高二数学学案:基本初等函数的导数公式
- 格式:doc
- 大小:119.00 KB
- 文档页数:2
1.2.2 基本初等函数的导数公式及导数的运算法则课标要求1.能利用导数的四则运算法则求解导函数.2.能运用复合函数的求导法则进行复合函数的求导.核心扫描1.对导数四则运算法则的考查.(重点)2.复合函数的考查常在解答题中出现.(重点)课前探究学习自学导引1.导数运算法则的定义域、值域满足什么关系?提示在复合函数中,内层函数u=g(x)的值域必须是外层函数y=f(u)的定义域的子集.名师点睛1.运用导数运算法则的注意事项(1)对于教材中给出的导数的运算法则,不要求根据导数定义进行推导,只要能熟练运用运算法则求简单函数的导数即可.(2)①对于和差的导数运算法则,可推广到任意有限可导函数的和或差, 即[f 1(x )±f 2(x )±…±f n (x )]′=f 1′(x )±f 2′(x )±…±f ′n (x ).②[ af (x )±bg (x )]′=af ′(x )±bg ′(x ); ③当f (x )=1时,有⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).(3)对于积与商的导数运算法则,首先要注意在两个函数积与商的导数运算中,不能出现[f (x )·g (x )]′=f ′(x )·g ′(x )以及⎣⎡⎦⎤f (x )g (x )′=f ′(x )g ′(x )这样想当然的错误;其次还要特别注意两个函数积与商的求导公式中符号的异同,积的导数法则中是“+”,商的导数法则中分子上是“-”. 2.复合函数求导对于复合函数的求导法则,需注意以下几点:(1)分清复合函数的复合关系是由哪些基本函数复合而成,适当选定中间变量. (2)分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的求导公式及导数的运算法则,求出各函数的导数,并把中间变量换成自变量的函数.如求y =sin ⎝⎛⎭⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y x ′=y u ′·u x ′=cos u ·2=2cos u =2cos ⎝⎛⎭⎫2x +π3. (4)复合函数的求导运用熟练后,中间步骤可省略不写. 课堂讲练互动题型一 利用导数的运算法则求函数的导数例1:求下列函数的导数:(1)y =x ·tan x ; (2)y =(x +1)(x +2)(x +3); (3)y =x +3x 2+3;(4)y =x sin x -2cos x; (5)y =x 5+x 7+x 9x ;(6)y =x -sin x 2cos x2.规律方法:解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,一般综合了和、差、积、商几种运算,在求导之前一般应先将函数化简,然后求导,以减少运算量. 变式1:求下列函数的导数:(1)y =5-4x 3; (2)y =3x 2+x cos x ; (3)y =e x ·ln x ; (4)y =lg x -1x2.题型二 求复合函数的导数例2:求下列函数的导数:(1)y =11-2x 2; (2)y =e 2x +1; (3)y =(x -2)2; (4)y =5log 2(2x +1).规律方法:应用复合函数的求导法则求导,应注意以下几个方面: (1)中间变量的选取应是基本函数结构.(2)正确分析函数的复合层次,并要弄清每一步是哪个变量对哪个变量的求导. (3)一般是从最外层开始,由外及里,一层层地求导. (4)善于把一部分表达式作为一个整体.(5)最后要把中间变量换成自变量的函数.熟练后,就不必再写中间步骤. 变式2:求下列函数的导数:(1)y =ln(x +2); (2)y =sin 4x 4+cos 4x4;(3)y =1+x 1-x +1-x1+x.题型三 求导法则的应用例3:求过点(1,-1)与曲线f (x )=x 3-2x 相切的直线方程.题后反思:点(1,-1)虽然在曲线上,但是经过该点的切线不一定只有一条,即该点有可能是切点,也可能是切线与曲线的交点,解题时注意不要失解.变式3:若将本例改为求曲线y =x 3-2x 在点A (1,-1)处的切线方程,结果会怎样?方法技巧 数形结合思想在导数中的应用数形结合的原则:(1)等价性原则:在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.(2)双向性原则:在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析或仅对几何问题进行代数分析,在许多时候是很难完成的.(3)简单性原则:找到解题思路之后,至于用几何方法还是采用代数方法,则取决于哪种方法更为简单有效,“数”与“形”的结合往往能起到事半功倍的效果.示例:讨论关于x 的方程ln x =kx 解的个数.方法点评:函数y =f (x )在点x 0处的导数的几何意义 ,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.导数的这一几何意义为导数与解析几何的沟通搭建了一个平台.因此从某 种意义上说,导数也就是数形结合的桥梁.参考答案题型一 利用导数的运算法则求函数的导数例1:解:(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′(1)y ′=(x ·tan x )′=⎝⎛⎭⎫x sin x cos x ′=(x sin x )′cos x -x sin x (cos x )′cos 2x=(sin x +x cos x )cos x +x sin 2x cos 2x=sin x cos x +x cos 2x.(2)法一 ∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)(x +3)]′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+x 2+3x +2 =3x 2+12x +11.(3)y ′=(x +3)′(x 2+3)-(x +3)(x 2+3)′(x 2+3)2=-x 2-6x +3(x 2+3)2.(4)y ′=(x sin x )′-⎝⎛⎭⎫2cos x ′=sin x +x cos x -2sin xcos 2x . (5)∵y =x 5+x 7+x 9x =x 2+x 3+x 4,∴y ′=(x 2+x 3+x 4)′=2x +3x 2+4x 3. (6)先使用三角公式进行化简,得 y =x -sin x 2cos x 2=x -12sin x ,∴y ′=⎝⎛⎭⎫x -12sin x ′=x ′-12(sin x )′=1-12cos x . 变式1:解:(1)y ′=-12x 2;(2)y ′=(3x 2+x cos x )′=6x +cos x -x sin x ; (3)y ′=e x x +e x·ln x ;(4)y ′=1x ln 10+2x3. 题型二 求复合函数的导数例2:解:(1)设y =u -12,u =1-2x 2,则y ′=⎝⎛⎭⎫u -12′(1-2x 2)′=⎝⎛⎭⎫-12u -32·(-4x ) =-12(1-2x 2)-32(-4x )=2x (1-2x 2)-32.(2)y =e u ,u =2x +1,∴y ′x =y ′u ·u ′x =(e u )′·(2x +1)′=2e u =2e 2x +1. (3)法一 ∵y =(x -2)2=x -4x +4, ∴y ′=x ′-(4x )′+4′ =1-4×12x -12=1-2x.法二 令u =x -2,则y ′x =y ′u ·u ′x =2(x -2)·(x -2)′ =2(x -2)⎝⎛⎭⎫12·1x -0=1-2x . (4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2. 变式2:解:(1)y =ln u ,u =x +2∴y ′x =y ′u ·u ′x =(ln u )′·(x +2)′=1u ·1=1x +2.(2)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x 4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(3)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2,∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.题型三 求导法则的应用例3:解:设P (x 0,y 0)为切点,则切线斜率为k =0x x y ='=3x 20-2,故切线方程为y -y 0=(3x 20-2)(x -x 0) ① ∵(x 0,y 0)在曲线上,∴y 0=x 30-2x 0 ② 又∵(1,-1)在切线上,∴将②式和(1,-1)代入①式得-1-(x 30-2x 0)=(3x 20-2)(1-x 0). 解得x 0=1或x 0=-12.故所求的切线方程为y +1=x -1或y +1=-54(x -1).即x -y -2=0或5x +4y -1=0.变式3:解:∵点A (1,-1)在曲线上,点A 是切点,∴在A 处的切线方程为x -y -2=0.方法技巧 数形结合思想在导数中的应用示例:解:如图,方程ln x =kx 的解的个数就是直线y =kx 与曲线y =ln x 交点的个数. 设直线y =kx 与y =ln x 切于P (x 0,ln x 0) ,则kx 0=ln x 0. ∵(ln x )′=1x,∴k =1x 0,kx 0=1=ln x 0.∴x 0=e ,k =1e.结合图象知:当k ≤0或k =1e 时,方程ln x =kx 有一解.当0<k <1e 时,方程ln x =kx 有两解.当k >1e 时,方程ln x =kx 无解.。
《基本初等函数的导数公式及导数的运算法则》导学案导数是微积分中一个重要的概念,用来描述函数在其中一点处的变化率。
初等函数是指常见的基本函数,如多项式函数、指数函数、对数函数、三角函数等。
导数的运算法则是指导数在运算中的一些基本性质和规则。
下面将详细介绍初等函数的导数公式和导数的运算法则。
一、初等函数的导数公式1.基本初等函数的导数公式-常数函数的导数为0,即$C'(x)=0$,其中C为常数。
- 幂函数的导数公式:$(x^n)'=nx^{n-1}$,其中n为正整数。
- 指数函数的导数公式:$(a^x)'=a^x\ln a$,其中a为正实数。
- 对数函数的导数公式:$(\log_a x)'=\dfrac{1}{x\ln a}$,其中a为正实数,且a≠1-三角函数的导数公式:正弦函数的导数:$(\sin x)'=\cos x$;余弦函数的导数:$(\cos x)'=-\sin x$;正切函数的导数:$(\tan x)'=\sec^2 x$。
2.求导法则-基本求导法则:和差法则:$(u\pm v)'=u'+v'$;乘法法则:$(uv)'=u'v+uv'$;除法法则:$\left(\dfrac{u}{v}\right)'=\dfrac{u'v-uv'}{v^2}$,其中v≠0。
-复合函数求导法则:若y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且有$\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}$。
二、导数的运算法则1.反函数的导数若函数y=f(x)在区间I上单调、连续并且可导,且此区间上f'(x)≠0,则它的反函数x=f^(-1)(y)在对应区间上连续并且可导,并且有$\left(f^{-1}(y)\right)'=\dfrac{1}{f'(x)}$。
§3.2.2 (1)基本初等函数的求导公式一、知识与方法:1、基本初等函数的导数公式记忆:第一类为幂函数,1)'(-=a a ax x )0(≠a (注意幂函数a 为任意实数); 第二类为指数函数,()'ln (0,0)x x a a a a a =>≠且,当e a =时,x e 的导数是)('x a 的一个特例; 第三类为对数函数,11(log )'log (0,0)ln a a x e a a x x a==>≠且,当e a =时,x ln 也是 对数函数的一个特例;第四类为三角函数,可记住正弦函数的导数是余弦函数,余弦函数的导数是正弦函数的相 反数,正切函数的导数是余弦函数平方的倒数,余切函数的导数是正弦函数的平方的倒数 的相反数。
2、利用公式求函数的导数,这就要求熟练掌握公式。
特别注意x a y =的导数与a x y = 的导数的区别,不要犯这样的错误:1)(-='x x xa a 。
二、针对性训练:1、3x y =的导数是 ( )A .3xB .x 31 C .3231--x D .3231-x 2、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( ) A .319 B .316 C .313 D .310 3、 下列各结论正确的是 ( )A .3(log )'x =x 31 B .(2)'x =2x C .')(sin x =cosx D . (cosx)'=sinx 4、 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=5、函数()f x =x a (a>0且a ≠1),'(2)f =2a ,则a = ( )A . 2 B. e C. 4 D. 2e6、曲线sin y x =, x ∈⎪⎭⎫ ⎝⎛-2,2ππ 的一条切线m 平行于直线30x y --=, 则m 的方程为( ) A. y=2πx, B.y x = C.1y x =+ D.不存在 7 、曲线x e y =在点)e (2,2处的切线与坐标轴所围三角形的面积为 ( )A .249e B .22e C .2e D .2e 2 8、)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2009x f ( ) x D x C x B xA cos .cos .sin .sin .-- 9、函数2y e =, 则'y =_________10、已知函数()sin ln f x x x =+,则()f x '= .11、已知()f x lnx =, ()g x x =. 且'()'()0f x g x ->,则x 的取值范围是_______12、求函数的导数:)3)(2)(1(+++=x x x y13、物体的运动方程是1223-+=t t s (位移单位:m ,时间单位:s ),当2=t 时,求物体的瞬时速度及加速度.14、()ln f x x =,若4'()f x x a +≥恒成立,求a 的取值范围。
基本初等函数的导数公式基本初等函数的导数公式1.常数函数的导数公式常数函数f(x)=C的导数为f'(x)=0,其中C为常数。
2.幂函数的导数公式2.1 幂函数f(x) = x^n (n为实数) 的导数为f'(x) = nx^(n-1)。
2.2特殊情况下,指数函数f(x)=e^x的导数为f'(x)=e^x。
3.指数函数的导数公式3.1e^x的导数为e^x。
3.2 a^x (a>0且a≠1) 的导数为a^x * ln(a),其中ln(a)是以e为底的对数。
4.对数函数的导数公式4.1 ln(x) 的导数为1/x。
4.2 log_a(x) (a>0且a≠1) 的导数为1/(x * ln(a))。
5.三角函数的导数公式5.1 sin(x) 的导数为cos(x)。
5.2 cos(x) 的导数为-sin(x)。
5.3 tan(x) 的导数为sec^2(x)。
5.4 cot(x) 的导数为-csc^2(x)。
5.5 sec(x) 的导数为sec(x) * tan(x)。
5.6 csc(x) 的导数为-csc(x) * cot(x)。
6.反三角函数的导数公式6.1 arcsin(x) 的导数为1/√(1-x^2)。
6.2 arccos(x) 的导数为-1/√(1-x^2)。
6.3 arctan(x) 的导数为1/(1+x^2)。
6.4 arccot(x) 的导数为-1/(1+x^2)。
6.5 arcsec(x) 的导数为1/(x * √(x^2-1))。
6.6 arccsc(x) 的导数为-1/(x * √(x^2-1))。
这些是基本初等函数的导数公式,根据这些公式可以求解各种复杂函数的导数。
基本初等函数的导数公式及导数的运算法则【教学目标】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.3.了解复合函数的概念,掌握复合函数的求导法则.4.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax +b)的导数).【教法指导】本节学习重点:函数的和、差、积、商的求导法则.本节学习难点:复合函数的求导法则.【教学过程】☆复习引入☆前面我们已经学习了几个常用函数的导数和基本初等函数的导数公式,这样做起题来比用导数的定义显得格外轻松.对于由四则运算符号连接的两个或两个以上基本初等函数的导数如何求?正是本节要研究的问题.解析:请同学思考并回顾以前所学知识并积极回答之.☆探索新知☆探究点一导数的运算法则思考1 我们已经会求f(x)=5和g(x)=1.05x等基本初等函数的导数,那么怎样求f(x)与g(x)的和、差、积、商的导数呢?答利用导数的运算法则.思考2 应用导数的运算法则求导数有哪些注意点?“+”,而商的导数公式中分子上是“-”;(5)要注意区分参数与变量,例如[a·g(x)]′=a·g′(x),运用公式时要注意a′=0.例1 求下列函数的导数:(1)y=x3-2x+3;(2)y=(x2+1)(x-1);(3)y=3x-lg x.解 (1)y ′=(x 3)′-(2x )′+3′=3x 2-2.(2)∵y =(x 2+1)(x -1)=x 3-x 2+x -1∴y ′=(x 3)′-(x 2)′+x ′-1′=3x 2-2x +1.(3)函数y =3x -lg x 是函数f (x )=3x 与函数g (x )=lg x 的差.由导数公式表分别得出 f ′(x )=3x ln 3,g ′(x )=1x ln 10, 利用函数差的求导法则可得(3x -lg x )′=f ′(x )-g ′(x )=3x ln 3-1x ln 10. 反思与感悟 本题是基本函数和(差)的求导问题,求导过程要紧扣求导法则,联系基本函数求导法则,对于不具备求导法则结构形式的可先进行适当的恒等变形转化为较易求导的结构形式再求导数. 跟踪训练1 求下列函数的导数:(1)y =x 5+x 7+x 9x ; (2)f (x )=2-2sin 2x2.例2 求下列函数的导数:(1)f (x )=x ·tan x ;(2)f (x )=x -1x +1. 解 (1)f ′(x )=(x ·tan x )′=(x sin x cos x )′ =x sin x ′cos x -x sin x cos x ′cos 2x =sin x +x cos x cos x +x sin 2x cos 2x =sin x cos x +x cos 2x . (2)∵f (x )=x -1x +1=x +1-2x +1=1-2x +1, ∴f ′(x )=(1-2x +1)′=(-2x +1)′=-2′x +1-2x +1′x +12=2x +12.探究点二 导数的应用 例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为________________.答案 3x -y +1=0解析 y ′=e x +x e x +2,则曲线在点(0,1)处的切线的斜率为k =e 0+0+2=3,所以所求切线方程为y -1=3x ,即3x -y +1=0. (2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________.答案 (-2,15)(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.解 ∵s (t )=t -1t 2+2t 2=t t 2-1t 2+2t 2=1t -1t2+2t 2, ∴s ′(t )=-1t 2+2·1t 3+4t ,∴s ′(3)=-19+227+12=32327, 即物体在t =3 s 时的瞬时速度为32327m/s. 反思与感悟 本题应用导数的运算法则进一步强化导数的物理意义及几何意义:函数y =f (x )在点x 0处的导数就是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率,即k =y ′|x =x 0=f ′(x 0);瞬时速度是位移函数s (t )对时间t 的导数,即v =s ′|t =t 0.探究点三 复合函数的定义思考1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 答 y =2x cos x 是由u =2x 及v =cos x 相乘得到的;而y =ln(x +2)是由u =x +2与y =ln u (x >-2)经过“复合”得到的,即y 可以通过中间变量u 表示为自变量x 的函数.所以它们称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系?思考3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系?答 A ⊆B .小结 要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法.例3 指出下列函数是怎样复合而成的:(1)y =(3+5x )2;(2)y =log 3(x 2-2x +5);(3)y =cos 3x .解 (1)y =(3+5x )2是由函数y =u 2,u =3+5x 复合而成的;(2)y =log 3(x 2-2x +5)是由函数y =log 3u ,u =x 2-2x +5复合而成的;(3)y =cos 3x 是由函数y =cos u ,u =3x 复合而成的.小结 分析函数的复合过程主要是设出中间变量u ,分别找出y 和u 的函数关系,u 和x 的函数关系.例4 求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x ;(3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x=(1-2x )-12可看作y =u -12,u =1-2x 的复合函数,则y x ′=y u ′·u x ′=(-12)u -32·(-2)=(1-2x )-32=11-2x1-2x ; (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3)=-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.反思与感悟 分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数.复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.探究点五 导数的应用例5 求曲线y =e 2x +1在点(-12,1)处的切线方程.反思与感悟求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法.。
§3.2.2基本初等函数的导数公式及导数的运算法则课前预习学案一.预习目标1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二.预习内容1.基本初等函数的导数公式表2.(2)推论:[]'()cf x =(常数与函数的积的导数,等于: )三. 提出疑惑课内探究学案一. 学习目标1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数二. 学习过程(一)。
【复习回顾】复习五种常见函数y c =、y x =、2y x =、1y x=、y =(二)。
【提出问题,展示目标】我们知道,函数*()()n y f x x n Q ==∈的导数为'1n y nx-=,以后看见这种函数就可以直接按公式去做,而不必用导数的定义了。
那么其它基本初等函数的导数怎么呢?又如何解决两个函数加。
减。
乘。
除的导数呢?这一节我们就来解决这个问题。
(三)、【合作探究】1.(1)分四组对比记忆基本初等函数的导数公式表(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2xy =(2)3x y =与3log y x =2.(1推论:[]''()()cf x cf x =(常数与函数的积的导数,等于: )提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号.(2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =⋅;(3)2(251)xy x x e =-+⋅;(4)4xx y =;【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.(四).典例精讲例1:假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t(单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:解:变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%分析:净化费用的瞬时变化率就是: 解:比较上述运算结果,你有什么发现?三.反思总结:(1)分四组写出基本初等函数的导数公式表:(2)导数的运算法则:四.当堂检测1求下列函数的导数(1)2log y x = (2)2xy e =(3)32234y x x =-- (4)3cos 4sin y x x =-2.求下列函数的导数(1)ln y x x = (2)ln xy x=课后练习与提高1.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为: A ()2(1)f x x =- B 2()2(1)f x x =- C 2()(1)3(1)f x x x =-+- D ()1f x x =-2.函数21y ax =+的图像与直线y x =相切,则a =A18 B 14 C 12D 1 3.设函数1()n y x n N +*=∈在点(1,1)处的切线与x 轴的交点横坐标为n x ,则12n x x x ••⋅⋅⋅•=A l nB l 1n +C 1n n + D 14.曲线21xy xe x =++在点(0,1)处的切线方程为-------------------5.在平面直角坐标系中,点P 在曲线3103y x x =-+上,且在第二象限内,已知曲线在点P 处的切线的斜率为2,则P 点的坐标为------------6.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式。
基本初等函数的导数公式表
函数的导数是一个重要的概念,它可以帮助我们更好地理解函数的变化趋势。
函数的导数可以用公式表示,下面是基本初等函数的导数公式表:
1. 常数函数的导数:f'(x)=0
2. 一次函数的导数:f'(x)=ax+b
3. 二次函数的导数:f'(x)=2ax+b
4. 三次函数的导数:f'(x)=3ax2+2bx+c
5. 幂函数的导数:f'(x)=axn-1
6. 指数函数的导数:f'(x)=aex
7. 对数函数的导数:f'(x)=1/x
8. 反三角函数的导数:f'(x)=a/cosx
9. 反双曲函数的导数:f'(x)=a/coshx
10. 反正弦函数的导数:f'(x)=-asinx
11. 反余弦函数的导数:f'(x)=-acosx
12. 反正切函数的导数:f'(x)=1/tanx
13. 反双曲正切函数的导数:f'(x)=1/tanhx
14. 反双曲余弦函数的导数:f'(x)=-acoshx
15. 反双曲正弦函数的导数:f'(x)=-asinhx
以上就是基本初等函数的导数公式表,它们可以帮助我们更好地理解函数的变化趋势。
函数的导数可以用来计算函数的斜率,从而更好地理解函数的变化趋势。
此外,函数的导数
还可以用来计算函数的极值点,从而更好地理解函数的变化趋势。
因此,函数的导数是一个重要的概念,它可以帮助我们更好地理解函数的变化趋势。
1.2.2 第二课时 基本初等函数的导数公式一、课前准备 1.课时目标1.熟练记忆基本初等函数的导数公式;2.能利用基本初等函数的导数公式求函数的导数;3.能利用基本初等函数的导数公式解决简单的综合问题。
2.基础预探1.基本初等函数的导数公式(1)若f (x )=c ,则f ′(x )=________.(2)若f (x )=x n,则f ′(x )=________. (3)若f (x )=sin x ,则f ′(x )=________. (4)若f (x )=cos x ,则f ′(x )=________.(5)若f (x )=a x,则f ′(x )=________.(6)若f (x )=e x,则f ′(x )=________. (7)若f (x )=log a x 则f ′(x )=________.(8)若f (x )=ln x ,则f ′(x )=________. 二、学习引领1.对基本初等函数的导数公式的理解(1)基本初等函数的求导公式只要求记住公式的形式,学会使用公式解题即可,对公式的推导不要求掌握.(2)要注意幂函数与指数函数的求导公式的区别。
(3)基本初等函数的导数公式,虽然在高考中单独考查该知识点的题目不多,但却是解决其他导数问题的重要基础,必需熟练记忆并掌握。
2.利用导数公式求曲线切线方程的步骤(1)先利用基本初等函数的导数公式求出函数的导数.(2)判断切线所经过的定点(x 0,y 0)是否在已知曲线上,当点在曲线上时,k =f ′(x 0).当点不在曲线上时,应设切点为(x 1,y 1),k =f ′(x 1)=y 1-y 0x 1-x 0,求出切点.(3)利用点斜式方程y -y 0=f ′(x 0)(x -x 0)或y -y 0=f ′(x 1)(x -x 0) 求得切线. 三、典例导析题型一 利用基本初等函数的公式求导数例1 求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y (4)y =log 2x 2-log 2x ;思路导析:运用对数性质及三角变换公式,先将问题中不能直接利用公式的问题转化为基本初等函数,再求导数.解析:(1)y ′=(x x )′=(32x )′=32312x -=32x .(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y ′=(35x )′=35315x -=3525x -。
《基本初等函数的导数》导学案一、学习目标1、理解并掌握基本初等函数的导数公式。
2、能够运用导数公式求基本初等函数的导数。
3、体会导数在解决函数问题中的作用,提高分析问题和解决问题的能力。
二、学习重点1、基本初等函数的导数公式的推导及应用。
2、利用导数公式求函数的导数。
三、学习难点1、导数公式的推导过程。
2、灵活运用导数公式解决问题。
四、知识回顾1、导数的定义:设函数\(y = f(x)\)在点\(x_0\)处的自变量的增量为\(\Delta x\),函数的增量为\(\Delta y = f(x_0 +\Delta x) f(x_0)\),如果当\(\Delta x \to 0\)时,平均变化率\(\dfrac{\Delta y}{\Delta x}\)的极限存在,即\(\lim\limits_{\Delta x \to 0}\dfrac{\Delta y}{\Delta x}\)存在,则称函数\(y= f(x)\)在点\(x_0\)处可导,并称这个极限为函数\(y = f(x)\)在点\(x_0\)处的导数,记作\(f'(x_0)\)。
2、导数的几何意义:函数\(y = f(x)\)在点\(x_0\)处的导数\(f'(x_0)\),就是曲线\(y = f(x)\)在点\((x_0, f(x_0))\)处的切线的斜率。
五、新课讲授(一)常数函数的导数1、思考:对于函数\(f(x) = C\)(\(C\)为常数),其导数是什么?2、推导:\\begin{align}\lim\limits_{\Delta x \to 0}\dfrac{f(x +\Delta x) f(x)}{\Delta x}&=\lim\limits_{\Delta x \to 0}\dfrac{C C}{\Delta x}\\&=\lim\limits_{\Delta x \to 0}0\\&=0\end{align}\3、结论:常数函数的导数为\(0\),即\((C)'= 0\)。
赞皇中学高二年级数学学科导学案
课型:新授课主备人:李艳波审核人:边二超时间:2014年---- 月---日
班级------------姓名-----------小组------------
课题:§1.2.2 基本初等函数的导数公式及导数的运算法则(第二课时)
学习目标:1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
教学重点及难点:基本初等函数的导数公式、导数的四则运算法则及其应用
课型:新授课
学习方法:自主学习,巩固练习
导学过程:一、复习旧知:
二、新知记忆
学生阅读课本14—15页后填充下列表格
常见函数的导数公式
例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t
p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
四、练习大比拼:求下列函数的导数(最后做课本18页4题的(1)(2)(3))
(1) y=x 3-2x+3 (2) y=2x 5-3x 2
+5x-4;
(3) y=3cosx-4sinx; (4) y=2e x
(5)y=log 2x;
五、总结反思:
六、当堂检测:1、课本18页5、6、7题。
3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则1.几个常见函数的导数原函数导函数f(x)=c f′(x)=□010f(x)=x f′(x)=□021f(x)=x2f′(x)=□032xf(x)=1xf′(x)=□04-1x2f(x)=x f′(x)=□0512x2.基本初等函数的导数公式原函数导函数f(x)=xα(α∈Q*)f′(x)=□06αxα-1f(x)=sin x f′(x)=□07cos xf(x)=cos x f′(x)=□08-sin xf(x)=a x f′(x)=□09a x ln_a(a>0)f(x)=e x f′(x)=□10e xf(x)=log a x f′(x)=□111x ln a(a>0且a≠1)f (x )=ln xf ′(x )=□121x3.导数的运算法则 设两个函数分别为f (x )和g (x )两个函数的 和的导数 [f (x )+g (x )]′=□13f ′(x )+g ′(x ) 两个函数的 差的导数 [f (x )-g (x )]′=□14f ′(x )-g ′(x ) 两个函数的 积的导数 [f (x )·g (x )]′=□15f ′(x )g (x )+f (x )g ′(x ) 两个函数的 商的导数 ⎣⎢⎡⎦⎥⎤f (x )g (x )′=□16f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0)4.导数的加法与减法法则(1)两个函数和(或差)的导数等于两个函数的导数的和(或差),可推广到多个函数的和(或差),即(f 1±f 2±…±f n )′=□17f 1′±f 2′±…±f n ′.(2)两个函数和(或差)的导数还可推广为[mf (x )±ng (x )]′=□18mf ′(x )±ng ′(x )(m ,n 为常数).基本初等函数的求导公式可分为四类(1)第一类为幂函数,y ′=(x α)′=α·x α-1(注意幂指数α可推广到全体实数).对于解析式为根式形式的函数,首先应把根式化为分数指数幂的形式,再求导数.(2)第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.注意余弦函数的导数,不要漏掉前面的负号.(3)第三类为指数函数,y′=(a x)′=a x·ln a,当a=e时,e x的导数是(a x)′的一个特例.(4)第四类为对数函数,y′=(log a x)′=1x·ln a,也可记为(log a x)′=1x·log a e,当a=e时,ln x的导数也是(log a x)′的一个特例.1.判一判(正确的打“√”,错误的打“×”)(1)若y=2,则y′=12×2=1.()(2)若f′(x)=sin x,则f(x)=cos x.()(3)若f(x)=x32,则f′(x)=32x.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)⎝⎛⎭⎪⎫1x3′=________.(2)(2x)′=________.(3)若f(x)=x3,g(x)=log3x则f′(x)-g′(x)=________.答案(1)-3x4(2)2x ln 2(3)3x2-1x ln 3探究1利用导数公式及运算法则求导例1求下列函数的导数.(1)y=5x3;(2)y=log5x;(3)f(x)=(x+1)2(x-1);(4)f(x)=2-2sin2x2;(5)f(x)=e x+1e x-1.[解](1)y′=(5x3)′=(x35)′=35x-25=355x2.(2)y ′=(log 5x )′=1x ln 5.(3)因为f (x )=(x +1)2(x -1)=(x 2+2x +1)(x -1)=x 3+x 2-x -1,所以f ′(x )=3x 2+2x -1.(4)因为f (x )=2-2sin 2x2=1+cos x ,所以f ′(x )=-sin x . (5)解法一:f ′(x )=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x-1)2=-2e x (e x-1)2.解法二:因为f (x )=e x +1e x -1=1+2e x -1,所以f ′(x )=2′(e x -1)-2(e x -1)′(e x -1)2=-2e x(e x -1)2.拓展提升(1)当函数解析式能化简时,要先化简再求导.(2)当函数解析式能变形时,可以先变形再求导,要注意,变形的目的是为了求导更简单,如果变形后求导并不简单,那就不要变形,直接求导.【跟踪训练1】 求下列函数的导数. (1)y =13x 2;(2)y =x 3·e x ;(3)y =cos xx .解 (1)y ′=⎝ ⎛⎭⎪⎪⎫13x 2′=(x -23 )′=-23·x -23 -1 =-23·x -53(2)y ′=(x 3·e x )′=(x 3)′·e x +x 3·(e x )′ =3x 2·e x +x 3·e x =x 2e x (3+x ).(3)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.探究2 曲线切线方程的确定与应用例2 过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.[解]因为(e x)′=e x,设切点坐标为(x0,e x0),则过该切点的直线的斜率为e x0,所以所求切线方程为y-e x0=e x0(x-x0).因为切线过原点,所以-e x0=-x0·e x0,x0=1.所以切点为(1,e),斜率为e.[条件探究]已知点P是曲线y=e x上任意一点,求点P到直线y=x的最小距离.解根据题意设平行于直线y=x的直线与曲线y=e x相切于点P(x0,y0),该切点即为与y=x距离最近的点,如图.则在点(x0,y0)处的切线斜率为1,即y′|x=x=1.y′=(e x)′=e x,e x0=1,得x0=0,代入y=e x,y0=1,即P(0,1).利用点到直线的距离公式得距离为22.拓展提升利用基本初等函数的求导公式和导数的四则运算法则,结合导数的几何意义可以解决一些与距离、面积相关的几何的最值问题.解题的关键是正确确定所求切线的位置,进而求出切点坐标.【跟踪训练2】已知点P(-1,1),点Q(2,4)是曲线y=x2上的两点,求与直线PQ平行的曲线y=x2的切线方程.解因为y′=(x2)′=2x,设切点为M(x0,y0),则y′|x=x=2x0.又因为PQ 的斜率为k =4-12+1=1,而切线平行于PQ ,所以k =2x 0=1,即x 0=12, 所以切点为M ⎝ ⎛⎭⎪⎫12,14.所以所求的切线方程为y -14=x -12, 即4x -4y -1=0.探究3 导数计算的综合应用例3 设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求y =f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 围成的三角形面积为定值,并求此定值.[解] (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12,即f (2)=12.由f ′(x )=a +bx 2,得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.所以所求解析式为f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,即切线与直线x =0的交点为⎝ ⎛⎭⎪⎫0,-6x 0;令y =x ,得y =x =2x 0,即切线与直线y =x 的交点为(2x 0,2x 0).故点P (x 0,y 0)处的切线与直线x =0,y =x 围成的三角形的面积为12·⎪⎪⎪⎪⎪⎪-6x 0·|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 围成的三角形的面积为定值,此定值为6.拓展提升求曲线方程或切线方程时,应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.【跟踪训练3】 已知f (x )=13x 3+bx 2+cx (b ,c ∈R ),f ′(1)=0,当x ∈[-1,3]时,曲线y =f (x )的切线斜率的最小值为-1,求b ,c 的值.解 f ′(x )=x 2+2bx +c =(x +b )2+c -b 2, 且f ′(1)=1+2b +c =0.① 若-b ≤-1,即b ≥1, 则f ′(x )在[-1,3]上是增函数, 所以f ′(x )min =f ′(-1)=-1, 即1-2b +c =-1,②由①②,解得b =14,不满足b ≥1,应舍去. 若-1<-b <3,即-3<b <1, 则f ′(x )min =f ′(-b )=-1, 即c -b 2=-1,③由①③,解得b =-2,c =3或b =0,c =-1. 若-b ≥3,即b ≤-3,f ′(x )在[-1,3]上是减函数, 所以f ′(x )min =f ′(3)=-1,即9+6b +c =-1,④由①④,解得b =-94,不满足b ≤-3,应舍去. 综上可知,b =-2,c =3或b =0,c =-1.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,要认真观察函数的结构特征,积极地进行联想化归.2.准确记忆导数的运算法则是进行导数运算的前提,但在解题过程中要注意如何使用运算法则可使运算较为简单.例如,求y =x ·x 的导数,若使用积的导数公式可以求出结果,但不如先化简为y =x ·x =x32 ,再求y ′=32x12简单.3.三次函数的导数为二次函数,当涉及与二次函数最值有关的问题时,常需要讨论,而讨论的立足点是二次函数的图象的对称轴与区间的位置关系.1.下列运算:①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 答案 A解析 ∵(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3.∴所给三个都不正确.2.已知f (x )=x 3+3x +ln 3,则f ′(x )为( ) A .3x 2+3x B .3x 2+3x ·ln 3+13 C .3x 2+3x ·ln 3 D .x 3+3x ·ln 3答案 C解析 (ln 3)′=0,注意避免出现(ln 3)′=13的错误. 3.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为________.答案 x +2y -3-π6=0解析 因为y ′=(cos x )′=-sin x ,所以k =-sin π6=-12,所以在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即x +2y -3-π6=0. 4.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案 1解析 ∵f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,∴f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,即f ′⎝ ⎛⎭⎪⎫π4=2-1,从而有f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1.5.已知直线y =kx 是函数y =ln x 的一条切线,试求k 的值. 解 设切点坐标为(x 0,y 0).∵y =ln x ,∴y ′=1x ,∴y ′|x =x 0=1x 0=k .∵点(x 0,y 0)既在直线y =kx 上,也在曲线y =ln x 上, ∴⎩⎪⎨⎪⎧y 0=kx 0,①y 0=ln x 0,②把k =1x 0代入①式得y 0=1,再把y 0=1代入②式求出x 0=e ,∴k =1x 0=1e .A 级:基础巩固练一、选择题1.已知函数f (x )=2x n -nx 2(n ≠0),且f ′(2)=0,则n 的值为( ) A .1 B .2 C .3 D .4 答案 B解析 由已知得f ′(x )=2nx n -1-2nx .因为f ′(2)=0,所以2n ·2n -1-2n ·2=0,即n ·2n -4n =0.当n =2时,2×22-4×2=0成立.故选B.2.已知f (x )=1x ,则f ⎣⎢⎡⎦⎥⎤f ′⎝ ⎛⎭⎪⎫15=( )A .-25B .-125 C.125 D .25答案 B解析 因为f (x )=1x ,所以f ′(x )=-1x 2.故f ′⎝ ⎛⎭⎪⎫15=-25,f ⎣⎢⎡⎦⎥⎤f ′⎝ ⎛⎭⎪⎫15=f (-25)=-125.3.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0) 答案 C解析 由题意知x >0,且f ′(x )=2x -2-4x ,即f ′(x )=2x 2-2x -4x >0,∴x2-x -2>0,解得x <-1或x >2.又∵x >0,∴x >2.4.若直线y =12x +b 与曲线y =-12x +ln x 相切,则实数b 的值为( ) A .-2 B .-1 C .-12 D .1 答案 B解析 设切点为(x 0,y 0),由y =-12x +ln x ,得y ′=-12+1x ,所以-12+1x 0=12,所以x 0=1,y 0=-12,代入直线方程得-12=12+b ,解得b =-1.故选B. 5.已知点P 在曲线y =x 3-x +23上移动,设动点P 处的切线的倾斜角为α,则α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π2 B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎭⎪⎫3π4,π D.⎝ ⎛⎦⎥⎤π2,3π4 答案 B解析 设P (x 0,y 0),∵y ′=3x 2-1,∴动点P 处的切线的斜率k =3x 20-1≥-1,∴tan α≥-1.又α∈[0,π),∴0≤α<π2或3π4≤α<π.二、填空题6.若曲线y =x -12 在点(a ,a -12)处的切线与两坐标轴所围成的三角形的面积为18,则a =________.答案 64解析 ∵y ′=-12·x -32 ,∴y ′|x =a =-12·a -32 ,∴在点(a ,a -12 )处的切线方程为y -a -12 =-12·a -32 ·(x -a ).令x =0,得y=32a-12,令y =0,得x =3a ,由题意得a >0,∴12×3a ×32a -12=18,解得a =64.7.已知f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,则f (x )的解析式为________.答案 f (x )=52x 4-92x 2+1解析 f ′(x )=4ax 3+2bx ,由已知,得⎩⎪⎨⎪⎧f (0)=1,f ′(1)=1,f (1)=-1,所以⎩⎪⎨⎪⎧c =1,4a +2b =1,a +b +c =-1,解得⎩⎪⎨⎪⎧a =52,b =-92,c =1,所以f (x )的解析式为f (x )=52x 4-92x 2+1.8.已知f (x )=x -2x +lg 2,则f ′(x )=________.答案 12x -12-2x ln 2解析 因为f (x )=x12 -2x+lg 2,所以f ′(x )=12x -12 -2x ln 2.注意(lg 2)′=0,避免出现(lg 2)′=12ln 10的错误.三、解答题9.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =e xsin x .解 (1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos x x .(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x·(sin x )′sin 2x=e x ·sin x -e x ·cos x sin 2x =e x (sin x -cos x )sin 2x.10.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y+5=0,求函数的解析式.解 由条件知,-1+2f (-1)+5=0,f (-1)=-2,-a -61+b=-2,①又直线x +2y +5=0的斜率k =-12,f ′(-1)=-12,f ′(x )=-ax 2+12x +ab (x 2+b )2,f ′(-1)=-a -12+ab (1+b )2=-12,② 由①②解得,a =2,b =3(b +1≠0,b =-1舍去). 所求函数解析式为f (x )=2x -6x 2+3.B 级:能力提升练1.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2018(x )=________.答案 -sin x解析 f 0(x )=sin x ,f 1(x )=f 0′(x )=cos x ,f 2(x )=f 1′(x )=-sin x ,f 3(x )=f 2′(x )=-cos x ,f 4(x )=f 3′(x )=sin x ,….由此继续求导下去,发现四个一循环,从0到2018共2019个数,2019=4×504+3,所以f 2018(x )=f 2(x )=-sin x .2.已知函数f (x )=x 2a -1(a >0)的图象在x =1处的切线l ,求l 与两坐标轴围成的三角形面积的最小值.解 ∵f ′(x )=2x a ,∴f ′(1)=2a .又∵f (1)=1a -1, ∴切线l 的方程为y -1a +1=2a (x -1). 分别令x =0,y =0得y =-1a -1,x =a +12, ∴三角形的面积为S=12⎪⎪⎪⎪⎪⎪-1a-1·⎪⎪⎪⎪⎪⎪a+12=14⎝⎛⎭⎪⎫a+1a+2≥14×(2+2)=1.当且仅当a=1a,即a=1时,直线l与两坐标轴围成的三角形面积的最小值为1.。
基本初等函数的导数公式基本初等函数的导数公式1.常数函数的导数公式:常数函数f(x)=C的导数为0,即f'(x)=0,其中C为常数。
2.幂函数的导数公式:幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1),其中n为实数。
3.指数函数的导数公式:指数函数f(x) = a^x的导数为f'(x) = a^x * ln(a),其中a为正实数,ln(a)为以e为底的对数。
4.对数函数的导数公式:对数函数f(x) = ln(x)的导数为f'(x) = 1/x,其中x为正实数。
5.三角函数的导数公式:正弦函数f(x) = sin(x)的导数为f'(x) = cos(x);余弦函数f(x) = cos(x)的导数为f'(x) = -sin(x);正切函数f(x) = tan(x)的导数为f'(x) = sec^2(x)。
6.反三角函数的导数公式:反正弦函数f(x) = arcsin(x)的导数为f'(x) = 1/√(1-x^2);反余弦函数f(x) = arccos(x)的导数为f'(x) = -1/√(1-x^2);反正切函数f(x) = arctan(x)的导数为f'(x) = 1/(1+x^2)。
利用这些导数公式,可以求解各种基本初等函数的导数。
此外,还有一些复合函数的导数公式,如链式法则和乘积法则等,可以用来求解复杂的函数导数。
总结起来,基本初等函数的导数公式如下:常数函数的导数公式:f'(x)=0;幂函数的导数公式:f'(x)=n*x^(n-1);指数函数的导数公式:f'(x) = a^x * ln(a);对数函数的导数公式:f'(x)=1/x;三角函数的导数公式:sin(x)' = cos(x),cos(x)' = -sin(x),tan(x)' = sec^2(x);反三角函数的导数公式:arcsin(x)' = 1/√(1-x^2),arccos(x)' = -1/√(1-x^2),arctan(x)' = 1/(1+x^2)。
第五章 一元函数的导数及其应用《5.2.1基本初等函数的导数》教学设计1.能根据导数定义求常用函数的导数,掌握导数公式表并学会应用2.能利用给出的基本初等函数的导数公式求简单函数的导数.教学重点:导数公式表的识记以及利用给出的基本初等函数的导数公式求简单函数的导数. 教学难点:导数公式表的识记以及求简单函数的导数PPT 课件.【新课导入】问题1:阅读课本第72~75页,回答下列问题: (1)本节将要探究哪类问题?(2)本节探究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.)本节课主要学习基本初等函数的导数;(导数公式的介绍,进一步帮助学生理解导数的含义,同时提升学生对函数导数的求解运算能力,为运用导数解决函数问题,打下坚实的基础.在学习过程中,注意特殊到一般、数形结合、转化与化归的数学思想方法的渗透.设计意图:通过阅读读本,让学生明晰本阶段的学习目标,初步搭建学习内容的框架. 问题2:求函数在x 0处的导数的步骤是什么? 师生活动:学生回顾并回答.预设的答案:(1)求Δy =f (x 0+Δx )-f (x 0); (2)求变化率00(Δ)()ΔΔΔf x x f x y x x+-=; (3)求极限0x x y ='=0Δ0Δ()limΔx yf x x→'=.问题3:求导函数的步骤是什么? 师生活动:学生回顾并回答.预设的答案:(1)求改变量Δy =f (x +Δx )-f (x );◆ 教学过程 ◆ 课前准备◆ 教学重难点 ◆◆ 教学目标(2)求比值00(Δ)()ΔΔΔf x x f x y x x+-=; (3)求极限Δ0Δ()limΔx yy f x x→'=='.问题4:很多复杂函数可以通过基本初等函数进行加、减、乘、除等运算得到,那么一个函数的导函数是否可由基本初等函数的导函数通过相应的运算得到呢?设计意图:通过对上节导数定义及求导步骤的回顾,引导学生对5个基本函数运用定义求导.发展学生数学抽象、数学运算、数学建模的核心素养.【探究新知】由导函数的定义可知,一个函数的导数是唯一确定的.那么思考一下,如何求函数()y f x =的导数呢?根据导数的定义,求函数()y f x =的导数,就是求当0x ∆→时,ΔΔyx无限趋近的那个定值.下面我们求几个常用函数的导数. 知识点1:函数()y f x c ==的导数 问题5:如何求函数()y f x c ==的导数?师生活动:学生按照导数的求解过程求解,教师完善. 预设的答案:因为()()0y f x x f x c c x x x∆+∆--===∆∆∆,所以00lim lim00x x yy x ∆→∆→∆===∆'.物理意义:若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.方法总结:求导时可采用的程序化步骤为: (1)计算ΔΔyx,并化简. (2)观察当Δx 无限趋近于0时,ΔΔy x 无限趋近于哪个定值.此时,要注意ΔΔy x是Δx 的函数,x 视为常数; (3)ΔΔyx无限趋近的定值就是函数y =f (x )的导数. 知识点2:函数()y f x x ==的导数 问题6:如何求函数()y f x x ==的导数?师生活动:学生按照导数的求解过程求解,教师完善. 预设的答案:因为()()()1y f x x f x x x x x x x∆+∆-+∆-===∆∆∆,所以00lim lim11x x y y x ∆→∆→∆===∆'.物理意义:若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速直线运动.知识点3:函数2()y f x x ==的导数 问题7:如何求函数2()y f x x ==的导数?师生活动:学生按照导数的求解过程求解,教师完善.预设的答案:因为22()()()y f x x f x x x x x x x ∆+∆-+∆-==∆∆∆2222()x x x x x x+⋅∆+∆-=∆2x x =+∆,所以0lim lim(2)2x x yy x x x x ∆→∆→∆=+∆=∆'=. 几何意义:2y x '=表示函数2y x =的图象上点()x y ,处切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化.物理意义:从导数作为函数在一点的瞬时变化率来看,2y x '=表明:当0x <时,随着x 的增加,||y '越来越小,2y x =减少得越来越慢;当0x >时,随着x 的增加,||y '越来越大,2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 知识点4:函数3()y f x x ==的导数 问题8:如何求函数3()y f x x ==的导数?师生活动:学生分组讨论,派一代表板演,教师完善.预设的答案:因为33()()()y f x x f x x x x x x x ∆+∆-+∆-==∆∆∆3233233()()x x x x x x x x+⋅∆+⋅∆+∆-=∆2233()x x x x =+⋅∆+∆,所以22200limlim[33()]3x x yy x x x x x x ∆→∆→∆='=+⋅∆+∆=∆. 几何意义:23y x '=表示函数3y x =的图象上点()x y ,处切线的斜率为23x ,这说明随着x 的变化,切线的斜率也在变化,且恒为非负数. 知识点5:函数1()y f x x==的导数 问题9:如何求函数1()y f x x==的导数? 师生活动:学生分组讨论,派一代表板演,教师完善.预设的答案:因为11()()y f x x f x x x x x x x -∆+∆-+∆==∆∆∆2()1()x x x x x x x x x x-+∆==-+∆∆+⋅∆,所以220011limlim x x y y x x x x x ∆→∆→∆⎛⎫==-=- ⎪∆+⋅∆⎝⎭'. 知识点6:函数()y f x x == 问题10:如何求函数()y f x x =师生活动:学生分组讨论,各自完成,教师完善. 预设的答案:因为Δ(Δ)()ΔΔΔΔy f x x f x x x x x x x+-+-==(Δ)(Δ)Δ(Δ)x x x x x x x x x x +-++=++Δx x x=++,所以00lim 2x x y y x x x x x∆→∆→∆===∆+∆+'. 设计意图:通过对6个基本函数导数的求解,及其导函数的解释.发展学生数学抽象、数学运算和数学建模的核心素养. 知识点7:基本初等函数的导数公式前面我们根据导数的定义求出了一些常用函数的导数. 一般地,有下面的基本初等函数的导数公式表,这些公式可以直接使用.基本初等函数的导数公式1. 若()f x c =(c 为常数),则()0f x '=;2. 若()(f x x αα=∈Q ,且0)α≠,则1()f x x αα-=';3. 若()sin f x x =,则()cos f x x =';4. 若()cos f x x =,则()sin f x x '=-;5. 若()(0x f x a a =>,且1)a ≠,则()ln x f x a a ='; 特别地,若()e x f x =,则()e x f x '=;6. 若()log (0a f x x a =>,且1)a ≠,则1()ln f x x a='; 特别地,若()ln f x x =,则1()f x x'=; 【巩固练习】例1 求下列函数的导数: (1)23y x =;(2)2log y x =. 师生活动:让学生利用公式求解.预设的答案:(1)213123322()33y x x x --=''==;(2)()21log ln 2y x x '='=. 设计意图:通过该例题加深学生对导数公式的学习.方法总结:对于基本初等函数的导数求解,都可直接利用公式.例2假设某地在20年间的年均通货膨胀率为5%,物价p (单位:元)与时间:(单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价,假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01元/年)? 师生活动:与学生一起审清题意,让学生利用公式求解.预设的答案:根据基本初等函数的导数公式表,有() 1.05ln1.05t p t '=, 所以10(10) 1.05ln1.050.08p =≈'.所以,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.设计意图:通过基本问题解决,帮助学生熟悉基本函数导数公式.发展学生数学抽象、逻辑推理、数学运算和数学建模的核心素养.通过两道例题来加深对导数公式的学习吧. 练习:教科书P 75练习1、2设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养.【课堂总结】1. 板书设计:5.2.1基本初等函数的导数 新知探究巩固练习 知识点1:函数()y f x c ==的导数 例1 知识点2:函数()y f x x ==的导数例2 知识点3:函数2()y f x x ==的导数知识点4:函数3()y f x x ==的导数 知识点5:函数1()y f x x==的导数 知识点6:函数()y f x x ==的导数 知识点7:基本初等函数的导数公式2.总结概括:基本初等函数的导数公式1. 若()f x c =(c 为常数),则()0f x '=;2. 若()(f x x αα=∈Q ,且0)α≠,则1()f x x αα-=';3. 若()sin f x x =,则()cos f x x =';4. 若()cos f x x =,则()sin f x x '=-;5. 若()(0x f x a a =>,且1)a ≠,则()ln x f x a a ='; 特别地,若()e x f x =,则()e x f x '=;6. 若()log (0a f x x a =>,且1)a ≠,则1()ln f x x a='; 特别地,若()ln f x x =,则1()f x x'=;师生活动:学生总结,老师适当补充.3.课堂作业:教科书P 75 练习3、4【目标检测设计】1.若()sin f x x =,2'1()f α=,则下列α的值中满足条件的是( ) A.π3B.π6 C.2π3D.5π6设计意图:让学生进一步巩固基本初等函数的导数公式.2.设0()sin f x x =,01()()'f x f x =,12()()'f x f x =,…1()'()n n f x f x +=,n ∈N ,则2020()f x =( ) A.sin xB.sin x -C.cos xD.cos x -设计意图:让学生进一步巩固基本初等函数的导数公式,利用归纳思想求解. 3.曲线1()f x x =在点P 处的切线的倾斜角为3π4,则点P 的坐标为( ) A.()11, B.()11--,C.122⎛⎫⎪⎝⎭,D.()11,或()11--, 设计意图:让学生进一步巩固基本初等函数的导数公式以及导数的几何意义. 4.已知2()f x x =,()ln g x x =,若'()()1'f x g x -=,则x =_______. 设计意图:让学生进一步巩固基本初等函数的导数公式以及方程求解. 参考答案: 1. A()sin f x x =,()o 'c s f x x ∴=,又1()cos '2f αα==,π2π()3k k α∴=±∈Z ,当0k =时,π3α=±,∴可取π3α=.故选A.2. A 0()sin f x x =,01()()(sin )s 'co 'f x f x x x ===,12()()(cos )'sin 'f x f x x x ===-,23()()(sin )c s 'o 'f x f x x x ==-=-,34()()(cos '')sin f x f x x x ==-=,所以4()()()n n f x f x n +=∈N .故20200()()sin f x f x x ==.故选A.3.D 切线的斜率3tan π14k ==-,设切点P 的坐标为()00x y ,,则()0'1f x =-.又21()'f x x=-,2011x ∴-=-,解得01x =或1-,∴切点P 坐标为()11,或()11--,.故选D. 4.1 因为2()f x x =,()ln g x x =,所以()2f x x '=,1()g x x'=且0x >.所以1()()21f x g x x x ''-=-=,即2210x x --=,解得1x =或12x =-(舍去).故1x =.。
基本初等函数求导公式基本初等函数是指常见的基本函数,包括多项式函数、指数函数、对数函数、三角函数和双曲函数等。
这些函数在数学和科学中有广泛的应用,求导是计算函数斜率和变化率的重要方法。
在这篇文章中,我们将介绍基本初等函数的求导公式。
一、多项式函数的求导公式多项式函数是指以整数指数的变量的多项式,形如:f(x) = anxn + an-1xn-1 + ... + a1x + a0多项式函数的求导公式可以通过求导的定义来推导,也可以通过规律总结出来。
根据求导的定义,对于多项式函数 f(x) = anxn + an-1xn-1+ ... + a1x + a0 ,其导函数 f'(x) 的形式为:f'(x) = nanxn-1 + (n-1)an-1xn-2 + ... + a1其中,n 是多项式的最高次幂,ai 是与 xi 的系数。
例如,对于f(x) = 3x3 + 2x2 - 5x + 1 ,它的导函数为 f'(x) = 9x2 + 4x - 5二、指数函数的求导公式指数函数是以指数为变量的函数,形如:f(x) = exf'(x) = ex这个公式的意义在于指数函数的导数等于它本身。
三、对数函数的求导公式对数函数是以指数为变量的反函数,形如:f(x) = loga(x)对数函数的求导公式是:f'(x) = 1 / (xln(a))其中,a 是对数的底数,ln(a) 是以 e 为底的 a 的对数。
例如,对于 f(x) = log2(x) ,它的导函数为 f'(x) = 1 / (xln(2))。
四、三角函数的求导公式三角函数包括正弦函数、余弦函数和正切函数等。
它们的求导公式如下:1.正弦函数的求导公式:f(x) = sin(x)f'(x) = cos(x)2.余弦函数的求导公式:f(x) = cos(x)f'(x) = -sin(x)3.正切函数的求导公式:f(x) = tan(x)f'(x) = sec^2(x)其中,sec^2(x) 是 sec(x)(正切函数的倒数)的平方。