非线性控制系统
- 格式:docx
- 大小:1.16 MB
- 文档页数:11
自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。
非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。
非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。
一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。
2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。
3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。
4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。
二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。
2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。
3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。
4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。
5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。
三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。
2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。
3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。
线性与非线性控制系统的性能比较与分析引言:控制系统是指通过一系列的输入和输出信号间的相互关系来实现对被控对象的控制。
其中,线性控制系统和非线性控制系统是两种常见的控制系统类型。
本文将对线性控制系统和非线性控制系统的性能进行比较与分析,以帮助读者更好地了解两者的优劣之处。
一、线性控制系统的性能:1. 频率响应特性:线性控制系统的频率响应特性较为简单,可以使用传统的频率域分析方法进行系统的设计和分析。
例如,可以使用Bode图和Nyquist图等工具评估系统的幅频和相频特性,进一步优化系统的性能。
2. 稳定性分析:线性控制系统的稳定性分析相对较为简单,可以通过分析系统传递函数的根位置来判断系统的稳定性。
常见的稳定性准则包括Routh-Hurwitz准则和Nyquist稳定性判据等。
这使得线性控制系统的设计与分析更加便捷。
3. 控制性能指标:线性控制系统可以使用传统的性能指标来评估其控制性能。
常用的性能指标有超调量、调节时间和稳态误差等。
这些指标可以帮助工程师在系统设计过程中更好地优化系统的性能。
二、非线性控制系统的性能:1. 非线性特性:与线性控制系统相比,非线性控制系统具有更为复杂的特性。
由于非线性元件的存在,系统的频率响应不再是简单的幅频和相频特性。
因此,频域分析方法在非线性系统的设计和分析中会遇到困难。
2. 稳定性分析:非线性控制系统的稳定性分析比线性控制系统更为复杂,常常需要使用数值方法进行分析。
例如,可以使用Lyapunov稳定性准则来评估非线性系统的稳定性。
此外,也需要考虑系统的局部和全局稳定性。
3. 控制性能指标:非线性控制系统的性能评估相对复杂。
由于系统的非线性特性,传统的性能指标可能不再适用。
因此,需要根据实际情况选择相应的性能指标来评估非线性控制系统的性能。
三、线性与非线性控制系统性能比较与分析:1. 频率响应:线性控制系统的频率响应特性较为直观,可以使用传统的频域分析方法进行判断和优化。
非线性控制系统设计及其应用随着科技的不断发展,控制领域也在不断创新和进步。
其中,非线性控制系统成为当前研究的热点之一。
本文将就非线性控制系统的设计及其应用进行探讨。
一、非线性控制系统的基本概念非线性控制系统是指系统的输出值不仅取决于输入值的大小,还与输出值自身有关系。
例如,当受控对象为非线性系统时,其输出值可能会因某些因素而产生非线性变化,这时需要利用非线性控制方法对其进行调节。
二、非线性控制系统的设计方法1、经典非线性控制设计方法在经典非线性控制设计方法中,通常采用的是PID控制器。
PID控制器是一种常见的自适应控制器,通过对误差信号的反馈作用,使系统实现稳定控制。
在非线性系统中,PID控制器能够通过调节其参数实现对非线性系统的控制。
2、自适应控制方法自适应控制方法是一种实现非线性控制的新方法。
这种方法能够对受控对象的非线性特性进行识别和预测,从而实现对其的控制。
其中,最为流行的是基于神经网络的自适应控制方法。
它能够通过学习过程对非线性系统进行建模,并在实时控制过程中动态调节控制策略,实现对受控对象的精准控制。
3、滑模控制方法滑模控制方法是一种基于控制器设计的非线性控制方法。
滑模控制器能够将受控对象的动态特性与控制器的非线性特性相结合,从而实现对系统的控制。
同时,滑模控制方法是一种较为稳定的控制方法,通常能够在较短的时间内实现对受控对象的精准控制。
三、非线性控制系统在工业生产中的应用1、机器人控制机器人控制是非线性控制系统在工业生产中较为典型的应用。
在工业生产中,机器人往往需要对不同的任务进行操作,如装配、焊接、喷涂等。
这些任务的复杂性较高,机器人控制要求较高的控制精度和响应速度。
非线性控制系统能够通过对机器人运动特性的分析和建模,实现对机器人运动的精准控制。
2、工艺控制工艺控制是非线性控制系统在工业生产中另一种典型的应用。
在工业生产中,某些工艺的控制通常由非线性系统来实现。
例如,化学工业中的酸碱浓度控制、冶金工业中的熔炼过程控制等。
非线性控制系统的研究及应用随着人类科技的不断发展,非线性控制系统已经成为了重要的研究领域。
相比于线性控制系统,非线性控制系统能够更加准确地描述复杂系统的动态行为,因此在很多实际应用场景中具有得天独厚的优势。
一、非线性控制系统的定义及特点非线性控制系统是指控制对象或控制器的函数不符合线性原理的控制系统。
它具有以下特点:1.非线性控制系统是一个典型的时变系统,复杂的非线性控制系统具有高度的不确定性和不可预测性。
2.非线性控制系统通常具有的动态性、复杂性和分析难度高。
3.非线性控制系统在实际应用中非常广泛,例如,飞行器、导弹、卫星、工业过程和人体等控制对象都是非线性的。
总之,非线性控制系统可以看作是一类负责区分和控制系统各种输入、输出量之间非线性关系的控制器。
二、非线性控制系统的研究随着非线性控制系统的实际应用,非线性控制系统研究的重要性日益显现,使得非线性控制系统的理论和应用有很大的进展。
非线性控制系统研究主要包括四个方面:分析、设计、实现和优化。
1.非线性控制系统的分析非线性控制系统的分析主要包括对非线性控制系统的动态性、稳定性和可控性的分析,以及非线性控制系统遇到固有模数或增益的饱和的情况下的问题。
2.非线性控制系统的设计非线性控制系统的设计主要是在非线性模型基础上进行,通过确定控制器的函数,得到非线性控制器的设计方案。
3.非线性控制系统的实现非线性控制系统的实现一般分为两种方法:数学模型仿真和真实系统的实验验证。
模型仿真是通过控制系统的数学模型进行仿真试验,以检查控制系统的性能。
真实系统的实验验证是将非线性控制器部署到实际系统中,对控制器进行实时监控和调节。
4.非线性控制系统的优化非线性控制系统的优化是指通过一系列技巧和方法来改善控制系统的性能和质量。
三、非线性控制系统的应用非线性控制系统的应用非常广泛,如机器人控制、智能交通、航天器控制、化工过程控制、医疗技术等领域均可应用。
以下分别介绍一下其中一些领域的应用。
非线性控制系统设计与应用非线性控制系统是指具有非线性特性的控制系统,其设计和应用可以有效地解决线性控制系统无法处理的问题。
非线性控制系统的设计和应用涉及到非线性系统建模、控制器设计和系统稳定性分析等方面。
本文将从这些方面对非线性控制系统的设计和应用进行探讨。
首先,非线性控制系统的建模是设计的基础。
与线性系统相比,非线性系统的建模更加复杂,因为它们的动态行为可能会随着操作点的变化而发生变化。
常用的非线性模型包括物理模型、数学模型和经验模型等。
在建模过程中,需要采集系统的输入和输出数据,并使用系统辨识方法来估计系统的参数。
常用的辨识方法包括最小二乘法、系统辨识算法和神经网络等。
通过建立准确的非线性模型,可以更好地理解系统的动态行为,从而为控制器设计提供依据。
其次,非线性控制系统的控制器设计是实现系统性能要求的关键。
常用的非线性控制器设计方法包括经验控制方法、自适应控制方法和优化控制方法等。
利用经验控制方法,根据工程师的经验和专业知识,设计控制器的参数和结构。
自适应控制方法则根据系统的动态特性进行调整和优化,以实时地适应系统的变化。
优化控制方法则通过最小化性能指标来设计控制器,以使系统的性能达到最优。
此外,还可以采用模糊控制、神经网络控制和模型预测控制等方法来设计非线性控制器。
最后,非线性控制系统的稳定性分析是确保系统稳定运行的关键。
由于非线性系统的复杂性,传统的稳定性分析方法可能无法直接应用。
常用的稳定性分析方法包括Lyapunov稳定性分析、小增益稳定性分析和区域稳定性分析等。
通过对系统的状态方程进行变换和简化,可以利用这些方法来分析和评估系统的稳定性。
稳定性分析可以帮助设计合适的控制策略,以确保系统能在有限的误差范围内保持稳定。
非线性控制系统的应用广泛,涵盖了诸多领域。
在工业领域,非线性控制系统常用于电力系统、化工过程和机械加工等方面。
在军事领域,非线性控制系统可以应用于飞行器、导弹系统和无人机等。
自动控制原理第8章非线性控制系统在自动控制系统中,线性控制系统一直被广泛应用,因为线性系统的行为可预测且易于分析。
然而,在实际的控制系统中,往往存在着一些非线性特性,如非线性环节、非线性传感器和非线性负载等。
非线性系统的行为往往更为复杂,因此需要采用特殊的控制方法来进行控制。
8.1非线性系统的特性非线性系统与线性系统相比,具有以下几个特点:1.非线性特性:非线性系统的输入和输出之间的关系不符合线性定律,而是非线性关系。
这种非线性关系可能是由于系统内部的非线性元件或非线性行为导致的。
2.非线性行为:在非线性系统中,系统的行为经常出现不可预测的情况。
当输入信号的幅值较小时,系统的行为可能是线性的,但是当幅值增大时,系统的行为可能会发生剧烈的变化。
3.非线性耦合:在非线性系统中,不同输入变量之间可能存在耦合关系。
当一个输入变量发生改变时,可能会影响到其他输入变量的行为。
4.非线性稳定性:在非线性系统中,稳定性分析比线性系统更为困难。
非线性系统可能存在多个平衡点或者极限环,而且稳定性分析需要考虑到非线性因素的影响。
8.2非线性系统的建模对于非线性系统的控制,首先需要对系统进行建模,以便进行后续的分析和设计。
非线性系统的建模可以采用两种常用的方法:数学建模和仿真建模。
1.数学建模:数学建模是利用数学模型来描述非线性系统的行为。
非线性系统的数学建模可以采用微分方程、差分方程、泰勒级数展开、输入输出模型等多种方法。
2.仿真建模:仿真建模是利用计算机仿真软件来模拟非线性系统的行为。
通过建立系统的数学模型,并利用计算机进行仿真,可以得到系统的输出响应和稳定性分析。
8.3非线性控制方法在非线性控制系统中,常用的控制方法包括自适应控制、模糊控制和神经网络控制等。
1.自适应控制:自适应控制用于处理未知或难以测量的非线性系统。
自适应控制方法通过不断调整控制器的参数,以适应系统的变化。
2.模糊控制:模糊控制利用模糊逻辑和模糊推理来处理非精确和不确定的输入量。
X
部分混沌吸引子
1. He non 映射
2 . X n 1 PX
n
y n 1
y n 1 qX n
当参数p 1.4,q 0.3时,He non 系统可产生混沌现象,对其进行 Matlab 仿真,
可得Henon 映射的吸引子如图:
图.1 Henon 映射的混沌吸引子y
0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3
图2 Lozi 映射的混沌吸引子
2.Lozi 映射
X n 1 pX n Y n 1
Y n 1 qX n
当参数p 1.7, q 0.5时,Lozi 系统表现为混沌,对其进行Matlab 仿真,可得Lozi 映射的吸引子如图:
-0.2
-0.4
-0.6
半.5
-0.5
20
X 1 X 1 X 2 X 2
X 2
X 1
X 1X
3
X 3
X 3 x 1x 2
当参数 10, 28,
8/3时,Lorenz 系统出现混沌现象,对其进行 Matlab 仿
真,可得Lorenz 系统的混沌吸引子如图:
30 v 20 - 10 - 0、 40
20
图3.1 Lorenz 系统的混沌吸引子(x-y-z)
3. Lorenz 方程
50 40 -40
-20
x
30
图3.3 Lorenz 系统的混沌吸引子(x-z )
图3.2 Lorenz 系统的混沌吸引子(x-y )
20 10 -10 -20
50 45 40 35 30 25 20 15 10 5 0
-5
5
10
15
20
-20
-15
-10
50
-------------------- ' ----------------- L -30 -20 -10
图3.4 Lorenz 系统的混沌吸引子(y-z )
4. Chen 电路
X 1 ax 1 ax 2 X 2
cx 2
c a x 1
x 1x 3
X 3 X 1X 2 bx 3
当参数a 35,b
3,c 28时,Chen 电路系统出现混沌现象,对其进行 Matlab 仿
真,可得Chen 电路系统的混沌吸引子如图:
40
0 10 20 30
y
80
60 -
z 40 -
20 -
0 -
40
20
-40 -40
图4.1 Chen电路系统的混沌吸引子(x-y-z)
图4.2 Chen电路系统的混沌吸引子(x-y)
20
-20
-20
40
图4.3 Chen电路系统的混沌吸引子(x-z)
图4.4 Chen电路系统的混沌吸引子(y-z)5. Rossler 系统
当参数 0.2, 5.7, 0.2时,Rossler 系统出现混沌现象,对其进行Matlab 仿
真,可得Rossler 系统的混沌吸引子如图
25
图5.1 Rossler 系统的混沌吸引子(x-y-z)
12 10 8 6 4 2 0 -2 -4 -6 -8 图5.2 Rossler 系统
的混沌吸引子(x-y)
20 15 10 10
10
-15
-10
5
20
5
-5
-10
-5
5
10
x
25
20
15
z
10
5
x
图5.3 Rossler系统的混沌吸引子(x-z)25
20
15
z
10
5
y
图5.4 Rossler系统的混沌吸引子(y-z)
6. Chua'sCircuits
无1 = -川叭))・
叫=-T2+T3.
五3 = —中先
where p. q >IL 川一门)is “ pim iw linear function with a < Q.b > (=乎> 1,
— r), TI> 1
)|文11 V 1
+ Q|. J i < —1^ One can easily obtain that the system has three equilibrium points at (0.0.0).
(广、0.—亡)一“nd (—G (k 广}- Define = {(广,0. —c). (0* (1〔))』一(\ ()* 广)}.
A simple feedback control law is proposed with k > —pa >0
—W
0,
——后门.
Case 1.
Case 3.
J' £_\ f-i
J- E
X a, .i' G
入申.
n -ii 刁i ■ v i f?。