋅⋅<<,所以[]0,11,2n n S n =⎧=⎨≥⎩. 【点睛】本题主要考查利用导数求函数的最值,利用导数解决恒成立问题,同时考查了分类讨论和构造函数的思想,属于难题.22.已知在极坐系中,点(),P ρθ绕极点O 顺时针旋转角α得到点(),P ρθα'-.以O 为原点,极轴为x 轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线E :1xy =绕O 逆时针旋转4π得到曲线C . (1)求曲线E 的极坐标方程和曲线C 的直角坐标方程;(2)点M 的极坐标为4,4π⎛⎫⎪⎝⎭,直线l 过点M 且与曲线E 交于A ,B 两点,求MA MB⋅的最小值.【答案】(1)2sin 22ρθ=;22122y x -=(2)14【解析】(1)首先根据题意得到E 的极坐标方程为2sin 22p θ=,设(),P ρθ为曲线C 上任意一点,得到点,4P πρθ⎛⎫'-⎪⎝⎭在曲线E 上,即2sin 222πρθ⎛⎫-= ⎪⎝⎭,再化简得到曲线C 的直角坐标方程为22122y x -=.(2)首先设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy =得到()2cos sin sin cos 70t αααα+++=,利用直线参数方程的几何意义得到1214sin 2MA MA t t α⋅==,再利用三角函数的性质即可得到最小值.【详解】(1)由E 的直角坐标方程为1xy =可得cos sin 1ρθρθ⨯=即:2sin 22p θ=,设(),P ρθ为曲线C 上任意一点, 则P 绕O 顺时针旋转4π得到点,4P πρθ⎛⎫'- ⎪⎝⎭在曲线E 上,则2sin 222πρθ⎛⎫-= ⎪⎝⎭,即2cos 22ρθ=-, ()22222si cos n 2x y ρθθ-=-=-所以曲线C 的方程为22122y x -=.(2)M的直角坐标为(,设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy=,整理后可得()2cos sin sin cos 70t αααα+++=.127cos sin t t αα=g所以1271414cos sin sin 2MA MA t t ααα⋅===≥.当且仅当4k παπ=+或()4k k Z παπ=-∈时取等号,此时>0∆,符合条件.故MA MB ⋅的最小值为14【点睛】本题第一问考查直角坐标方程和极坐标方程的互化,第二问考查直线参数方程的几何意义,属于中档题.23.已知函数()21f x x x =+-的最小值为M . (1)求M ;(2)若正实数a ,b ,c 满足a b c M ++=,求证:2222221a b a c b cc b a+++++≥.【答案】(1)12M =(2)证明见解析; 【解析】(1)首先化简解析式得到()31,01=1,02131,2x x f x x x x x ⎧⎪-+<⎪⎪-≤<⎨⎪⎪-≥⎪⎩,根据函数的单调性即可得到()f x 的最小值.(2)首先利用重要不等式得到222222222a b a c b c ab ac bcc b a c b a+++++≥++,再根据均值不等式和12a b c ++=即可证明. 【详解】(1)()31,0,1=211,0,2131,.2x x f x x x x x x x ⎧⎪-+<⎪⎪+-=-≤<⎨⎪⎪-≥⎪⎩因为函数13(0)y x x =-<是减函数,11(0)2y x x =-≤<是减函数;131()2y x x =-≥是增函数,故当12x =时,()f x 取得最小值11()22M f ==.(2)222222222a b a c b c ab ac bcc b a c b a+++++≥++()()()2()1b c a c c ba b c a b c c b c a b a=+++++≥++=,当且仅当16a b c ===取等号.【点睛】本题第一问考查求绝对值函数的最值,把绝对值函数变为分段函数为解题的关键,第二问考查利用均值不等式的性质证明不等式,属于中档题.。
导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)min=h(ln2)=2﹣2ln2.∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(x>0)处的切线经过原点,则有;(2)证明:假设曲线y=f(x)在点(x,f(x))即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。
• 12 .理科考试研究•数学版2021年1月1日=6 13sin ()+ sin~-I .设x =汐2 2^~,所以 7=38^(02—6) + sin 沒2 2 沒1=3 sin 2x + sirn : = sim : (1 + 6c o sa ;).所以 y 2 = sin2x ( 1 + 6cosx )2= ^•(15 - 15cosx ) (3 +3cos ^) (1 +6cos %) (1 +6c o s a :)1 ,15 - 15cos ^ +3 +3cos ^ +1 +6cos ^ +1 +6c o sa :、4^45( 4 )=丄 x 5445 3=竺当且仅当 15 - 15cosi = 3 + 3cos % = 1 + 6cosx ,即 cosx = ~|■时,等号成立•故丨;K 丨《¥,从而 S a /ms <6x ¥=1〇A所以S A W B 的最大值为1〇居.评注本解法从点运动变化的角度思考,利 用圆的参数方程解答.思路独特,涉及较多的知识,运 算量不小,难度较大.3试题探源由解法3,可知S A W B =6(sin 0-3sin 20);由解法7,可知y =3sin 2* + situ :.因此试题实际上可以看成是考 查三角函数的最值问题,因此2020年考题的“母题” 应该来源于下面的高考题,只是进行适当的改编 而已.试题(2018年全国I 卷理数第16题)已知函 数/(x ) =2sirw + sin 2x ,则/(a 〇 的最小值是______.可以看出,2020年高考试题是在2018年试题的 基础上,赋予更丰富的图形及相关知识,以此来考查 学生的转化与化归、数形结合等思想.4解后启示学数学离不开解题,在解题过程中,要引导学生 多探究一题多解,品味解题方法和思维的关键点.这 种一题多解的训练,增加了题目涉及的知识广度,以 一带多,减少了考查同样多的知识所需的题量.从数 学知识的角度来看,通过解题体会知识之间的转化过 程,发现知识的相互联系,构建知识网络体系.这样, 在学习基础知识、掌握基本技能的同时,能使学生将 知识融会贯通,开阔眼界,活跃思维.另外要充分认识 高考题所蕴含的价值,挖掘高考题的导向功能,发挥 其内在的作用,并以此来促进教学,提高教学效率.参考文献:[1]林国红.多视角巧突破—2018年全国I 卷理数第 16题解法赏析与探究[J ].中学数学研究(华南师范大学版), 2018(09) :44 - 46.(收稿日期:2020 - 09 -19)2020年斩高考全国I 卷压轴题的鮮法貴析及思考岳增华蒋兰兰(临沂第四中学山东临沂276001)摘要:本文以2020年新高考全国I 卷压轴题为例,从不同角度探究试题的几种解法,思考学法,以期更好地指导 教学,让学生达到触类旁通,举一反三的效果.关键词:导数的应用;分类讨论;隐零点;构造函数1真题再现题目(2020年新高考全国I 卷山东21题、海南 22 题)已知函数/(*) s a e * — 1 -lrw +lna .(1)当a = e 时,求曲线y =/(*)在点(1,/( 1))处 的切线与两坐标轴围成的三角形的面积;(2) 若/(*)&1,求a 的取值范围.本题题干简单明了,直入主题,能力要求高,方法灵活,需要有良好的数学素养.本文探究此题第(2)问 (第(1)问解法略)的解题思路,赏析解法,思考学法.2第(2)问解法分析解法 1 由/(a ;) =aeI_l -I n A :+lna ,当 a = 1 时x ) = e **丨-Inx )/’(;<)1 -丄.当:C E (0,1)时,/'(*) <0,所以函数/(X )单调递作者简介:岳增华(1970 -),男,山东沂南人,本科,中学高级教师,研究方向:高中数学教学.2021年1月1日理科考试研究•数学版• 13•减;当*e(l,)时,厂(幻>0,所以函数/(幻单调递增.所以/U)m i…=/U) =1,从而/U)身1.当0<a<l 时,因为/(I) = a+ lna < a < 1,所以/(l) <1.则/u)>i不是恒成立.当 a > 1时,/(尤)=ae*-1- lm;+ lna >_1 - lr n; >1.综上,a的取值范围是[1,+a).评注此解法利用了讨论法,讨论的界点a = 1 (lna二0)是解题的关键.解法 2 因为/(幻=c i e x_1 -In%+lna,所以厂(x) =ae*_1 -丄,且a >0•x设尽U) =/'U),则尽'(幻=a Z_1 +^>0.x所以g(幻在(0, +〇〇)上单调递增•BP/'U)在(0,+〇〇)上单调递增.当0<尤<1且0<%<丄时,/'(幻二狀文-1 -丄<a xael~l - —= a-—<0;x x当x > 1 且 x 时,/’(尤)=ae*_1 -丄〉似-y a xi= ^z l>0.x x所以存在唯一的〜使得/•'(*〇):以―1_丄=〇•尤0所以 ae*0_1 =丄.艮P lna + »〇 —1 = _ l r u:0.xo当*E(0,%)时,/'(;〇 <0,所以函数/(幻单调递减;当*E(*。
解题篇经典题突破方法"LL L l l L"高二数学2021年3月丁子虫" 2020年全国|卷理科()压轴题多.度01■福建省泉州市第七中学彭耿铃高考压轴题,突出学科素养和区分导向!着重考查同学们的理性思维能力以及综合运用数学思想方法分析问题、解决问题的能力!体现了数学考试的压轴应用价值,在考试评价中落实区分度的根本任务,对选拔高层次人才有很好的导向和选拔作用#纵观近几年来高考试卷,导数压轴题在形式上有“简约而不简单)之感,参考答案的解析有时让师生一头雾水,感觉匪夷所思,不知所措#下面对2020年全国I卷导数压轴题予以多角度解析,旨在探究导数题型的考查特点,供同学们参考,希望同学们能决胜高考#(2020年全国I卷理科压轴题'已知函数f(")=e"+a"2—"#(1)当a=1时,讨论f")的单调性;(2)当")0时f(.,"))1"3+1,求a的取值范围#解析!1)当a=1时,f(")=e"+"2—",f J")=e"+2"一1#令g(")=e"+2"一1则g'")=e"+2>0恒成立,所以g")在R上单调递增f"在R上单调递增#又'(0)=0!所以当">0时,f(")> 0,即f(")在(0,++)上单调递增;当"<0时,f'")<0,即f(")在(一+,0)上单调递减#所以当a=1时,f")的单调增区间为(0,++),单调减区间为(一+,0)#(2)解法一(分离参数,转化最值):当")0时,f("))2"3+1恒成立#①当"=0时,a(R#""3+"+1—e"②当">0时,a)--------------2-----------恒成"""3+"+1—e"立,记%(")=---------------2------------,贝U%'(")=(2—")(e"—2"2-"一1)3#1己$(")=e"—"2"2一"一1(">0),贝$'(")=e"一"一1,—(")=e"—1#因为当">0时,$"(")= e"—1>0,所以$'(")在(0,++)上单调递增,$'(—)>$'(0)=0,$(")单调递增,$")>$(0)=0#令%'")=0,可得"=2#当"((0,2)时,%'(")>0,%(-)单调递增;当"((2, ++)时,%'(")<0,%(")单调递减#7—e2所以%(").ao=%(2)=^^,即a) 7—e24°综上,a的取值范围是,++)#解法二(比较零点,分类讨论):f("))1"3+13e"+a"2一")1"3+1"3一a"2+"+113—--------------#1,对")0恒成立#1—一a"2+"+1令%(")=----------------"--------------")0),则①当2a+1)2,即a)时,若"(「0,2)U「2a+1,++),则%'(")#0;若"((2, 2a+1),则%'")>0#所以%(")在区间「0, 2)上单调递减,在区间(2,2a+1)上单调递增,在区间「2a+1,++)上单调递减#所以%")m a0=max{%(0),%(2a+1)}=19解题篇经典题突破方法高二数学 2021年3月中孝生皋捏化max1 (2a +1)3 —a (2a +1)2 +(2a +1)+1e a +1—(2a + 1)3 — a (2a + 1 )2 + (2a +1) +1 又e 2a +11 (2a +1)2 + (2a + 1) +1,记'=2a + 1 )2 ,e 2a +1—'2 +' + 1设 g = ----------'--------(')2),贝U g ‘ ')e('+ 1)——'2+'+1'2—y V 0# 故 g & '2"2 —") 2"3 + —。
这是今年全国卷一理科数学的压轴题,我们就此道题来用数学分析的思维去了解它(1)当a=1时,带入函数后f(x)=e x+x2-x,利用讨论组合基本初等函数求单调性的常用方法:求导,判断导数正负所在的区间f’(x)= e x+2x-1,此时我们发现原函数的一阶导数还是不能直接判断原函数单调区间,那么我们回想原函数与其导函数的关系:导函数的正负性决定原函数的单调性,此时我们目标放在导函数的正负性判断上即可此时我们发现一阶导数为单调递增函数(可用二阶导数验证),且当一阶导数取x=0时,一阶导函数刚好等于0,根据单调性原则可以得出函数:当x>0时,f’(x)>0;x<0时,f’(x)<0最后得到:原函数f(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减x3+1,求a取值?(2)当x≥0时,e x+ax2-x≥12首先我们发现此类问题是不等关系约束含参变量取值问题;对于此大方向,我们可以从以下三个方向考虑:①把不等式两边变量看成两个关于x的函数,k(x)≥g(x),转化为两变量大小不等式问题后,k(x)≥g(x)表示集合“k(x)”中的任何元素值大于等于集合“g(x)”中的任何元素值,对此我们轻易得知“k(x)”集合中最小元素值大于等于集合“g(x)”中最大元素值,所以有结论:k min(x)≥g max(x)然后将含有a的式子放于不等式的任意一边,求出含有a的代数式最值和不等式另一边的代数式最值后即可得出a的取值范围②将所有变量式子放于不等式同一边,整体与0保持不等关系,即:x3-1≥0e x+ax2-x−12x3-1,(x≥0)设函数z(x)= e x+ax2-x−12此时我们就将问题转化成了求使函数z(x)>0,的所有a值集合问题,若原函数一阶导数有明确值的零点,那么原函数单调性也易求出来,然后利用原函数恒大于等于0的条件即可求出a的取值,若原函数一阶导数没有明确值得零点,且存在二阶、三阶……导函数,此时这种方法不再适用此题,原因是若没能在原函数得一阶导数处精确判断出原函数单调性的话,后面各阶导数层层递进后仅容易提供原函数在全部定义域单调下对a约束,即层层导数扩大变数。
全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
当x >0时,上式等价于 32112xx x e a x ++-≥ 恒成立。
令 32112()x x x e g x x ++-=,则 231(2)(1)2'()x x x x e g x x -++-= 再令21()12x h x x x e =++-到了这里发现,由(1)可得的 21(0)xe x x x +->> ,不能引用。
所以求导,'()1x h x x e =+-令j(x)=h ’(x) (x>0)'()10x j x e =-<,j(x)单调递减。
∴j(x)<j(0)=0,即h ’(x)<0。
∴h(x)单调递减,h(x)<h(0)=0。
即当x >0时,21102x x x e ++-<。
当x ∈(0,2)时,g ’(x)>0;当x ∈(2,+∞)时,g ’(x)<0。
∴g(x)max=g(2)=274e -∴a 的取值范围是27[,)4e -+∞ 。
解法二:综合法,让x e 玩倒立游戏,变成x e - 。
当x≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 等价于2311(1)02xax x x e -+---≥ 。
令 231()1(1)2x g x ax x x e -=+---,则 1'()(2)[(21)]2xg x x x x a e -=--+(1)若2a+1≤0,即12a ≤- ,当x ∈(0,2)时,g ’(x)<0,即g(x)单调递减,而g(0)=0,故当x ∈(0,2)时, g(x)<0,因此不合题意(不必研究x ∈(2,+∞)的情况,否则是多余且无功,很可能出错)。
(2)若0<2a+1<2,即1122a -<< ,当x ∈(0,2a+1)∪(2,+∞)时,g ’(x)>0;当x ∈(2a+1,2)时,g ’(x)<0。
所以g(x)在(0,2a-1),(2,+∞)单调递增,在(2a+1,2)单调递减。
由于g(0)=0,g(x)≥0,所以g(2)=21(47)0a e -+-≥ ,即 274e a -≥ 。
所以 当27142e a -≤< 时,g(x)≥0。
(3)若2a+1≥2,即12a ≥ ,当x ∈(0,2)∪(2a+1,+∞)时,g ’(x)>0;当x ∈(2,2a+1)时,g ’(x)<0。
所以 g(x)在(0,2),(2a+1,+∞)单调递增;在(2,2a+1)单调递减。
又g(0)=0,g(x)≥0,所以g(2a+1)=≥0必须成立。
2211(21)1[(21)(21)1]2a g a a a e --+=+-+-+-综上,a 的取值范围是27[,)4e -+∞ 。
注:方框里内容的处理很灵活,也很关键。
注意:(1)分离参数法中遇到21()12x h x x x e =++-的正负判断,多次求导。
若用x e 的倒插花方式,即考察21()(1)12x i x x x e -=++-,可一次解决问题。
(2)综合法处理第二小题,遇第三种情况不是解出a ,a 是解不出来的,而是看限定条件下是否满足。
(3)有参数时,把参数叙述成“若”,把变量成“当”,若两者都叙述成“当”,那就让人看起来不舒服。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
解析:(1) 单调性,常规题,当a=1时,确定函数的单调性,一次求导或多次求导。
(2) 零点,已知零点数,求参数范围,有一定难度。
导数问题,通常可以采用五种方法:分离参数法,综合法,数形结合法,必要性充分性结合法,分类讨论法。
这里介绍了前三种方法。
后两种方法,很少单独使用,如本例综合法中就采用了先必要条件,然后充分条件的方式,来排除不合题意的情况。
再如数形结合法中,就结合了分类讨论法。
解:(1)a=1时,()(2)xf x e x =-+,'()1xf x e =- , 当x ∈(-∞,0)时,f ’(x)<0;当x ∈(0,+∞)时,f ’(x)>0。
∴ f(x)在(-∞,0)单调递减,在(0,+∞)单调递增。
(2)解法一:分离参数法'()x f x e a =-当a ≤0时,f ’(x)≥0,f(x)单调递增,最多只能有一个零点,所以不合题意。
当a >0时,采用分离参数法。
不过,由于x+2在分母时,必须讨论必须以-2为界进行考察,不太方便。
所以,换一种方式分离参数。
f(x)有两个零点,等价于12()x x g x a e+=- 有两个零点。
则1'()xx g x e +=当x ∈(-∞,-1)时,g ’(x)<0;当x ∈(-1,+∞)时,g ’(x)>0。
所以g(x)min=g (-1)=1e a- 。
要g(x)有两个零点,必须满足g(x)min<0,即 1a e> 。
下面证明1a e>时,有两个零点。
在(-∞,-1)上,g(-2)=10a> ,所以其在有一个零点。
在(-1,+∞)上,由(1)可知21x e x --≥-,即 1x e x ≥+所以 2222(2)()(1)24xxx x e e +=≥+=所以当x >0时,2121214()(2)24x x x g x x a e a a x ++=->-=-++ 当x 同时满足x >4a-2时,g(x)>0, 所以在(-1,+∞)有一个零点。
综上,g(x)有两个零点的条件是是a ∈1(,)e+∞ , 所以f(x)有两个零点时,a ∈1(,)e+∞。
解法二:综合法()(2)x f x e a x =-+ '()x f x e a =-若a ≤0,则f ’(x)≥0,f(x)单调递增,最多只能有一个零点,所以不合题意。
若a >0时,可采用综合法。
当x ∈(-∞,lna ),f ’(x)<0;当x ∈(lna,+∞)时,f ’(x)>0。
所以 f(x)min=f(lna)=﹣a(lna+1)若f(x)有两个零点,必须满足f(x)min <0,即1a e> 。
下面证明1a e>时,f(x)有两个零点。
在(-∞,lna )上,2(2)0f e --=> ,所以f(x)在其上有一个零点。
在(lna ,+∞)上,由(1)可得1xe x ≥+ ,所以 2222(2)()(1)24xxx x e e +=≥+=所以 2(2)2()(2)(2)()44x x f x a x x a ++>-+=+- 所以 当x >0且x >4a-2且x >lna 时,f(x)>0。
所以 f(x)在(lna ,+∞)有一个零点。
综上,f(x)有两个零点的条件是a ∈1(,)e+∞。
解法三:分离函数法(数形结合法)函数()(2)xf x e a x =-+有两个零点,也就是说指数函数x y e =图象 与 一次函数y=a(x+2)图象有两个交点。
直线l :y=a (x+2)表示经过点(-2,0)。
两个函数的图象如下图所示:虚线为过(-2,0)点的切线,直线l 是经过(-2,0)的直线系。
确定指数函数过(-2,0)的切线,此时,直线l 与曲线(指数函数图象)有一个交点。
x y e = 上的点设为(00,x x e ),那么在x=x0处的斜率就是0xe ,所以过该点的切线方程为000()x x y e e x x -=- 。
当该切线经过(-2,0)点时,则有000(2)x x e e x -=--,解得01x =- ,此时斜率11e e-= 。
当a=1e 时,直线l 与曲线C 相切,只有一个交点,直线l 是曲线C 的切线。
当1a e > 时,直线l 与曲线C 相交,有两个交点,直线l 是曲线C 的割线。
当10a e≤<时,直线l 与曲线C 没有交点。
当a <0时,有一个交点。
综上,f(x)有两个零点的条件是a ∈1(,)e+∞。
3.再看2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
解析:(1) 求切线,进而求与坐标轴围成的面积,常规题目,按部就班就好。
(2) 恒成立,求恒成立情况下的参数取值范围,属常规题目。
但这里与其他的题目不一样。