HJ-1-A、B卫星介绍
- 格式:doc
- 大小:63.00 KB
- 文档页数:2
HJ星:
环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于2008年9月6日上午11点25分成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。
在HJ-1-A卫星和HJ-1-B卫星上均装载的两台CCD相机设计原理完全相同,以星下点对称放置,平分视场、并行观测,联合完成对地刈幅宽度为700公里、地面像元分辨率为30米、4个谱段的推扫成像。
此外,在HJ-1-A卫星装载有一台超光谱成像仪,完成对地刈宽为50公里、地面像元分辨率为100米、110~128个光谱谱段的推扫成像,具有±30°侧视能力和星上定标功能。
在HJ-1-B卫星上还装载有一台红外相机,完成对地幅宽为720公里、地面像元分辨率为150米/300米、近短中长4个光谱谱段的成像。
各载荷的主要参数如表1所示。
HJ-1-A卫星和HJ-1-B卫星的轨道完全相同,相位相差180°。
两台CCD相机组网后重访周期仅为2天。
其轨道参数如表2所示。
表2 HJ-1-A、B卫星轨道参数。
2009年HJ-1A/B星绝对辐射定标系数1、HJ-1A/B星绝对辐射定标系数见表1、表2、表3和表4
表1 HJ-1A/B星CCD相机定标系数
表2 HJ-1B星IRS相机Band5、Band6定标系数
表3 HJ-1B星IRS相机Band8定标系数
表4 HJ-1A 星HSI (增益2)相机定标系数
2、使用绝对定标系数时注意传感器的增益状态,HJ-1A-CCD1、HJ-1B-CCD1、HJ-1B-IRS 在增益状态1下的定标系数和HJ-1A-CCD2、HJ-1B-CCD1??、HJ-1B-CCD2、HI-1A-HSI 在增益状态2下为场地定标获取,传感器其余增益状态的定标系数是通过实验室定标系数得到的增益1和增益2定标系数转换关系所得。
利用绝对定标系数将CCD 图像DN 值转换为辐亮度图像的公式为:
0DN
L L A
=
+ 式中A 为绝对定标系数增益,0L 为绝对定标系数偏移量,转换后辐亮度单位为W ⋅m -2⋅sr -1⋅μm -1。
对于IRS-Band5、IRS-Band6近红外波段图像和HSI 图像,由于没有偏移量,其辐亮度图像的公式为:
对于IRS-Band8热红外波段图像,其辐亮度图像的公式为:
DN b
L g
-=
,其中g 为绝对定标系数增益,b 为偏移量 注:对于HJ-1B 星IRS 相机Band7中红外波段绝对定标系数后续给出。
4主要技术指标
4.1 轨道
表1-轨道主要技术指标
4.3 有效载荷
4.3.1宽覆盖多光谱可见光相机
HJ-1-A,HJ-1-B星上均装载有宽覆盖多光谱可见光相机,主要技术指标如表3。
表3-覆盖多光谱可见光相机主要技术指标
4.3.2超光谱成像仪
超光谱成像仪装载在HJ-1-A卫星上,主要技术指标见表4。
观
测模式:星下点垂直观测、左右侧摆倾斜观测。
表4-超光谱成像仪主要技术指标
4.3.3红外相机
观测模式:星下点垂直观测。
红外相机装载在HJ-1-B卫星上,主要指标见表5。
表5-红外相机主要技术指标
4.3.5 S-波段合成孔径雷达
S-波段合成孔径雷达装载在HJ-1-C卫星上,主要指标见表7。
表7-S-波段合成孔径雷达主要技术指标
4.6 工作模式
表9-有效载荷工作模式主要技术指标
4.7卫星寿命
卫星寿命:≥3年
HJ-1-A 卫星Ka通信试验寿命:≥1年。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊是重要的淡水资源和生态环境,叶绿素a是湖泊水体中重要的生物地球化学指标之一,对湖泊水质和生态环境拥有重要的指示作用。
监测湖泊叶绿素a浓度可以有效评估湖泊的营养状态和生态环境,为湖泊管理和保护提供重要的科学依据。
遥感技术已经成为湖泊水质监测的重要手段,可以在较大范围内快速获取湖泊的叶绿素a浓度分布信息。
本文旨在利用HJ-1A/B卫星CCD数据反演湖泊叶绿素a浓度,并分析其时空变化规律,为湖泊水质监测和管理提供科学依据。
一、HJ-1A/B卫星CCD数据HJ-1A/B是我国自主研制的一对环境监测卫星,搭载有CCD等多种传感器,能够获取高分辨率的遥感影像数据。
CCD传感器具有高空间分辨率和较高的动态范围,适用于湖泊水质参数反演。
本文选取HJ-1A/B卫星CCD数据作为研究数据源,利用其多光谱信息反演湖泊叶绿素a浓度。
二、叶绿素a浓度反演方法1. 反演模型本文采用经验模型和统计模型相结合的方法进行叶绿素a浓度反演。
首先利用地面采样数据和遥感影像数据建立经验模型,然后利用统计模型对经验模型进行优化,得到湖泊叶绿素a浓度的空间分布图。
2. 数据预处理对HJ-1A/B卫星CCD数据进行预处理,包括大气校正、辐射定标、噪声去除等步骤,以提高数据的质量和可用性。
3. 特征参数提取从HJ-1A/B卫星CCD数据中提取反演叶绿素a浓度所需的特征参数,包括叶绿素吸收峰位置、叶绿素荧光峰位置、水体颜色指数等。
4. 建立经验模型利用地面采样数据和遥感影像数据建立叶绿素a浓度与特征参数之间的经验关系模型,包括线性模型、非线性模型等。
5. 统计模型优化利用统计方法对经验模型进行优化,修正模型参数,提高模型的适用性和精度。
6. 反演叶绿素a浓度利用经过优化的模型对湖泊遥感影像数据进行反演,得到叶绿素a浓度的空间分布图。
三、叶绿素a浓度反演结果分析利用上述方法对某湖泊的HJ-1A/B卫星CCD数据进行处理和分析,得到湖泊叶绿素a浓度的空间分布图。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度是湖泊水质的重要指标,对于湖泊的生态环境和水体健康状态评估具有重要意义。
传统的湖泊叶绿素a浓度测定方法需要采集水样进行实验室分析,费时费力,且无法实时监测。
而遥感技术能够通过卫星遥感数据获取湖泊叶绿素a浓度分布情况,具有快速、准确、全面的优势。
HJ-1A星和HJ-1B星是我国自主研发的一对小型环境遥感卫星,搭载了多种传感器,包括HJ-1A星携带的环境监测成像仪(CCD)传感器。
该传感器工作在可见光波段,具有较高的空间分辨率和时间分辨率,适合用于湖泊叶绿素a浓度的反演。
湖泊叶绿素a浓度反演的基本原理是利用湖泊水体对太阳辐射的吸收和散射特性,推算出水体中叶绿素a的浓度。
HJ-1ACCD数据可以提供湖泊水体的表观反射率,进而反演出叶绿素a浓度的空间分布。
具体而言,湖泊叶绿素a浓度反演主要包括以下几个步骤:1. 数据预处理:包括大气校正、水体辐射校正等。
大气校正是将HJ-1ACCD数据中的大气影响去除,获得水体的表观反射率。
水体辐射校正是排除湖泊水体中各种非叶绿素色素的干扰,提取出叶绿素a对辐射的贡献。
2. 模型建立:根据已有的湖泊叶绿素a浓度测量数据和HJ-1ACCD数据,建立叶绿素a 浓度与表观反射率之间的关系模型。
常用的模型有线性回归模型、非线性回归模型等。
3. 反演计算:利用建立的模型,将水体的表观反射率代入模型进行计算,得到湖泊叶绿素a浓度的估计值。
根据需要可以进行插值和平滑处理,得到叶绿素a浓度的空间分布图像。
4. 验证和误差分析:将反演结果与实测数据进行对比,评估反演方法的准确性和可靠性。
分析误差来源,进一步优化反演方法和模型。
湖泊叶绿素a浓度反演基于HJ-1ACCD数据可提供湖泊水体叶绿素a浓度的空间分布情况,帮助提前发现和监测水体富营养化、蓝藻水华等问题,为湖泊水质管理和保护提供科学依据。
该方法还能够实现湖泊水质的实时监测和预警,为及时采取应对措施提供技术支持。
★专题1 环境减灾卫星运行情况环境与灾害监测预报小卫星星座包括2颗光学卫星环境减灾一号A、B(HJ -1A/B)卫星和1颗雷达卫星环境减灾一号C(HJ -1C)卫星,可以实现对生态环境与灾害的大范围、全天候、全天时的动态监测,光学卫星可实现30m 空间分辨率每2天对国土进行全覆盖观测,红外探测在中等分辨率下每4天对国土进行全覆盖观测,超光谱探测在中等分辨率下每4天对国土进行重复观测。
HJ -1A/B 于2008年9月6日成功发射,设计寿命3年,于2009年4月在轨交付使用,至今已经在轨运行10年,超期服役7年,围绕地球运转53819圈。
HJ -1C 于2012年11月19日成功发射,设计寿命3年,围绕地球运转32178圈。
卫星运行期间,为我国生态环境监测和环境遥感科研等工作提供了大量遥感数据。
2 环境减灾卫星数据接收情况环境减灾卫星配置了宽覆盖CCD 相机、红外多光谱扫描仪(IRS)、高光谱成像仪(HIS)、合成孔径雷达(SAR)等四种遥感器,组成了一个具有中高空间分辨率、高时间分辨率、高光谱分辨率和宽覆盖的比较完备的对地观测遥感系列。
截至2018年8月16日,生态环境部卫星环境应用中心已累计提供CCD 数据493930景,数据量154251.451GB;HIS 数据690429景,数据量32361.713GB;IRS 数据67365景,数据量4451.179GB;SAR 数据112011景,数据量10189.572GB。
环境减灾卫星Application of HJ -1 in China's Ecological Environment王桥1、2 杨一鹏1、2 赵少华1、2 刘思含1、2(1生态环境部卫星环境应用中心 2国家环境保护卫星遥感重点实验室)环境与灾害监测预报小卫星星座A、B 卫星(简称HJ -1A/B)于2008年9月成功发射。
卫星在轨运行10年,为我国生态环境遥感监测提供了重要数据支撑,有力支撑了国家生态环境保护重点工作。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊是地球上重要的自然水体,叶绿素a是湖泊中浮游植物的主要色素,它不仅影响水体的颜色和透明度,还对湖泊水生态环境和生态系统的健康状况有着重要的影响。
因此,准确地反演湖泊叶绿素a浓度对于湖泊水质管理、生态环境保护和资源科学研究具有重要意义。
利用遥感技术从卫星获取的遥感数据可以有效地反演湖泊叶绿素a浓度。
我国自主研制的环境卫星HJ-1A/B是一对小型遥感卫星,其中HJ-1A/B卫星上搭载的环境监测传感器(CCD)能够获取高空间分辨率的多光谱遥感数据,广泛应用于陆地和水体等环境领域。
本文将介绍利用HJ-1A/B卫星CCD数据实现湖泊叶绿素a浓度反演的方法和一些常见的问题。
1. 数据获取和处理本文以鄱阳湖为例,利用HJ-1A/B CCD数据进行湖泊叶绿素a浓度反演。
首先,需要获取CCD 反射率数据,并进行预处理,去除大气、表面反射率等非水体效应,得到反演所需的水体反射率数据。
本文采用的是2009年9月16日的HJ-1A CCD数据,波段范围为520~900 nm,空间分辨率为30 m。
2. 预处理湖泊叶绿素a浓度反演需要先进行一些预处理,以确保反演精度和可靠性。
具体包括以下几个方面:(1)数据质量和去云处理CCD数据的质量直接影响到反演精度和可靠性,需要对数据进行质量评估,并对有云和阴影部分进行剔除和插值处理。
(2)水体反射率计算通过分别提取不同波段的反射率值,计算出不同光谱波段下的水体反射率。
需要对CCD数据进行大气校正,去除地表反射率,提取水体反射率,并进行合并处理,得到不同波段下的水体反射率数据。
(3)计算蓝绿波段比值利用HJ-1A CCD波段520~590 nm之间的数据计算蓝绿波段比值(Blue-Green Ratio, BGR),BGR=(R532-R491)/(R532+R491)。
蓝绿波段比值可有效地估算水中叶绿素a的浓度,对湖泊叶绿素a浓度反演具有重要的参考作用。
41 概述2008年9月6日,环境与灾害监测预报小卫星星座A、B(简称环境减灾一号A、B,HJ -1A/B)卫星在太原卫星发射中心由长征二号丙火箭发射升空,至2018年9月6日,已整整运行10年。
在民政部卫星减灾应用中心的精心运营管理下,目前双星仍在按业务需求开展遥感任务,成为我国寿命最长的遥感卫星。
环境减灾一号A 星(左图)、B 星(右图)在轨示意图2 在轨运行情况HJ -1A/B 卫星入轨后,于2008年10月13日完成双星轨道控制,形成180°相位星座布设。
为维持双星相位,2010年5月22日、2012年3月7日至3月10日对星座相位维持实施了二次轨控。
2014年,卫星降交点地方时已由标称值10∶30漂移到9∶20左右,整星发电能力受到较为严重的影响。
2014年3月11日开始对星座实施了卫星倾角的调整,增加0.3056°,使得卫星降交点地方时开始向正午漂移。
2016年以后,卫星相位差拉大,环境减灾一号A、B 卫星Retrospect and Prospect of HJ -1A/B over the Past Ten Years白照广(航天东方红卫星有限公司)在轨运行十周年回顾与展望Space International 国际太空 · 2018·9Reviews★专题综述Space International 国际太空·总第477期5考虑到卫星处于寿命末期,卫星以保寿命运行为主,未再进一步进行轨道调整。
经过10年的运行,卫星太阳电池阵发电电流相对入轨初期衰减0.6~1.8A 左右。
目前卫星能源仍能满足负载运行要求。
卫星运行姿态稳定,整体工况良好。
姿态指向精度维持在0.1°以内,姿态稳定精度维持在0.01°/s 以内。
星上温度环境适宜,蓄电池组温度水平一直保持在3.3~8.8℃正常范围内,其他舱内设备保持在0~30℃以内,随运行时间整体上呈微微上涨趋势,平均每年增加0.5℃。
1 概述环境减灾卫星星座是中国第一个用于环境与灾害监测预报的小卫星星座,是中国继气象、海洋、资源卫星系列之后发射的又一新型的民用卫星系统。
环境减灾卫星由2颗光学卫星环境减灾一号A、B(HJ-1A/B)卫星和1颗雷达卫星环境减灾一号C(HJ-1C)卫星组成。
HJ-1A/B卫星于2008年9月6日以“一箭双星”方式成功发射,卫星由中国航天科技集团有限公司航天东方红卫星有限公司研制,中国科学院参加了有效载荷的研制任务。
运载火箭由中国航天科技集团有限公司运载火箭技术研究院研制,太原卫星发射中心负责星箭发射。
西安卫星测控中心负责测控任务,包括卫星测控任务和长期管理。
地面系统由数据接收系统、地面数据处理系统、分发服务系统组成,中国科学院遥感地面站负责卫星数据的接收,中国资源卫星应用中心(简称资源卫星中心)负责数据处理、分发。
应用系统由环境应用系统和减灾应用系统组成,应急管理部(原国家减灾委)和生态环境部(原环境保护部)共同负责卫星的业务运行管理。
资源卫星中心作为HJ-1A/B卫星的数据处理和分发服务负责单位,同时也是国家陆地观测卫星数据中心,肩负着我国陆地观测卫星数据集中处理中心、统一存档中心、统一分发中心的重要责任,为国家经济建设和社会发展提供宏观决策依据,为全国广大用户提供各类对地观测数据产品和技术服务。
迄今为止,资源卫星中心负责运行和数据处理、归档和分发包含“资源”、“环境”、“测绘”、“高分”等系列民用卫星共计22颗,我国民用陆地观测系列卫星被广泛应用于国土资源、城市规划、环境监测、防灾减灾、农业、林业、水利、气象、电子政务、统计、海洋、测绘、环境减灾一号A、B卫星Data Service and Application of HJ-1A/B数据服务及应用徐文 曾湧 陈卫荣(中国资源卫星应用中心)摘要:2008年9月,环境与灾害监测预报小卫星星座A、B(简称环境减灾一号A、B)卫星成功发射,迄今为止,2颗卫星已运行10周年,超期运行7年。
★专题1 前言环境与灾害监测预报小卫星星座规划由4颗光学卫星和4颗合成孔径雷达卫星组成,具有大范围、全天候、全天时、动态的灾害监测能力,是我国继“气象”、“海洋”和“资源”之后的第四大民用卫星系列。
2008年9月6日,环境与灾害监测预报小卫星星座A、B(简称环境减灾一号A、B,HJ -1A/B)2颗光学小卫星通过“一箭双星”方式成功发射,迈出了该星座建设的第一步,标志着我国自然灾害监测和损失评估有了稳定的数据支撑。
作为环境减灾小卫星星座牵头业务部门的支撑单位,国家减灾中心主要负责HJ -1A/B 卫星的运行管理和减灾应用业务体系建设工作。
10年来,国家减灾中心建立了运行管理队伍,开发了运行管理平台,建立了运管值班制度,精心组织卫星运行管理工作,合理安排卫星观测任务,在满足各类用户的基础上,尽可能使卫星使用效益最大化。
在卫星减灾应用方面,经过10年的发展,HJ -1A/B 这2颗卫星已被完全纳入我国防灾减灾救灾决策业务体系,成为防灾减灾救灾决策重要的数据源。
同时,在HJ -1A/B 卫星的支撑下,国家灾害遥感监测业务体系已经初步建成,灾害遥感监测业务模式、工作规程、标准规范、产品体系与服务模式也已形成,并逐步完善。
HJ -1A/B 卫星的应用,也大大带动了全国省级减灾中心灾害遥感监测业务的发展。
2 灾害遥感业务体系HJ -1A/B 卫星减灾应用的10年,也是我国灾害遥感业务体系建立与发展的10年。
在HJ -1A/B 卫星数据的支撑下,国家减灾中心建立了较为完善的灾害遥感业务体系,实现了灾害遥感业务从无到有并逐步完善的过程。
目前,灾害遥感业务体系已初步形成,并已经成为国家防灾减灾救灾决策中不可环境减灾一号A、B 卫星Application of HJ-1A/B in Disaster Reduction减灾应用杨思全1 范一大2 李素菊1 王兴玲2 吴玮1 聂娟1 和海霞1 王平1 刘明1贾丹1(1民政部国家减灾中心 2民政部信息中心 )或缺的重要技术支撑手段。
基于HJ-1ACCD数据的湖泊叶绿素a浓度反演湖泊叶绿素a浓度是衡量水体藻类生长和水质的重要指标之一,对于湖泊生态环境的监测和保护具有重要意义。
传统的叶绿素a浓度监测方式需要耗费大量人力物力进行野外调查和实验室分析,费时费力。
而基于遥感数据的叶绿素a浓度反演方法可以大大提高监测效率和准确性,成为了当前研究的热点之一。
HJ-1A和HJ-1B,它们分别搭载有多光谱和全色相机,能够获取30米分辨率的多光谱和16米全色影像数据。
这使得HJ-1星系列数据成为了进行叶绿素a浓度反演研究的理想选择。
本文将基于HJ-1ACCD数据进行湖泊叶绿素a浓度反演的研究,以期为湖泊水质监测提供更为高效、精确的方法。
一、HJ-1ACCD数据HJ-1ACCD是由环境卫星应用与服务中心提供的一种遥感产品数据,其数据涵盖了中国大陆及周边地区的陆地环境、植被和农田等多种信息。
HJ-1ACCD数据以HJ-1A/B卫星的CCD传感器为基础,通过对CCD传感器数据的预处理和气象校正,生成了表征地表反射率和植被生长状况的遥感产品,包括植被指数、叶绿素含量等。
二、湖泊叶绿素a浓度反演方法1.建立叶绿素a浓度与遥感数据的定量关系模型我们需要采集湖泊水体的实地采样数据,包括叶绿素a浓度、水体颜色、透明度等指标。
然后,利用HJ-1ACCD数据获取湖泊水体的遥感信息,如反射率、光谱特征等。
接着,利用统计学方法或机器学习算法建立叶绿素a浓度与遥感数据之间的定量关系模型,例如多元线性回归模型、支持向量机模型等。
2.验证模型准确性建立模型后,需要对其进行验证,以验证模型的准确性和可靠性。
可以利用另外采集的实地数据进行验证,或者采用交叉验证等方法进行模型验证。
3.应用模型进行叶绿素a浓度反演一旦模型验证通过,就可以将模型应用于湖泊叶绿素a浓度的遥感反演工作中。
利用HJ-1ACCD数据获取的遥感信息,输入到建立的模型中,就可以得到湖泊叶绿素a浓度的反演结果。
环境一号卫星参数大全
环境一号卫星A 星
环境一号卫星A 星是环境与灾害监测预报小卫星星座的第一颗卫星,于2008年9月6日上午11点25分成功发射,HJ-1A 卫星搭载了CCD 相机和超光谱成像仪(HSI )。
环境一号卫星A 星参数
空间分辨率环境一号卫星B 星
环境一号卫星B 星是环境与灾害监测预报小卫星星座的卫星,于2008年9月6日上午
11点25分成功发射,HJ-1B 卫星搭载了CCD 相机和超光谱成像仪(HSI )。
环境一号卫星B 星参数
环境一号卫星C星
环境一号C星是中国首颗民用合成孔径雷达卫星,具有全天时、全天候的成像能力,可以不受天气影响,在多云、阴雨、大雾等任何恶劣天气条件下,准确获取地表真实的图像。
相比光学成像卫星,环境一号C星对地观测效率大幅提高,大大提升了中国对地观测卫星的总体观测能力。
环境一号卫星C星参数。
环境减灾小卫星 (HJ-1B)单窗算法反演地表温度摘要:地表温度是地球环境中的一个重要参数。
针对近年来发射的HJ-1B星的光学和热红外波段,本研究在基于影像的COST模型大气校正基础上,以宁夏为研究区,采用无需大气水汽含量参数的单窗算法反演地表温度,并采用同步的MODIS温度产品进行对比验证,结果表明该法具有<1 K的可信精度。
同时对该法的关键参数地表比辐射率进行了敏感性分析,发现该法对比辐射率不大敏感,其在中等程度的变化时,其误差<0.5 K。
从而说明该法反演地表温度的可靠性,也表明了环境减灾星具有较高精度的探测地表温度的能力。
关键词:大气校正;比辐射率;敏感性分析.中图分类号:TP79 文献标志码:AUSING A MONO-WINDOW ALGORITHM FOR LANDSURFACE TEMPERATURE RETRIEV AL FROM CHINESE SATELLITE FOR ENVIRONMENT AND NATURAL DISASTERMONITORING (HJ-1B) DATAZHAO Shao-Hua1,2, QIN Qi-Ming1, YAO Yun-Jun1,3, LIN You1, JIANG Hong-Bo1,CUI Rong-Bo1 1: Institute of Remote Sensing and GIS, Peking University, Beijing, 100871 2: Environmental Satellite Center, Ministry of Environmental Protection, Beijing, 100029.3: College of Global Change and Earth System Science, Beijing Normal University. Beijing,100875.Abstract:Land surface temperature (LST) is a key parameter in earth environment. Aiming to the latest optical and thermal bands of HJ-1B satellite, the LST retrieval over Ningxia plain is implemented using a mono-window algorithm without atmospheric water vapor content input, based on the COST model for atmospheric correction. Considering the difficulty of obtaining simultaneous ground measured data, the MODIS LST product is adopted as a standard to test the approach. The comparison and validation indicate that this method has good reliability with accuracy of less than 1 K. In addition, the sensitivity analysis is performed for land surface emissivity, and the result shows this variable is not sensitive to LST, because the LST error is less than 0.5 K when it varies at medium level. This study proves that the satellite data has higher availability for detecting LST.Key words: Atmospheric correction; Emissivity; Sensitivity analysis.引言环境与灾害监测预报小卫星A、B星是我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。
环境小卫星多光谱数据FLAASH精确大气校正方法环境与灾害监测预报小卫星星座A、B星(简称环境小卫星,简写HJ-1A /1B)于2009年3月30日开始正式交付使用,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B 星搭载了CCD相机和红外相机(IRS)。
HJ-1A /1B卫星是继我国继气象、海洋、国土资源卫星之后一个全新的民用卫星。
卫星投入使用后,对自然灾害、生态破坏、环境污染进行大范围、全天候、全天时的动态监测,对灾害和环境质量进行快速和科学评估,提高灾害和环境信息的观测、采集、传送和处理能力,为紧急救援、灾后救助及恢复重建和环境保护工作提高科学依据。
HJ-1数据应用于自然灾害、生态环境之前,需要进行几何及光谱方面的预处理。
ENVI 在数据读取、图像配准、精确大气校正等方面提供了非常好的工具。
1、数据读取目前,网上免费获取的HJ-1A /1B卫星CCD和HSI影像的分发的格式主要有两种:CCD为Geotiff,每一个波段为一个Geotiff文件,并提供一个元数据说明(.XML); HSI为HDF5格式,也提供一个元数据说明(.XML)。
CCD相机的Geotiff格式直接可以在ENVI软件下打开,利用ENVI->Basic Tools->Layer Stacking工具将各个波段组合成一个文件输出。
HIS高光谱数据是以HDF5格式提供,安装ENVI的HDF5读取补丁后直接在ENVI中打开。
更为方便的方法是直接使用HJ-1数据读取补丁,下载网址为:/ESRI/thread-83044-1-3.html。
直接双击运行.sav 或拷贝sav 文件到ENVI安装目录的save_add 目录下,1)启动ENVI->File->Open External File->HJ-1->HJ-1A /1B Tools工具(下图)。
直接读取CCD、HIS、IRS数据,输出结果为一个多波段的ENVI标准栅格文件,并带有中心波长等信息,其中CCD数据可以直接输出定标结果(辐射亮度)。
环境减灾-1A、1B卫星技术
白照广;沈中;王肇宇
【期刊名称】《航天器工程》
【年(卷),期】2009(018)006
【摘要】"环境与灾害监测预报小卫星星座"A、B卫星(环境减灾-1A、1B卫星,简
称HJ-1A、1B卫星)是我国新一代民用光学对地遥感小卫星,具有48h对中国境内
及周边地区实现无缝覆盖观测的能力.文章介绍了HJ-1A、1B卫星的主要技术方案、技术创新点和特点,以及在轨各种光学相机的使用效果和主要应用领域,可为我国后
续环境减灾监测预报遥感小卫星系列发展提供有益的技术参考.
【总页数】15页(P1-11,前插4-前插6,封2)
【作者】白照广;沈中;王肇宇
【作者单位】航天东方红卫星有限公司,北京,100094;航天东方红卫星有限公司,北京,100094;航天东方红卫星有限公司,北京,100094
【正文语种】中文
【中图分类】V423.9
【相关文献】
1.环境减灾-1A、1B卫星光学载荷在轨运行情况分析 [J], 朱军;陈卫容
2.自动化测试系统在环境减灾-1A、1B卫星中的应用 [J], 葛建云;王建军
3.环境减灾-1A、1B卫星供配电测试系统设计 [J], 阎梅芝;李立;章雷;方博
4.环境减灾-1A、1B卫星模块化电源分系统 [J], 徐伟;鄢婉娟;刘元默
5.环境减灾-1A、1B卫星环境遥感业务运行研究 [J], 王桥;张峰;魏斌;王昌佐;李营
因版权原因,仅展示原文概要,查看原文内容请购买。
环境与灾害监测预报小卫星星座A、B星(HJ-1A /1B星)于2008年9月6日上午11点25分成功发射,HJ-1-A星搭载了CCD相机和超光谱成像仪(HSI),HJ-1-B星搭载了CCD相机和红外相机(IRS)。
在HJ-1-A卫星和HJ-1-B卫星上均装载的两台CCD相机设计原理完全相同,以星下点对称放置,平分视场、并行观测,联合完成对地刈幅宽度为700公里、地面像元分辨率为30米、4个谱段的推扫成像。
此外,在HJ-1-A卫星装载有一台超光谱成像仪,完成对地刈宽为50公里、地面像元分辨率为100米、110~128个光谱谱段的推扫成像,具有±30°侧视能力和星上定标功能。
在HJ-1-B卫星上还装载有一台红外相机,完成对地幅宽为720公里、地面像元分辨率为150米/300米、近短中长4个光谱谱段的成像。
各载荷的主要参数如表1所示。
表1 HJ-1-A、B卫星主要载荷参数
HJ-1-A卫星和HJ-1-B卫星的轨道完全相同,相位相差180°。
两台CCD相机组网后重访周期仅为2天。
其轨道参数如表2所示。