最新数学一元二次方程的解法以及练习试题专练
- 格式:docx
- 大小:1.81 MB
- 文档页数:14
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。
2. 方程x^2 2x + 1 = 0的解为x = 1。
专题2.6一元二次方程和分式方程的解法及运用(专项练习)一、单选题1.(2021·河南郸城·九年级期中)方程20x x -=的根是()A .1x =B .1x =,0x =C .0x =D .1x =-,0x =2.(2021·全国·九年级专题练习)解分式方程132x 11x-=--,去分母得()A .()12x 13--=-B .()12x 13--=C .12x 33--=-D .12x 23-+=3.(2021·河北滦州·九年级期中)用配方法解一元二次方程2650x x -+=时,下列变形正确的为()A .2(3)14x +=B .2(3)14x -=C .2(3)4x +=D .2(3)4x -=4.(2021·湖北·武汉市洪山区杨春湖实验学校九年级阶段练习)已知m ,n 是x 2-2x -2016=0的两个实数根,则22m n +的值为()A .1008B .2016C .2018D .20205.(2021·湖北随州·九年级阶段练习)用配方法解一元二次方程x 2+8x +7=0,则方程可化为()A .(x +4)2=9B .(x ﹣4)2=9C .(x +8)2=23D .(x ﹣8)2=96.(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是()A .x 2+2x ﹣3=0B .x 2+2x ﹣20=0C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=07.(2021·四川内江·中考真题)某商品经过两次降价,售价由原来的每件25元降到每件16元,已知两次降价的百分率相同,则每次降价的百分率为()A .20%B .25%C .30%D .36%8.(2021·广西河池·中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数由m 的值确定9.(2021·广东海珠·一模)为了能让更多人接种,某药厂的新冠疫苗生产线开足马力,24小时运转,该条生产线计划加工320万支疫苗,前5天按原计划的速度生产,5天后以原来速度的1.25倍生产,结果比原计划提前3天完成任务.设原计划每天生产x 万支疫苗,则可列方程为()A .32032031.25x x =-B .3205320531.25x xx x --=-C .32032031.25x x=+D .3205320531.25x xx x--=+10.(2021·河北滦州·八年级期中)关于x 的方程32211x mx x -=+++无解,则m 的值为()A .﹣5B .﹣8C .﹣2D .511.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格,则下列结论①c =2;②b 2﹣4ac >0③方程ax 2+bx =0的两根为x 1=﹣2,x 2=0④7a +c <0其中正确的有()x …﹣3﹣2﹣112…y…1.8753m1.875…A .①④B .②③C .③④D .②④12.(2021·全国·九年级专题练习)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为()A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-二、填空题13.(2021·全国全国·八年级专题练习)代数式31x -与代数式23x -的值相等,则x =_____.14.(2021·江西·南昌市心远中学八年级期末)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程_____.15.(2021·全国·八年级专题练习)若关于x 的方程322x m x x-=--有增根,则m 的值为________16.(2021·全国·八年级)已知分式方程21+-x ax=1的解为非负数,则a的取值范围是_____.17.(2021·四川万源·八年级期末)若关于x的分式方程2755x ax x-+=--有增根,则a的值为_______18.(2021·江苏姜堰·八年级期中)近年来,我市大力发展城市快速交通,张老师开车从家到学校有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线A的平均速度。
一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。
所以方程的解为x_1 = 7,x_2=-1。
二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。
2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。
3. 然后用直接开平方法,x+3=±4。
- 当x+3 = 4时,x=1。
- 当x + 3=-4时,x=-7。
所以方程的解为x_1=1,x_2 = - 7。
三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。
在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。
1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。
2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。
- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。
- 当取负号时,x=(5-1)/(4)=1。
所以方程的解为x_1=(3)/(2),x_2 = 1。
四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。
2. 则有x-1=0或者x - 2=0。
- 当x-1=0时,x = 1。
- 当x-2=0时,x=2。
所以方程的解为x_1=1,x_2=2。
例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。
专项练习:一元二次方程的定义及解法一、选择题(每小题3分,共30分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x -3=0;③x 2-4+x 5=0;④3x =x 2.其中是一元二次方程的有( )A .1个B .2个C .3个D .4个2.方程3x 2-3x +3=0的二次项系数与一次项系数及常数项之积为( )A .3B .- 3C 3D .-93.方程3x (x -1)=5(x -1)的根为( )A .x =53B .x =1C .x 1=1,x 2=53D .x 1=1,x 2=354.把方程x 2-4x -1=0化为(x +m)2=n 的形式,则m ,n 的值是( )A .m =2,n =-5B .m =2,n =5C .m =-2,n =5D .m =-2,n =-55.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.已知关于x 的一元二次方程x 2-(k +1)x -6=0的一个根是2,则此方程的另一个根和k 的值分别是( )A .3和2B .3和-2C .-3和-2D .-2和37.甲、乙两个同学分别解一道一元二次方程,甲把一次项系数看错了,解得两根为-3和5,乙把常数项看错了,解得两根相等,均为2,则原方程是( )A .x 2+4x -15=0B .x 2-4x -15=0C .x 2+4x +15=0D .x 2-4x +15=08.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0 C .-12≤k <12 D .-12≤k <12且k ≠09.如图,菱形ABCD 的边长是5,两条对角线交于点O ,且AO ,BO 的长分别是关于x 的方程x 2+(2m -1)x +m 2+3=0的根,则m 的值为( )A .-3B .5C .5或-3D .-5或310.已知m ,n 是一元二次方程x 2-3x +2=0的两个实数根,则2m 2-4mn -6m 的值为( )A .-12B .10C .-8D .-10二、填空题(每小题3分,共18分)。
2024年中考数学二轮复习模块专练—一元二次方程(含答案)a a【例1】试卷第2页,共8页【例1】【例1】【例1】【例1】试卷第4页,共8页试卷第6页,共8页三、解答题(2023·辽宁鞍山·校考一模)26.解下列方程:(1)22410x x +-=.(2)()263x x x -=-;(2023·湖北襄阳·统考中考真题)27.关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.(2023·浙江杭州·统考中考真题)28.设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.(2023·四川遂宁·统考中考真题)29.我们规定:对于任意实数a 、b 、c 、d 有[,][,]a b c d ac bd *=-,其中等式右边是通常的乘法和减法运算,如:[3,2][5,1]352113*=⨯-⨯=.(1)求[4,3][2,6]-*-的值;(2)已知关于x 的方程[,21][1,]0x x mx m -*+=有两个实数根,求m 的取值范围.(2023·湖北·统考中考真题)30.已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.(2023·四川南充·统考中考真题)试卷第8页,共8页参考答案:1.B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.2.C【分析】利用一元二次方程根的定义,确定出m 的值即可.【详解】解:∵关于x 的一元二次方程()22390m x x m -++-=的一个根为0,∴30m -≠且290m -=,解得:3m =-.故选:C .【点睛】本题考查了一元二次方程的解,一元二次方程的定义,一元二次方程的一般形式为答案第2页,共21页231841x x =-+()23314x =-+;∵()230x -≥,∴222x y z ++的最小值是14,故答案为14.【点睛】本题考查配方法的应用.将代数式转化为只含x 的代数式,利用配方法求最值,是解题的关键.6.6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案.【详解】∵a -b 2=4∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥∴4a ≥当a=4时,()213a --取得最小值为6∴222a a --的最小值为6∵22231422a a ab a --=-+-∴22314a b a -+-的最小值6故答案为:6.答案第4页,共21页答案第6页,共21页答案第8页,共21页【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.13.C【分析】根据配方法,先将常数项移到右边,然后两边同时加上4,即可求解.【详解】解:2410x x --=移项得,241x x -=两边同时加上4,即2445x x +=-∴2(2)5x -=,故选:C .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.14.A【分析】根据整式的加减化简,然后根据配方法得出P Q -()2=110x -+>,即可求解.【详解】解:∵2P x x =-,2Q x =-∴P Q -()()222222110x x x x x x =---=-+=-+>∴P Q -的值大于0,故选:A .【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.15.A【分析】由已知得224y x =-,注意x 的取值范围,代入222x y x ++再配方,利用非负数的性质即可求解.【详解】解:∵2240y x -+=,∴224y x =-,且240x -≥即2x ≥,∴2222422x y x x x x+=-+++2448x x +=+-()228x =+-,∵()220x +≥,2x ≥∴当2x =时,222x y x ++的最小值是8,故选:A .【点睛】本题考查的是配方法的应用,非负数的性质,代数式求值,掌握完全平方公式及确定x 的取值范围是解决问题的关键.16.B【分析】利用配方法表示出B A -,以及2B A =时,用含n 的式子表示出x ,确定x 的符号,进行判断即可.【详解】解:∵226A x x n =++,2224B x x n =++,∴()2222246B A x x n x x n -=+++-+2222246x x n x x n =--++-答案第10页,共21页解得0x =或40x y +-=,即0x =或4x y +=,①错误;由243x mxy x x +-=可得()7x my x x +=,∵无论x 取任何实数,等式243x mxy x x +-=都恒成立,∴7x my +=,②正确;2245,47x xy x y xy y +-=+-=两式相加可得:2224412x xy y x y ++--=即2()4()12x y x y +-+=令t x y =+,则24120t t --=,解得16t =,22t =-即2x y +=-或6x y +=,③错误;由22440x xy x y xy y +-+--≤可得22(2)(2)8x y -+-≤正整数解为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),总共有16个,④错误正确的个数为1,故选:A【点睛】本题主要考查了整式加减,二元一次不等式的解,完全平方公式,一元二次方程的解,解题的关键是熟练掌握相关运算法则以及灵活运用完全平方公式.19.5【分析】:把1x =代入方程260x mx +-=,求出关于m 的方程的解即可.【详解】把1x =代入方程260x mx +-=,得160m +-=,解得5m =.故答案为:5.【点睛】本题考查了一元二次方程的解.能使一元二次方程左右两边相等的未知数的值是一答案第12页,共21页答案第14页,共21页答案第16页,共21页答案第18页,共21页答案第20页,共21页。
2024-2025学年苏科版数学九年级上册1.2一元二次方程的解法 (因式分解法同步基础练习)一、选择题(本题共8小题) 1.方程2x x =的解是( ) A .1x =B .0x =C .11x =,20x =D .12x =-20x =2.一元二次方程x (x+2)=0的解是( ) A .x 1=x 2=0 B .x 1=x 2=2 C .x 1=2,x 2=0D .x 1=﹣2,x 2=03.用因式分解法解方程,下列方法中正确的是( ) A .(2x -2)(3x -4)=0 , ∴2x -2=0或3x -4=0 B .(x+3)(x -1)=1 ,∴x+3=0或x -1=1 C .(x -2)(x -3)=2×3 , ∴x -2=2或x -3=3 D .x(x+2)=0 ,∴x+2=04.下列方程能用因式分解法求解的有( )①2x x =;②2104x x -+=;③230x x --=;④2(32)16x +=.A .1个B .2个C .3个D .4个5.用分组分解法将222x xy y x --+分解因式,下列分组不恰当的是( )A .()()222x x y xy --+ B .()()222x xy y x --+ C .()()222x y xy x ++--D .()()222x x xy y ---6.关于x 的方程x (x ﹣1)=3(x ﹣1),下列解法完全正确的是( )ABCD两边同时除以(x ﹣1)得,x =3整理得,x 2﹣4x =﹣3∵a=1,b =﹣4,c =﹣3,b 2﹣4ac =28∴x =4282±=2±7整理得,x 2﹣4x =﹣3配方得,x 2﹣4x+2=﹣1 ∴(x ﹣2)2=﹣1∴x ﹣2=±1∴x 1=1,x 2=3 移项得,(x ﹣3)(x﹣1)=0∴x ﹣3=0或x ﹣1=0 ∴x 1=1,x 2=3A .AB .BC .CD .D7.若菱形ABCD 的一条对角线长为12,边CD 的长是方程x 2﹣12x+35=0的一个根,则该菱形ABCD 的周长为( ) A .20B .24C .28D .20或288.解一元二次方程x 2+px+q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( ) A .x 2+2x ﹣3=0 B .x 2+2x ﹣20=0 C .x 2﹣2x ﹣20=0 D .x 2﹣2x ﹣3=0二、填空题(本题共8小题) 9.方程320x x +=的解是 .10.一元二次方程x(x ﹣5)=x ﹣5的解为___________. 11.如果代数式22x x ++与52x -的值相等,那么x=______.12.如果x 满足一元二次方程()()450x x -+=,则代数式4x -的值是______.13.一个三角形的两边长分别为3和9,第三边的长为一元二次方程214480x x -+=的一个根,则这个三角形的周长为____.14.若关于x 的一元二次方程()2215320m x x m m -++-+=的常数项为0,则m =______.15.已知关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为常数,且0a ≠),此方程的解为12x =,23x =.则关于x 的一元二次方程2930ax bx c -+=的解为______.16.关于x 的方程ax 2﹣2bx ﹣3=0(ab ≠0)两根为m ,n ,且(2am 2﹣4bm+2a )(3an 2﹣6bn ﹣2a )=54,则a 的值为 . 三、解答题(本题共8小题) 17.用因式分解法解方程: (1)x 2﹣8x+15=0; (2)x 2+4x ﹣7=0.18.解方程:(1) ()223240x x --+= (2)24810x x -+=19.以下是圆圆解方程的具体过程:()()2323x x -=-的具体过程,方程两边同除以()3x -,得32x -=,移项,得5x =,试问圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.20.阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 【问题】解方程:2262680x x x x ----=. 【提示】可以用“换元法”解方程. 解:设26x x t -=(t ≥0),则有226x x t -=, 原方程可化为:2280t t --=, 【续解】21.阅读例题,解答问题:例:解方程220x x --=.解:原方程化为220x x --=.令y x =,原方程化成220y y --= 解得12y =,21y =-(不合题意,舍去).2x ∴=.2x ∴=±.∴原方程的解是12x =,22x =- 请模仿上面的方法解方程:()215160x x ----=.22.解方程:(1)解方程:()()2323x x x -=-;(2)关于x 的一元二次方程24250x x m --+=有两个实数根1x ,2x ,并且12x x ≠. ①求实数m 的取值范围;②满足212126x x x x m ++=+,求m 的值.23.通过学习,我们知道常用的因式分解的方法有提公因式法和公式法,与此同时,某些多项式只用上述一种方法无法因式分解,下面是甲、乙两位同学对多项式进行因式分解的过程. 甲:222x xy x y +--()2(22)x xy x y =+-+(先分成两组)()2()x x y x y =+-+ ()(2)x y x =+-.乙:2221a b b -+-()2221a b b =--+(先分成两组)22(1)a b =-- (1)(1)a b a b =+--+.两位同学分解因式的方法叫做分组分解法,请你仔细观察并对以下多项式进行因式分解, (1)试用上述方法分解因式:222m mn n ma na ++++. (2)已知14x y +=,且32230x x y xy y +--=,求x y -.24.【材料阅读】利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a b c d 、、、为常数的二次三项式,此种因式分解是把二次三项式的二次项系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解因式的方法称为十字相乘法.例如,将二次三项式221112x x ++的二次项系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题: 【应用新知】(1)用十字相乘法分解因式:2310x x +-; (2)用十字相乘法分解因式:25136x x --; 【拓展提升】(3)结合本题知识,分解因式:()()26720x y x y +-+-.。
解一元二次方程计算题专项训练(50道)目录【训练一、配方法】 (1)【训练二、公式法】 (8)【训练三、因式分解法】 (15)【训练一、配方法】1.用配方法解下列方程:(1)2230x x -++=;(2)2118022x x -+=.(1)214240x x ++=;(2)21130x x -=-;(3)228=0x x --;(4)210110--=.x x()2536x -=56x -=±,∴1211,1x x ==-.3.用配方法解方程:()()23616x x +-=.5.用配方法解方程245=0x x --.【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法,掌握配方法解方程是关键.运用配方法求解即可.【详解】解:方程移项得:245x x -=,配方得:2449x x -+=,即()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.6.用配方法解方程:2220x mx m +-=.(1)2440x x ++=;(2)22320x x -+=.8.解方程:2340+-=(用配方法)x x【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法;掌握配方法解方程是关键.【详解】解:方程变形得:245x x -=,即2449x x -+=,变形得:()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.14.用配方法解方程:23210x x --=.【训练二、公式法】16(1)()()2121x x +-=;(2)()223220x x x -+=+.(1)231y +=;(2)23210x x ++=;(3)()()()33211x x x x -=-+.(1)2120--=;x x(2)2x x+-=;2530 (3)2x x-+=;2770(4)210x--=.21.(用公式法)解一元二次方程:2x x--=.2630(1)2120--=;x x(2)2+-=;x x2530(3)2-+=.x x277024.用公式法解方程:.--=460 x x--=x x2029.解方程:2290x x --=(用公式法)410x x -+=【训练三、因式分解法】31.(1)用公式法解方程:2470x x --=;(2)用因式分解法解方程:()220x x x -+-=.(1) ()4312x x x +=+;(2) ()24220x x ---=;(3)()()2291250x x -+-=.33.解方程:2323230x x ----= 【答案】10x =,22x =【分析】本题考查了一元二次方程的解法,将原方程化成一元二次方程的一般形式是解答本题的关键.先将原方程化成一元二次方程的一般形式,然后再用因式分解法解答即可.【详解】解:()()22323230x x ----=241296430x x x -+-+-=2480x x -=()420x x -=40x =或20x -=\10x =,22x =.34.解方程:(1)2(3)3x x x -=-;(2)(1)(2)1x x +-=.(1)22350x x --=;(2)2(5)3(5)x x x -=-.【答案】126,1x x ==-【分析】本题主要考查解一元二次方程,将方程整理为2560x x --=,再运用因式分解法求解即可.【详解】解:22(2)+6x x x x -=+,22246x x x x -=++,222460x x x x ----=,2560x x --=,()()610x x -+=,60,10x x -=+=,∴126,1x x ==-.37.解方程 ()()252552+60x x ---=(1)(3)30x x x -+-=(2)2410x x -+=(1)263x x -= ;(2)()25410x x x -=-.(1)2410x x -+=;(2)2(4)5(4)x x +=+;(3)26061x x -=-;(4)2230x x +-=.41.解方程:()()2131x x x +=+.42.解方程:2121x x -=-.(1)()()2(31)23x x x -+=-.(2)(1)(2)2(2)0x x x +-+-=(3)3(1)22x x x-=-(1)22410x x --=.(2)()()2312y y --=(2)解:∵()()2312y y --=,∴223612y y y --+=,∴2560y y --=,∴()()610y y -+=,∴60y -=或10y +=.解得16y =,21y =-.45.解方程:(1)()2116x +=;(2)()()215140x x ---+=.(1)2450x x --=;(2)3(1)2(1)x x x -=-.(1)()()3239x x x +-=--(2)22980x x -+=(1)2316x x =.(2)22740x x +-=.(1)()234x x x -=-.(2)()22239x x -=-.()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==50.解方程432625122560x x x x -+++=.。
人教版九年级数学上册一元二次方程解法专题练习题1.解一元二次方程1、x(x+4)=5(x+4)将5(x+4)移到等式左边,得到x(x+4)-5(x+4)=0,化简得到(x-1)(x-5)=0,因此x=1或x=5.2、(x-2)=3(x-2)将3(x-2)移到等式左边,得到(x-2)-3(x-2)=0,化简得到-2x+4=0,因此x=2.3、x(x-1)=2(x+1)(1-x)将2(x+1)(1-x)移到等式左边,得到x(x-1)-2(x+1)(1-x)=0,化简得到3x^2-3x-2=0,根据求根公式,得到x=(3+√17)/6或x=(3-√17)/6.4、2(x-3)=-x(3-x)将-x(3-x)移到等式左边,得到2(x-3)+x(3-x)=0,化简得到-x^2+x-6=0,根据求根公式,得到x=(√29-1)/2或x=(-√29-1)/2.5、(2x-1)=(3-x)将3-x移到等式左边,得到2x+x-3=0,化简得到x=1.6、3(x-1)=x(x-1)将x(x-1)移到等式左边,得到3(x-1)-x(x-1)=0,化简得到x^2-2x-3=0,根据求根公式,得到x=-(√13+1)/2或x=(√13-1)/2.7、x-6x-9=0(配方法)将x-6x-9化简为(x-3)^2-18=0,再将18移到等式左边,得到(x-3)^2=18,根据求根公式,得到x=3+√18或x=3-√18.8、3x=2-5x(公式法)将2-5x移到等式左边,得到3x+5x-2=0,化简得到8x-2=0,因此x=1/4.9、x+2x-1=0将x+2x-1化简为3x-1=0,因此x=1/3.10、x-4x+1=0将x-4x+1化简为-3x+1=0,因此x=1/3.11、(x-1)-2(x-1)=15将2(x-1)移到等式左边,得到(x-1)-2(x-1)-15=0,化简得到-3x-14=0,因此x=(-14)/(-3)=14/3.12、-3x+4x+1=0将-3x+4x化简为x,因此x=-1.13、2x^2+3=7x将7x移到等式左边,得到2x^2-7x+3=0,根据求根公式,得到x=(7+√13)/4或x=(7-√13)/4.14、(1-2x)^2=x^2-6x+9将右边的x^2-6x+9移到等式左边,得到(1-2x)^2-x^2+6x-9=0,化简得到3x^2-10x-8=0,根据求根公式,得到x=(5+√73)/3或x=(5-√73)/3.15、3x^2-6x+1=0(用配方法)将3x^2-6x+1化简为(√3x-1)^2=0,因此x=1/√3.16、x(x+4)=8x+12将8x+12移到等式左边,得到x^2-4x-3=0,根据求根公式,得到x=(4+√28)/2或x=(4-√28)/2.17、x^2-2x=2x+1将2x+1移到等式左边,得到x^2-4x-1=0,根据求根公式,得到x=(2+√6)或x=(2-√6)。
专题21.4 一元二次方程的解法(精选精练100题)(专项练习)【题型目录】1、直接开平方法解一元二次方程(1-20题);2、配方法解一元二次方程(21-40题);3、公式法解一元二次方程(41-60题);4、因式分解法解一元二次方程(61-80题);5、换元法解一元二次方程(81-90题);6、解可化以一元二次方程的分式方程(91-100题).四、因式分解法解一元二次方程1.用因式分解法解方程:(1)2411x x =;(2)()2224x x -=-2.用因式分解法解下列方程:(1)()()()262x x x --=-;(2)()()22167920x x --+=.3.用因式分解法解下列方程:(1)()()120x x +-=;(2)()()3521127x x x --=-+.4.用因式分解法解下列方程:(1)269x x -=-;(2)224(3)25(2)0x x ---=.5.用因式分解法解下列方程:(1)250x x +=;(2)(5)(6)5x x x --=-.6.用因式分解法的方法解下列方程:(1)22150x x --= ;(2)2326x x (+)=+7.因式分解法解方程:(1)()()23525x x -=-;(2)()()22200abx a b x ab ab -++=¹;8.用因式分解法解下列方程:(1)()2236x x +=+;(2)231212x x +=;(3)()223240x x +-=;(4)()()()521123x x x -=-+.9.用因式分解法解下列一元二次方程:(1)21502x x -=;(2)()()23727x x -=-;(3)()22210x x +-=.10.用因式分解法解下列方程:(1))23x x =;(2)()()221210x x x ---=.11.用因式分解法解下列方程.(1)2560x x --=(2)3(2)2(2)x x x -=-12.用因式分解法解下列方程:(1)()2218x x -=-;(2)()()2222x x x -=-;(3)23x -=-.13.用因式分解法解下列方程:(1)2350y y -=;(2)2412x x =;(3)296x x +=-;(4)229(1)x x =-.14.用因式分解法解下列方程.(1)()()222320x x ---=;(2)()2211t t -+=.15.用因式分解法解下列方程:(1)()2212x x -=;(2)()()222310y y +--=.16.用因式分解法解下列方程:(1)(2)(4)0x x +-=; (2)4(21)3(21)x x x +=+.17.用因式分解法解下列方程:(1)(2)(23)6x x --=;(2)()44x x -=-.18.用因式分解法解方程:(1)3x (2x +1)=2(2x +1);(2)22(3)(52)x x -=-.19.用因式分解法解方程.(1)22437365x x x x +-=--(2)()233x x x -=-20.用因式分解法解一元二次方程(1)()()41570x x +-=;(2)2(23)4(23)x x +=+.五、换元法解一元二次方程21.()()233320y y -+-+=.22.解方程:2231712x x x x -+=-.23.若实数x ,y 满足2222()(2)3x y x y ++-=,求22x y +的值.24.解方程:226212x x x x--=-.25.解方程()225160x --=.26.如果2222()(2)3x y x y ++-=,请你求出22xy +的值.27.阅读下面的例题,回答问题:例:解方程:220x x --=令y x =,原方程化成220y y --=解得122,1y y ==-(不合题意,舍去) 2,2x x \=\=±\ 原方程的解是122,2x x ==-.请模仿上面的方法解方程:()21160x x ----=28.阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =.例:4260x x --=,解:令2x y =,原方程化为260y y --=,解得12y =-,23y =,当12y =-时,22x =-(无意义,舍去)当23y =时,23x =,解得x =\原方程的解为1x =2x =.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即:换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()()22225260x x x x ----=;(2)()23511x x ++-=.29.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如: 解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.30.换元法是数学中的一种解题方法.若我们把其中某些部分看成一个整体,用一个新字母代替(即换元),则能使复杂的问题简单化.如:解二元一次方程组2()3()22()3x y x y x y x y ++-=-ìí+--=î,按常规思路解方程组计算量较大.可设x y a +=,x y b -=,那么方程组可化为23223a b a b +=-ìí-=î,从而将方程组简单化,解出a 和b 的值后,再利用x y a +=,x y b -=解出x 和y 的值即可.用上面的思想方法解方程:(1)222432x x x x ++=+;(2)2250x x ++-=六、解可化以一元二次方程的分式方程31.解分式方程:2216111x x x +-=--.32.解分式方程:221226x x x x+++=.33.解分式方程:11133x x +=+-34.解分式方程:()2218111x x x --=+-35.解分式方程:241142x x +=--.36.解分式方程:224124x x x -=-+-37.解分式方程21211x x x -=++38.解分式方程:252112x x x+-=3.39.解分式方程:2164122x x x x +=--40.解分式方程:2212111x x x -+=--1.(1)10x =,2114x =(2)12x =,24x =【分析】本题考查了因式分解法解一元二次方程,掌握因式分解的方法是解题的关键;(1)先移项然后提公因式,根据因式分解法解一元二次方程;(2)先移项然后提公因式,根据因式分解法解一元二次方程,即可求解.【详解】(1)解:移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =.(2)移项,得()22240x x --+=,即()()22220x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.2.(1)12x =,27x =(2)1227x =,234x =【详解】(1)方程左右两边都有因式()2x -,先移项,然后利用提公因式法将等式的左边因式分解;(2)直接利用平方差公式将方程的左边因式分解.(1)移项,得()()()2620x x x ----=,∴()()2610x x ---=,即()()270x x --=,∴20x -=或70x -=,∴12x =,27x =.(2)因式分解,得()()42836428360x x x x -++---=.化简,得()()072234x x --=,∴7220x -=或340x -=,∴1227x =,234x =.3.(1)11x =-,22x =(2)112x =-,223x =【详解】解:(1)()()120x x +-=Q ,10x \+=或20x -=,11x \=-,22x =.(2)原方程可化为2620x x --=,()()21320x x \+-=,210x \+=或320x -=,112x \=-,223x =.4.(1)123x x ==(2)12164,73x x ==【分析】(1)先移项,然后利用完全平方公式因式分解求解;(2)先移项,然后直接开平方即可解答此方程.【详解】(1)解:269x x -=-2690x x -+=()230x -=解得:123x x ==;(2)解:224(3)25(2)0x x ---=[][]220()5232()x x --=-,[][]2(3)5(2)2(3)5(2)0x x x x -+----=,()5()0232x x --+=或()5()0232x x ---=,解得12164,73x x ==.【点睛】本题考查解一元二次方程,解题的关键是明确方程的特点,选择合适的方法解方程.5.(1)10x =,25x =-(2)15=x ,27x =【分析】(1)直接用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】(1)∵250x x +=∴()50x x +=∴0x =或50x +=∴10x =,25x =-(2)∵(5)(6)5x x x --=-∴()(5)(6)50x x x ----=∴(5)(61)0x x ---=∴50x -=或610x --=∴15=x ,27x =【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解答本题的关键.6.(1)15x =,23x -=;(2)13x -=,21x -=【分析】(1)直接利用因式分解法求解即可;(2)先移项,再利用因式分解法求解即可.【详解】(1)解:22150x x --= ,(x ﹣5)(x +3)=0,则x ﹣5=0或x +3=0,∴15x =,23x -=;(2)解:2326x x ++()=,2323x x ++()=(),移项,得23230x x ++()﹣()=,则(x +3)(x +1)=0,∴x +3=0或x +1=0,∴1231x x --=,=.【点睛】本题考查了因式分解法求解一元二次方程,熟练进行因式分解是解题的关键.7.(1)121353x x ==,(2)12b a x x a b==【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:()()23525x x -=-方程变形为:()()23525x x -+-=0,∴()()50532x x éù+ë-=û-,∴()()53130x x --=,∴12135,3x x ==;(2)解:()()22200abx a b x ab ab -++=¹()()0ax b bx a --=,∵0ab ¹,∴0,0a b ¹¹,∴12,ba x x a b==【点睛】本题考查的知识点是解一元二次方程,掌握用因式分解法解一元二次方程是解此题的关键.12(2)122x x ==(3)12x =-,225x =-(4)112x =,28x =-【分析】利用因式分解法解一元二次方程即可.【详解】(1)原方程可变形为()()2230x x ++-=,即()()210x x +-=,所以20x +=或10x -=,即12x =-,21x =.(2)原方程可变形为2440x x -+=,即()220x -=,所以122x x ==.(3)原方程可变形为()()3223220x x x x +-++=,即()()2520x x ++=,所以20x +=或520x +=,即12x =-,225x =-.(4)原方程可变形为()()21530x x -++=,即()()2180x x -+=,210x -=或80+=x ,∴112x =,28x =-.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握适合因式分解法解一元二次方程——把方程的右边化为0,左边能通过因式分解化为两个一次因式的积的形式的方程是解题的关键.12(2)17x =,2193x =(3)113x =-,21x =-【分析】(1)利用提公因式法进行因式分解,求解即可;(2)通过移项,提公因式法进行因式分解,求解即可;(3)利用平方差公式,进行因式分解,求解即可.【详解】(1)解:21502x x -=因式分解,得1502x x æö-=ç÷èø.于是0x =,1502x -=,解得10x =,210x =;(2)()()23727x x -=-移项,得()()237270x x ---=,因式分解,得()()73720x x --+=éùëû,于是70x -=,3190x -=,解得17x =,2193x =;(3)()22210x x +-=因式分解,得()()21210x x x x éùéù+++-=ëûëû,于是310x +=,10x +=,解得113x =-,21x =-.【点睛】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的有关方法.10.(1)120x x =,(2)12112x x ==,【分析】利用因式分解法解方程即可.【详解】(1)解:∵)23x x =,∴)230x x -=,∴)310x x éù-=ëû,∴)310x -=或0x =,解得120x x ==,;(2)解:∵()()221210x x x ---=,∴()()21210x x x ---=,即()()1210x x --=,∴10x -=或210x -=,解得12112x x ==,.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.11.(1)18x =,27x =-(2)12x =,223x =【分析】(1)首先把方程变形可得(8)(7)0x x -+=,进而得到两个一元一次方程,然后分别求出x 的值即可;(2)首先对方程进行整理,得出3(2)2(2)0x x x ---=,再因式分解可得(2)(32)0x x --=,然后得出两个一元一次方程,求解即可得出答案.【详解】(1)2560x x --=,(8)(7)0x x \-+=,80x \-=或70x +=,18x \=;27x =-;(2)3(2)2(2)x x x -=-,移项,得3(2)2(2)0x x x ---=,(2)(32)0x x \--=,20x \-=或320x -=,12x \=;223x =.【点睛】本题考查用因式分解法解一元二次方程,熟练掌握用因式分解法解一元二次方程的方法和步骤是解题关键.12.(1)1212x x ==-(2)12x =,22x =-(3)12x x ==【分析】(1)先移项,再把括号展开进行因式分解,即可求解;(2)先移项,再提取公因式()2x -进行因式分解,即可求解;(3)先移项,再用完全平方公式进行因式分解,即可求解.【详解】(1)解:()22180x x +-=,241840x x x -+=+,24410x x ++=,()2210x +=,210x +=,21x =-,1212x x ==-.(2)解:()()22220x x x ---=,()()2220x x x ---=,()()220x x ---=,20x -=或20x --=,12x =,22x =-.(3)解:230x -+=,(20x =,0x =,12x x ==【点睛】本题主要考查了用因式分解法求解二元一次方程,解题的关键是熟练掌握因式分解的方法.13.(1)1250,3y y ==(2)120,3x x ==(3)123x x ==-(4)1211,42x x ==-【分析】(1)根据题意,利用因式分解法解一元二次方程;(2)根据题意,利用因式分解法解一元二次方程;(3)根据题意,利用因式分解法解一元二次方程;(4)根据题意,利用因式分解法解一元二次方程即可求解.【详解】(1)解:2350y y -=,()350y y -=,解得:1250,3y y ==;(2)解:2412x x =,24120x x -=,()430x x -=,解得:120,3x x ==;(3)解:296x x+=-2690x x ++=即()230x +=,解得:123x x ==-;(4)解:229(1)x x =-,()22910x x --=,即()()22310x x --=,∴()()31310x x x x +--+=,即()()41210x x -+=,解得:1211,42x x ==-.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.14.(1)125,13x x ==(2)1211,2t t ==【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.【详解】(1)解:()()222320x x ---=,∴()()()()2322320x x x x -+--éùé-ùëûëû-=,∴()()3510x x --=,∴350x -=或10x -=,∴125,13x x ==.(2)解:()2211t t -+=∴()22110t t -+-=,∴()()1210t t --=,∴1211,2t t ==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.123(2)1213,42y y =-=【分析】(1)根据因式分解法解一元二次方程;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:移项,得()22120x x --=,因式分解,得()()12120x x x x -+--=,得10,130x x -=-=或,解得:1211,3x x ==;(2)解:因式分解,得()()2312310y y x y ++-+-+=,合并同类项,得()()41230y y +-+=,得410230y y +=-+=或,解得:1213,42y y =-=.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.16.(1)12=2,=4x x -;(2)1213,24x x =-=.【分析】运用因式分解法解一元二次方程即可.【详解】解:(1)∵(2)(4)0x x +-=;∴20x +=,40x -=,∴12x =-,24x =;(2)4(21)3(21)x x x +=+,4(21)3(21)0x x x +-+=,(21)(43)0x x +-=,∴210x +=或430x -=,∴112x =-,234x =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解的方法是解本题的关键.122(2)122x x ==【分析】(1)先化为一般形式,再利用因式分解法解一元二次方程;(2)先化为一般形式,再利用因式分解法解一元二次方程即可求解.【详解】(1)解:(2)(23)6x x --=,223466x x x --+=,即2270x x -=,∴()270x x -=,解得:12720,x x ==;(2)解:()44x x -=-,即2440x x -+=,()220x -=,解得:122x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.18.(1)1x =-12,2x =23;(2)1x =2,2x =83.【分析】(1)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值;(2)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】(1)解:∵3x (2x +1)-2(2x +1)=0,∴(2x +1)(3x -2)=0,∴2x +1=0或3x -2=0,解得1x =-12,2x =23;(2)解:∵22(3)(52)x x -=-,∴22(3)(5)02x x --=-,∴(352)(3520)x x x x +---+=-,即(2)(308)x x --=,∴2-x =0或3x -8=0,解得1x =2,2x =83.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.19.(1)113x =-,213x =(2)112x =,23x =【分析】(1)先将原方程化成一般式,然后再因式分解法求解即可;(2)先将原方程化成一般式,然后再因式分解法求解即可.【详解】(1)解:22437365x x x x +-=--2910x -=(3x +1)(3x -1)=03x +1=0,3x -1=0113x =-,213x =.(2)解:()233x x x -=-2263x x x -=-22730x x -+=(2x -1)(x -3)=02x -1=0,x -3=0112x =,23x =.【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.20.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可;(2)将一元二次方程化为两个一元一次方程即可.【详解】(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程.21.2y =或1y =【分析】本题考查了解一元二次方程的方法,将()3y -看作一个整体,设3y t -=,利用因式分解法求得t 的值,进而即可求得y .【详解】解:设3y t -=,则原方程即2320t t ++=,∴()()120t t ++=,∴10t +=或20t +=,解得1t =-或2t =-,∴31y -=-或32y -=-,解得,2y =或1y =.22.1234111,22x x x x =+==-=【分析】本题考查了换元法解可以化为一元二次方程的分式方程等知识.设21x y x =-,原方程变为1732y y +=,解得12y =或23y =.再分别代入21x y x =-,求出1x =或12x =-或2x =,代入最简公分母进行检验即可求解.【详解】解:设21x y x =-,则211x x y-=,原方程变为1732y y +=,去分母得:26720y y -+=,解得12y =或23y =.当2112x x =-时,去分母得:2210x x --=,解得:1x =当2213x x =-时,去分母得:22320x x --=,解得:12x =-或2x =,检验:当1x =()()2110x x x +-¹,当12x =-或2x =时,()()2110x x x +-¹,∴分式方程的解为1234111,22x x x x ===-=.23.223x y +=.【分析】本题主要考查用换元法解一元二次方程,解答本题的关键在于,掌握整体代换思想方法的应用,将22x y +看成一个整体t ,转换成一个关于t 的一元二次方程求解即可.【详解】解:令22x y t +=,则,原方程变为,()23t t -=,即,2230t t --=,()()310t t -+=解得:13t =,21t =-;又220x y +³Q ,∴223x y +=.24.123,1x x ==-【分析】本题考查用换元法解分式方程的能力,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.可根据方程特点设22y x x =-,则原方程可化为260y y --=,解一元二次方程求y ,再求x .【详解】设22y x x =-,则原方程化为61y y-=\260y y --=,即()()320y y -+=,解得12y =-,23y =.当12y =-时,222x x -=-,该方程无解,当23y =时,223x x -=.解得13x =,21x =-,检验:当13x =时,原方程左边69632196=--=-==-右边,当21x =-时,原方程左边61232112=+-=-==+右边,∴13x =,21x =-都是原方程的根,∴原方程的根是13x =,21x =-.25.13x =,23x =-,31x =,41x =-【分析】设25y x =-,求出y 后,可得关于x 的方程,再解方程即可.【详解】设25y x =-,原方程化为2160y -=,解得14y =,24y =-,当14y =时,254x -=,29x =,则13x =,23x =-;当24y =-时,254x -=-,21x =,则31x =,41x =-,所以原方程的解为13x =,23x =-,31x =,41x =-.【点睛】本题考查了换元法和直接开平方法解方程,掌握求解的方法是关键.26.22x y +的值为3【分析】设22x z y +=,然后用因式分解法求解即可,求解时注意220x y +>.【详解】设22x z y +=,∴(2)3z z -=.整理得:2230z z --=,∴(3)(1)0z z -+=.∴121,3z z ==-.∵220z x y =+>,∴1z =- (不合题意,舍去)∴3z =.即22x y +的值为3.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.27.1224x x =-=,【分析】本题主要考查了换元法解一元二次方程,令1m x =-,则原方程化为260m m --=,解方程得到3m =,则1=3x -,据此求解即可.【详解】解:令1m x =-,则原方程化为260m m --=,∴()()320m m -+=,解得3m =或2m =-(不合题意,舍去),∴1=3x -,∴13x -=±,解得1224x x =-=,.28.(1)11x =,21x =,341x x ==(2)10x =、25x =-【分析】本题考查了换元法解一元二次方程;(1)令22x x y -=,原方程化为2560y y --=,进而得出226x x -=,221x x -=-,解方程,即可求解;(2y =,原方程化为2321y y -=,解得113y =-,21y =,进而分别解一元二次方程,即可求解.【详解】(1)解:令22x x y -=,原方程化为2560y y --=,解得16y =,21y =-.当16y =时,226x x -=,解得1x =.当21y =-时,221x x -=-,解得1x =.\原方程的解为:11x =,21x =,341x x ==(2y =,原方程化为2321y y -=,解得113y =-,21y =当113y =-13=-(无意义舍去)当21y =1=,解得10x =、25x =-.\原方程的解为10x =、25x =-.29.(1)1234022x x x x ====-,,;(2)12341133x x x x ==-==-,,,;(3)1x =和12x =-.【分析】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.(1)设x t =,则原方程可化为220t t -=,解方程求得t 的值,再求x 的值即可;(2)设2x a =,则原方程可化为2–1090a a +=,解方程求得a 的值,再求x 的值即可;(3)设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,解方程求得m 的值,再求x 的值,检验后即可求得分式方程的解.【详解】(1)解:设x t =,则原方程可化为:220t t -=.解得:1202t t ==,.当0=t 时,0x =,∴0x =;当2t =时,2x =,∴2x =±.∴原方程的解是:1234022x x x x ====-,,;(2)解:设2x a =,则原方程可化为2–1090a a +=,即()()190a a --=,解得:1a =或9a =,当1a =时,21x =,∴1x =±;当9a =时,29x =,∴3x =±;∴原方程的解是:12341133x x x x ==-==-,,,;(3)解:设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,∴()()120m m +-=,解得:1m =-或2m =,当1m =-时,211x x+=-,即210x x ++=,由141130D =-´´=-<知此时方程无解;当2m =时,212x x+=,即2210x x --=,解得:1x =或12x =-,经检验1x =和12x =-都是原分式方程的解.30.(1)1=1x -;2=2x ;31x =41x =(2)11x =-,21x =【分析】该题主要考查了换元思想解方程,一元二次方程的解答,分式方程的解答,解题的关键是运用换元法进行整体代换;(1)设2(0)2x t t x =¹+,将原方程化为2320t t -+=,解得2t =或1t =,再分别代入22x t x =+求解分式方程的解即可;(2()0t t =³,则有222x x t +=,将原方程化为:2450t t +-=,解得5t =-(舍)或1t =t =求解即可;【详解】(1)设2(0)2x t t x =¹+,\原方程化为23t t+=,\2320t t -+=,解得2t =或1t =,当1t =时,212x x =+,解得2x =或=1x -,经检验,=1x -或2x =是方程的解;当2t =时,222x x =+,解得1x =1x =-,经检验,1x =或1x =∴原方程的解为:1=1x -;2=2x ;31x =;41x =(2()0t t =³,则有222x x t +=,\原方程可化为:2450t t +-=,解得5t =-(舍)或1t =,1=,\2210x x +-=,解得11x =-或21x =-;经检验:11x =,21x =是原方程的解.31.4x =-【分析】本题主要考查了解分式方程,根据解分式方程的步骤求解即可,注意解分式方程最后要验根,熟练掌握分式方程的解法是解题的关键.【详解】解:2216111x x x +-=--方程左右同乘以21x -、去分母得:()()()221116x x x ++--=,去括号得:2222116x x x x +++-+=,移项、合并同类项得:2340x x +-=,因式分解得:()()410x x +-=,∴40x +=或10x -=,解得:14x =-,21x =,检验:14x =-,则211150x -=¹,故是原分式方程的根,21x =,则2210x -=,故是原分式方程的增根,∴原分式方程的解为4x =-.32.12x =-,22x =-,31x =【分析】本题考查了解分式方程和解一元二次方程,能把解分式方程转化成解一元二次方程是解此题的关键,注意:解分式方程一定要进行检验.原方程化为211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x +=,则原方程变形为2226a a +-=,求出a 的值,当4a =-时,方程为14x x+=-,求出方程的解,当2a =时,方程为12x x +=,求出方程的解,最后进行检验即可.【详解】解:原方程化为:211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x+=,则原方程化为:2226a a +-=,即2280a a +-=,解得:4a =-或2a =,当4a =-时,14x x+=-,整理得:2410x x ++=,Q 24411120D =-´´=>,x \=解得:12x =-,22x =-;当2a =时,12x x +=,整理得:2210x x -+=,()210x -=,解得:1x =,经检验12x =-,22x =-,31x =都是原方程的解,所以原方程的解是12x =-22x =-,31x =.33.12x x ==【分析】方程两边同乘以()()33x x +-可得一个关于x 的一元二次方程,再利用直接开平方法解一元二次方程即可得.【详解】解:11133x x +=+-,方程两边同乘以()()33x x +-,得()()3333x x x x +--+=+,去括号,得2933x x x --+=+,移项、合并同类项,得215x =,直接开平方,得12x x ==经检验,12x x ==【点睛】本题考查了解分式方程、解一元二次方程,熟练掌握解分式方程的方法是解题关键,需注意的是,分式方程的解要进行检验.34.5x =【分析】根据分式方程的解法步骤求解即可.【详解】解:去分母,得()222181x x --=-,去括号,得2224281x x x -+-=-移项、合并同类项,得2450x x --=,解得11x =-,25x =,经检验,5x =是方程的解.【点睛】本题考查解分式方程、解一元二次方程,熟练掌握分式方程的解法步骤是解答的关键.35.=1x -【分析】方程两边同时乘以()24x -,化为整式方程,解方程即可求解,最后要检验.【详解】解:241142x x +=--,方程两边同时乘以()24x -,得()2442x x +-=+,即220x x --=,()()210x x -+=,解得122,1x x ==-,检验:当2x =时,()24x -0=,当=1x -时,()240x -¹.∴=1x -是原方程的解.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键,注意要检验.36.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】解:224124x x x -=-+-,两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.37.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可.【详解】解:21211x x x -=++化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1¹0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点睛】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.38.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18,检验:当x =56或18时,x (2x ﹣1)≠0.即原方程的解为:x 1=56,x 2=18.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键.39.83x =-【分析】将分式方程转化为整式方程,然后解整式方程,注意分式方程的结果要进行检验.【详解】解:整理,得:1641(2)2xx x x +=--,去分母,得:216(2)4x x x +-=,221624x x x +-=,232160x x +-=,(2)(38)0x x -+=,解得:12x =,283x =-,检验:当2x =时,(2)0x x -=,2x \=不是原分式方程的解,当83x =-时,(2)0x x -¹,83x \=-是原分式方程的解,\分式方程的解为83x =-.【点睛】本题考查解分式方程,解一元二次方程,掌握解分式方程和因式分解法解一元二次方程的步骤是解题关键,注意分式方程的结果要进行检验.40.2x =-【分析】先去分母化为整式方程求解,最后记得检验即可.【详解】解:原方程可化为()()2121111x x x x --=-+-去分母得()()()()211211x x x x -+-=+-,解得11x =,22x =-经检验11x =是增根,2x =-是原方程的解,\原方程的解为2x =-.故答案为2x =-.【点睛】本题考查了解分式方程,熟练掌握一般步骤是解题的关键,需要注意的是最后要记得检验是否为方程的根.。
一元二次方程的解法以及练习
利用因式分解解一元二次方程的方法叫做因式分解法. 这种方法把解一个一元二次方程转化为解两个一元一次方程.
课时训练
A组基础训练
1. 已知AB=0,那么下列结论正确的是()
A. A=0
B. A=B=0
C. B=0
D. A=0或B=0
2. 一元二次方程x2-2x=0的根是()
A. x1=0,x2=-2
B. x1=1,x2=2
C. x1=1,x2=-2
D. x1=0,x2=2
3. 方程(x-2)(x+3)=-6的两根分别为()
A. x=2
B. x=-3
C. x1=2,x2=-3
D. x1=0,x2=-1
4. 方程x-2=x(x-2)的解是(D )
A. x=0
B. x1=0,x2=2
C. x=2 D . x1=1,x2=2
5. 已知等腰三角形的三边满足方程(x-3)(x-6)=0,则它的周长为()
A. 9
B. 18
C. 9或18
D. 9或15或18
6. 若关于x的方程x2+2x+k=0的一个根是0,则另一个根是 .
7. 请写出一个两根分别是1,-2的一元二次方程 .
8. 解方程:
(1)x2-6x=0;
(2)4y2-16=0;
(3)9(x+1)2-16(x-2)2=0;
(4)3(4x2-9)=2(2x-3);
(5)2x2-4x+4=0.
2
9. 文文给明明出了一道解一元二次方程的题目如下:
解方程(x-1)2=2(x-1). 明明的求解过程为:
解:方程两边同除以x-1,得x-1=2第1步
移项,得x=3第2步∴方程的解是x1=x2=3第3步
文文说:你的求解过程的第1步就错了…
(1)文文的说法对吗?请说明理由;
(2)你会如何解这个方程?给出过程.
10. 在实数范围内定义一种新运算“※”,其规则为a ※b=(a-1)2-b 2. 根据这个规则,求方程(x+3)※5=0的解.
11. 若n (n ≠0)是关于x 的方程x 2+mx-9n=0的根,求
的值.
B 组 自主提高
12. 已知方程x 2+px+q=0的两根分别为3或-4,则x 2+px+q 可分解为 .
13. 已知△ABC 的两边长分别为2和3,第三边的长是方程x 2-7x+10=0的根,求△ABC 的周长.
14. 阅读下列材料:
对于关于x 的一元二次方程ax 2+bx+c=0(a ≠0),如果a+b+c=0,那么它的两个根分别为x 1=1,x 2=.
证明:∵a+b+c=0,∴c=-a-b. 将c=-a-b 代入ax 2+bx+c=0,得ax 2+bx-a-b=0,即a (x 2-1)+b (x-1)=0,∴(x-1)(ax+a+b )
n m a
c
=0,∴x 1=1,x 2=.
(1)请利用上述结论,快速求解下列方程: ①5x 2-4x-1=0,x 1= ,x 2= ; ②5x 2+4x-9=0,x 1= ,x 2= . (2)请写出两个一元二次方程,使它们都有一个根是1.
a
c
参考答案
2.2 一元二次方程的解法(第1课时)
【课时训练】 1—5. DDDDD 6. -2
7. 答案不唯一. 如:(x-1)(x+2)=0
8. (1)x 1=0,x 2=6 (2)y 1=2,y 2=-2 (3)x 1=,x 2=11 (4)x 1=,x 2=-
(5)x 1=x 2=
9. ((1)文文的说法正确.只有当x-1≠0时,方程两边才能同除以x-1;
(2)移项得(x-1)2-2(x-1)=0,(x-1)(x-1-2)=0,解得:x 1=1,x 2=3. 10. x 1=3,x 2=-7
11. 把x=n 代入得n 2+mn-9n=0,n (n+m-9)=0,∵n ≠0,∴n+m-9=0,∴m+n=9,∴
=3.
12. (x-3)(x+4)
13. 7 将方程x 2-7x+10=0的左边因式分解,得(x-2)(x-5)=0,故x 1=2,x 2=5. 因为2+3=5,则第三边长为5不合题意,应舍去,所以只取第三边的长为2,此时,△ABC 的周长为2+2+3=7.
7
52
3
6
72n m
一.
14. (1)①1 - ②1 - (2)答案不唯一. 如:3x 2-
2x-1=0和-2x 2-3x+5=0
二. 填空选择题(每小题6分,36分) 1. 下列各方程中,是一元二次方程的是( ) A. B.
C. D.
A.
B.
C.5)2)(3+=-+x x x (
D.02-x 57
3
x 32=+
3.一元二次方程
的一次项系数( )
A.4
B.-4
C.4x
D.-4x
4.关于 的一元二次方程 的一个根是 ,则 的值是( )
A.-1
B.1
C.1或-1
D.-1或0
5159
2. 下列方程中不一定是一元二次方程的是( )。
5.若关于的一元二次方程为()的解是,则的值是()。
A. 2018
B.2008
C.2014
D.2012
6.一元二次方程的一次项系数、常数项分别是()。
A. ,
B. ,
C. ,
D. ,
二、解答题(每小题10分,60分)
1、已知是关于的一元二次方程,则的取值范围是_____ 。
2、将方程化为一元二次方程的一般式。
3、关于的方程是一元二次方程,则多少?
4、关于的方程的一个根为,则的值为多少?
5、若是关于的一元二次方程,则多少,且该一
元二次方程的解为多少?
6、已知实数是关于方程的一根,则代数式值
为多少?
参考答案
一.选择题、
1.B
【解析】一元二次方程是指含有一个未知数,并且未知数的最高次数是的整式方程。
A项,未知数的最高次数是,为一元一次方程。
故A项不符合题意。
B项,满足一元二次方程的定义。
故B项符合题意。
C项,不满足只含有一个未知数的条件。
故C项不符合题意。
D项,不满足未知数的最高次数是。
故D项不符合题意。
故本题正确答案为B。
2. B
【解析】本题主要考查一元二次方程的基本概念。
一元二方程必须满足的条件是:未知数最高项的次数为2,二次项系数不为0。
B项,当a=0时,方程不是一元二次方程,因此该方程不一定是一元二次方程。
故本题正确答案为B。
3. B.
【解析】本题主要考查一元二次方程的基本概念。
将该方程转化成的标准形式后为:,
因为一次项为-4x ,所以一次项系数是-4。
故本题正确答案为B 。
4. B
【解析】由题干可知,该方程是关于x 的一元二次方程,故a+1≠0,即a ≠-1。
因为该方程的一个根是0,根据方程解的性质,将x=0代入方程得012=-a ,解得a=1或a=-1。
综上可知a=1。
故本题正确答案为B 。
5. A
【解析】将方程的解代入方程可知,a+b+5=0,故a+b=-5,则可知2013-a-b=2013+5=2018。
故本题正确答案为A 。
6. B
【解析】一元二次方程的一般形式:)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a
叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
因此该方程的一次项是-x ,一次项系数是-1,该方程的常数项是-1。
故本题正确答案为B 。
二、解答题
1. 解:由题意得;
m-2≠0
m≠2
2.解:去括号:得:10
x
5
x
3-
x
32+
=
移项:0
10
-
x
5-
x
3-
x
32=
合并同类项:0
10
-
x
8-
x
32=
3.解:
3-m
3
9
m
3
2
7-m2
=∴
±
=
±
=
≠
-
=
解得:
且m
4.解:1-2m+m
=1-m
=0
m=1
5.解:|2a+3|=2 2a+3=±2 25-21-==a a 或 当2
1-=a 时, 22x 8
x 4x 2
122±=== 当2
5-=a 时 无解4x 2
3-2=
6.解:
2)1(2621
30
13222-=-⨯=--=-=+-m m m m m m。