数控系统结构介绍
- 格式:pptx
- 大小:8.28 MB
- 文档页数:80
计算机数控系统计算机数控系统3.1 计算机数控(CNC)系统的基本概念计算机数控(computerized numerical contro,简称CNC)系统是用计算机操纵加工功能,实现数值操纵的系统。
CNC系统根据计算机存储器中存储的操纵程序,执行部分或者全部数值操纵功能.由一台计算机完成往常机床数控装置所完成的硬件功能,对机床运动进行实时操纵。
CNC系统由程序、输入装置、输出装置、CNC装置、PLC、主轴驱动装置与进给(伺眼)驱动装置构成。
由于使用了CNC装置,使系统具有软件功能,又用PLC取代了传统的机床电器逻辑操纵装置,使系统更小巧,灵活性、通用性、可靠性更好,易于实现复杂的数控功能,使用、维修也方便,同时具有与上位机连接及进行远程通信的功能。
3.2 微处理器数控(MNC)系统的构成大多数CNC装置现在都使用微处理器构成的计算机装置,故也可称微处理器数控系统(MNC)。
MNC通常由中央处理单元(CPU)与总线、存储器(ROM,RAM)、输入/输出(I/O)接口电路及相应的外部设备、PLC、主轴操纵单元、速度进给操纵单元等构成。
图3 .2.1为MNC 的构成原理图。
3.2.1中央处理单元(CPU)与总线(BUS)CPU是微型计算机的核心,由运算器、操纵器与内寄存器组构成。
它对系统内的部件及操作进行统一的操纵,按程序中指令的要求进行各类运算,使系统成为一个有机整体。
总线(BUS)是信息与电能公共通路的总称,由物理导线构成。
CPU与存储器、I/O 接口及外设间通过总线联系。
总线按功能分为数据总线(DB)、地址总线(AB)与操纵总线(CB)。
3.2.2存储器(memory)(1)概述存储器用于存储系统软件(管理软件与操纵软件)与零件加工程序等,并将运算的中间结果与处理后的结果(数据)存储起来。
数控系统所用的存储器为半导体存储器。
(2)半导体存储器的分类①随机存取存储器(读写存储器)RAM(random access memory)用来存储零件加工程序,或者作为工作单元存放各类输出数据、输入数据、中间计算结果,与外存交换信息与堆栈用等。
数控机床各个组成部分的工作原理及结构第一节输入装置输入装置是整个数控系统的初始工作机构,它将准确可靠的接收信息介质上所记录的“工程语言"、运算及操作指令等原始数据,转为数控装置能处理的信息,并同时输送给数控装置。
输入信息的方式分手动输入和自动输入。
手动输入简单、方便但输入速度慢容易出错。
现代数控机床普遍采用自动输入,其输入形式有光电阅读机、磁带阅读机及磁盘驱动器以及无带自动输入方式.其它输入方式:1。
无带自动输入方式在高档数控机床上,设置有自动编程系统和动态模拟显示器(CRT).将这些设备通过计算机接口与机床的数控系统相连接,自动编程所编制的加工程序即可直接在机床上调用,无需经制控制介质后再另行输入。
2。
触针接触式阅读机输入方式又称为程控机头或电报机头,结构简单,阅读速度较慢,但输入可靠、价格低廉故在部分线切割机床加工中仍在用。
3。
磁带、磁盘输入方式磁带输入方式进行信息输入,其信息介质为“录音"磁带,只不过录制的不是声音,而是各种数据。
加工程序等数据信息一方面由微机内的磁盘驱动器“写入”磁盘上进行储存,另外也由磁盘驱动器进行阅读并通过微机接口输入到机床数控装置中去。
第二节数控装置数控装置是数控机床的核心,数控机床几乎所有的控制功能(进给坐标位置与速度,主轴、刀具、冷却及机床强电等多种辅助功能)都由它控制实现。
因此数控装置的发展,在很大程度上代表了数控机床的发展方向。
数控装置的作用是接收加工程序等送来的各种信息,并经处理分配后,向驱动机构发出执行的命令,在执行过程中,其驱动、检测等机构同时将有关信息反馈给数控装置,经处理后,发出新的命令。
一、数控装置的组成1、数字控制的信息1)几何信息——是指通过被加工零件的图样所获得的几何轮廓的信息。
这些信息由数控装置处理后,变为控制各进给轴的指令脉冲,最终形成刀具的移动轨迹。
几何信息的指令,由准备功能G具体规定。
2)工艺信息———通过工艺处理后所获得的各种信息。
参考资料:/%C5%C9%BF%CB652/blog/item/040742fc5ab3e50eb17e c577.html一、CNC系统的基本构成CNC系统是一种用计算机执行其存储器内的程序来实现部分或全部数控功能的数字控制系统。
由于采用了计算机,使许多过去难以实现的功能可以通过软件来实现,大大提高了CNC系统的性能和可靠性。
CNC系统的控制过程是根据输入的信息,进行数据处理、插补运算,获得理想的运动轨迹信息,然后输出到执行部件,加工出所需要的工件。
CNC系统由硬件和软件组成,软件和硬件各有不同的特点。
软件设计灵活,适应性强,但处理速度慢;硬件处理速度快,但成本高。
CNC的工作是在硬件的支持下,由软件来实现部分或大部分的数控功能。
二、CNC系统的硬件结构CNC系统的硬件结构可分为单微处理器结构和多微处理器结构两大类。
早期的CNC系统和现有的一些经济型CNC系统采用单微处理器结构。
随着CNC系统功能的增加,机床切削速度的提高,单微处理器结构已不能满足要求,因此许多CNC系统采用了多微处理器结构,以适应机床向高精度、高速度和智能化方向的发展,以及适应计算机网络化及形成FMS和CIMS的更高要求,使CNC系统向更高层次发展。
1.单微处理器结构图6-3CNC系统硬件的组成框图所谓单微处理器结构,即采用一个微处理器来集中控制,分时处理CNC系统的各个任务。
某些CNC系统虽然采用了两个以上的微处理器,但能够控制系统总线的只是其中的一个微处理器,它占有总线资源,其他微处理器作为专用的智能部件,不能控制系统总线,也不能访问存储器,是一种主从结构,故也被归入单微处理器结构中。
单微处理器结构的CNC系统由计算机部分(CPU及存储器)、位置控制部分、数据输入/输出等各种接口及外围设备组成。
CNC系统硬件的组成框图可参见图6-3。
(1)计算机部分计算机部分由微处理器CPU及存储器(EPROM、RAM)等组成。
微处理器执行系统程序,首先读取加工程序,对加工程序段进行译码、预处理计算等,然后根据处理后得到的指令,对该加工程序段进行实时插补和对机床进行位置伺服控制;它还将辅助动作指令通过可编程控制器(PLC)发给机床,同时接收由PLC返回的机床各部分信息并予以处理,以决定下一步的操作。
数控系统原理图
数控系统原理图示如下:
[图 1]
该系统由主控制器、执行机构、传感器和输入设备等部分组成。
主控制器负责接收输入设备传来的指令,并根据设定的程序进行运算和控制。
执行机构则根据主控制器发出的信号,完成相应的运动和加工操作。
主控制器中包含算法处理单元、存储器和接口控制矩阵等部分。
算法处理单元负责根据输入指令和存储器中的程序,进行运算并生成控制信号。
存储器用于存储各类程序和数据,以供算法处理单元使用。
接口控制矩阵则负责将算法处理单元生成的信号转化为执行机构能够理解的形式。
执行机构主要包括主轴、刀具和工件夹持装置等。
主轴负责传动刀具进行加工操作,刀具则完成具体的切削或加工动作,工件夹持装置则固定工件,保证加工的稳定性和精度。
传感器用于检测执行机构的运动状态和加工过程中的参数,并将检测到的信号反馈给主控制器。
主控制器根据传感器反馈的信息,可以实时调整和控制执行机构的运动,保证加工的准确性和质量。
输入设备用于操作和输入加工程序。
例如数字显示屏、键盘和鼠标等。
用户可以通过输入设备选择程序、设定加工参数和操作方式等。
以上是数控系统的原理图说明。
华兴数控系统说明书一、系统介绍二、系统结构1.计算机控制单元:该部分主要由一台高性能计算机组成,负责接受用户输入的加工程序,并计算出相应的控制指令,传输给运动控制装置。
2.数控操作界面:数控操作界面是用户与数控系统进行交互的主要途径,包括显示屏、键盘、鼠标等,用户可以通过操作界面输入加工参数、选择加工方式、监控加工进度等。
3.运动控制装置:该装置负责接收计算机控制单元传输的指令,并将其转化为电信号,驱动数控设备的运动。
运动控制装置具有高精度、高速度的运动控制能力,可以实现各种复杂的加工动作。
4.主轴驱动系统:主轴驱动系统是数控设备的核心部件,负责带动刀具进行切削。
华兴数控系统采用先进的主轴驱动技术,可以实现高速、高精度的主轴运转,满足各类加工要求。
三、系统特点1.高性能:采用先进的计算机控制技术,配备高速、高效的运动控制装置,保证加工精度和速度。
2.稳定可靠:系统硬件采用工业级电子元件,具有高抗干扰能力,能够稳定运行,并保证长时间工作的可靠性。
3.易操作:数控操作界面简洁明了,用户只需通过简单的操作就可以完成加工参数设置和程序调试。
4.功能丰富:提供多种加工方式和处理功能,可以满足不同行业的加工需求。
5.扩展性强:系统的硬件和软件均支持扩展,用户可以根据需要对系统进行灵活的升级和改造。
四、使用方法使用华兴数控系统进行数控加工的方法如下:1.编写加工程序:使用G代码或M代码编写加工程序,包括初始位置设定、运动路径规划、刀具切削参数等。
2.加载加工程序:将编写好的加工程序上传到数控系统的计算机控制单元。
3.设定加工参数:通过数控操作界面设定加工参数,如切削速度、进给速度、切削深度等。
4.开始加工:确认加工参数无误后,启动数控系统,开始自动加工过程。
5.监控加工进度:通过数控操作界面可以实时监控加工进度,并进行相应的调整和干预。
6.加工结束:加工完成后,关闭数控系统,保存加工数据。
五、安全注意事项在使用华兴数控系统进行加工时,需要注意以下安全事项:1.使用者必须具备一定的数控操作知识和经验,以确保操作的准确性和安全性。
第二章数控系统的基本结构第一节数控系统的硬件结构
一、数控系统硬件结构的类型
1.大板式结构和模块化结构
2.专用型结构和开放式结构
3.单微处理器结构和多微处理器结构
二、数控系统硬件结构主要组成部分的功能
1.微处理器和总线
2.存储器
3.定时器和中断控制器
4.位置控制器
5.可编程控制器接口
三、输入/输出接口
1.纸带阅读机接口
2.键盘MDI接口
3.数码显示器接口
4.CRT显示器接口
5.直流开关量输入接口
6.直流开关量输出接口
7.模拟量输入/输出接口
8.通信接口
第二节数控系统的软件结构
一、数控系统软硬件界面
二、数控系统软件的内容
三、数控系统软件的结构特点
1.数控系统的多任务并行处理
2.实施中断处理
四、数控系统软件的结构
1.前后台型结构
2.中断型结构
第三节、数控系统的信息处理
一、输入
1.输入过程
2.键盘输入
二、存储
三、译码
1.代码的识别
2.功能码的译码
四、运算
1.刀具补偿
2.速度处理
3.插补
4.位置控制处理。
简述数控系统fanuc pmc程序结构数控系统是现代工业生产中常用的一种控制系统。
Fanuc PMC (Programmable Machine Controller)也是一种数控系统,它的主要功能是控制机床或工业设备的运动和操作。
在Fanuc PMC系统中,程序结构起着至关重要的作用,决定了系统的功能和性能。
下面将对Fanuc PMC程序结构进行简述。
Fanuc PMC程序结构可以分为主程序和子程序两个部分。
主程序是Fanuc PMC程序的入口,也是程序的主体部分。
它由一系列的语句组成,每个语句都代表了一种操作或功能。
主程序的执行顺序是从上到下依次执行,直到执行完所有的语句或遇到跳转语句。
主程序中可以包含条件判断语句、循环语句、函数调用语句等,以实现不同的功能和逻辑。
子程序是主程序的一部分,用于实现某些特定的功能或操作。
它可以被主程序调用,也可以被其他子程序调用。
子程序可以单独编写,也可以从其他地方复制过来。
在Fanuc PMC系统中,子程序的调用使用CALL语句来实现,调用后程序的执行流程会跳转到子程序中执行,执行完后再返回到调用点继续执行。
子程序的调用可以是顺序的,也可以是循环的,可以根据实际需要来灵活调用。
Fanuc PMC程序结构的核心是程序的逻辑控制。
在程序中可以使用条件判断语句来实现不同条件下的不同操作。
常用的条件判断语句有IF语句和CASE语句。
IF语句用于判断一个条件是否成立,如果成立则执行相应的操作,否则执行其他操作。
CASE语句则用于多个条件的判断,根据条件的不同执行不同的操作。
通过合理使用条件判断语句,可以实现程序的自动化控制和灵活性。
除了逻辑控制,Fanuc PMC程序结构还可以实现数据处理和算术运算。
程序中可以定义和使用变量,用于存储和处理数据。
Fanuc PMC系统支持多种数据类型,如整型、浮点型、字符型等。
程序中可以进行赋值、运算、比较等操作,以实现数据的处理和计算。
数控基础知识点总结一、数控系统的组成1.数控系统的组成结构数控系统由数控硬件和数控软件两部分组成。
数控硬件包括数控设备、传感器、执行机构等。
数控软件包括数控编程软件、数控仿真软件、数控加工监控软件等。
数控硬件和软件之间通过接口进行通信和数据交换。
2.数控系统的工作原理数控系统通过接收外部输入的指令,经过处理和计算,控制机床实现工件的加工。
数控系统可以实现自动化生产,大大提高生产效率。
二、数控编程基础1. 数控编程语言数控编程语言是数控系统能够识别和处理的特定语言。
常见的数控编程语言包括G代码、M代码、X、Y、Z轴的坐标指令等。
2. 数控编程的基本原则数控编程的基本原则包括准确、简洁、清晰、规范。
数控编程应该准确反映工件的几何形状和加工要求,同时尽可能简洁清晰,便于后续的修改和维护。
三、常见数控加工工艺1.数控车床加工数控车床是一种利用工件旋转和刀具直线运动的数控机床。
数控车床广泛应用于车削、镗孔、攻丝等加工工艺中。
2.数控铣床加工数控铣床是一种利用刀具旋转和工件直线运动的数控机床。
数控铣床广泛应用于平面、曲面、凸轮等复杂工件的加工。
3.数控磨床加工数控磨床是一种利用磨料切削工件的数控机床。
数控磨床广泛应用于高精度、高表面光洁度要求的工件加工。
4.数控电火花加工数控电火花加工是一种利用电火花放电去除工件材料的加工方法。
数控电火花加工适用于超硬材料、复杂曲面等加工。
四、数控机床的基本原理1.数控机床的运动控制数控机床的运动控制包括轴线性插补、圆弧插补、螺旋线插补等。
通过数控系统计算,控制各个轴向的运动,实现工件的加工。
2.数控机床的加工功能数控机床的加工功能包括车削、铣削、磨削、切割等。
数控机床可以通过不同的刀具、工艺参数实现各种不同形式的加工。
3.数控机床的自动化程度数控机床实现自动化生产的程度取决于数控系统的功能。
高级数控机床具有自动换刀、自动测量、自动校正等功能。
五、数控技术的发展趋势1.智能化随着人工智能、大数据等技术的发展,数控技术将更加智能化,能够自动学习和调整加工参数,实现更高效、更稳定的加工。
1、数控系统 (2)2、基本构成 (2)1、硬件结构 (3)2、软件结构 (4)3、基本分类 (5)1、加工工艺分类 (5)2、伺服系统分类 (6)3、功能水平分类 (7)4、数控系统选型因素 (7)5、五轴数控功能 (8)1、工件坐标旋转 (8)2、RTCP (10)3、刀具矢量编程 (11)4、五轴斜面加工 (12)5、五轴插补 (14)6、空间刀具半径补偿 (15)7、五轴速度平滑 (15)6、工作流程 (16)7、应用举例 (17)1、发那科(FANUC)系统 (17)2、西门子数控系统 (18)3、三菱数控系统 (19)4、华中数控系统简介 (20)8、三菱数控系列功能 (21)C70三菱数控系列 (21)M700V三菱数控系列 (22)M70V三菱数控系列 (22)C64三菱数控系列 (23)C6三菱数控系列 (23)E60三菱数控系列 (23)M60S三菱数控系列 (23)9、发展 (24)1 电子元件技术的发展 (25)2 软件的应用 (25)3 数控标准的引入 (25)4 伺服技术的发展 (25)5 自动编程的采用 (26)6 DNC概念的引入及发展 (26)7 可编程控制器的采用 (26)8 传感器技术的发展 (27)9 开放技术的产生 (27)10、常见故障分析 (27)位置环 (27)伺服驱动系统 (28)电源部分 (28)1、数控系统数控系统是数字控制系统简称,英文名称为Numerical Control System,早期是与计算机并行发展演化的,用于控制自动化加工设备的,由电子管和继电器等硬件构成具有计算能力的专用控制器的称为硬件数控(Hard NC)。
20世纪70年代以后,分离的硬件电子元件逐步由集成度更高的计算机处理器代替,称为计算机数控系统。
计算机数控(Computerized numerical control,简称CNC)系统是用计算机控制加工功能,实现数值控制的系统。
典型数控系统的结构数控系统是一种精密的自动化控制系统,常用于机床加工中。
典型的数控系统由以下几个组成局部构成:1. 输入设备输入设备是数控系统的接口,负责将操作员输入的指令传递给数控系统进行处理。
常见的输入设备有键盘、鼠标、触摸屏等。
通过输入设备,操作员可以输入加工工艺参数、指令代码等信息。
2. 主机控制器主机控制器是数控系统的核心局部,主要负责解析操作员输入的指令,并将其转化为机床可以执行的控制信号。
主机控制器通常由一台工业级计算机构成,搭载了专门的数控系统软件。
主机控制器通过与输入设备、执行设备的通信,实现对机床各轴的控制。
在控制信号输出之前,主机控制器还会对输入的指令进行加工优化,以提高加工效率和精度。
3. 伺服系统伺服系统是数控系统中的一个重要局部,它负责将主机控制器输出的控制信号转化为机床各轴的运动。
伺服系统通常由伺服电机、编码器、控制器等组成。
伺服电机是驱动机床实现运动的关键设备,它可以精确控制机床轴的位置、速度和加速度。
编码器那么用来反响轴的实际位置和速度信息给控制器,以便调整控制信号,实现精密的运动控制。
运动系统是机床中的关键局部,它负责实际的加工运动。
运动系统通常由多个轴组成,每个轴都有相应的伺服电机和传动装置来实现运动。
在数控系统中,常见的轴包括进给轴和主轴。
进给轴负责工件的相对移动,而主轴那么负责工具的转动。
运动系统通过与伺服系统的配合,实现高精度、高速度的加工运动。
5. 显示与通信设备为了方便操作员的监控与调整,数控系统通常还配备了显示与通信设备。
显示设备可以显示当前的加工状态、报警信息等;通信设备那么可以与外部设备进行数据交换,如计算机网络、U盘等。
辅助系统是数控系统中的一局部,用于支持机床加工过程中的其他功能。
常见的辅助系统有冷却系统、润滑系统等。
冷却系统用于冷却切削工具和加工区域,以防止温度过高导致工具损坏或零件变形;润滑系统用于给机床各部件提供充分的润滑,以确保机床正常运转。