第十三章_界面现象和胶体溶液
- 格式:ppt
- 大小:7.65 MB
- 文档页数:141
表面吉布斯自由能和表面张力1、界面:密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。
2、界面现象:由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同:1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零;2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。
由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。
由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。
3、比表面(Ao)表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。
用数学表达式,即为:A0=A/V高分散体系具有巨大的表面积。
下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。
高度分散体系具有巨大表面积的物质系统,往往产生明显的界面效应,因此必须充分考虑界面效应对系统性质的影响。
4、表面功在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。
-δω’=γdA(γ:表面吉布斯自由能,单位:J.m-²)5、表面张力观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。
它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。
第十三章 界面现象§13.1 表面张力及表面吉布斯自由能一、表面张力 在两相(特别是气-液)界面上,处处存在着一种张力,它垂直与表面的边界,指向液体方向并与表面相切。
把作用于单位边界线上的这种力称为表面张力,用γ 表示,单位是N ·m -1。
二、表面功与表面自由能温度、压力和组成恒定时,可逆使表面积增加dA 所需要对体系作的功,称为表面功。
用公式表示为:s W dA γ∂=,式中γ为比例系数,它在数值上等于当T ,p 及组成恒定的条件下,增加单位表面积时所必须对体系做的可逆非膨胀功。
B B B B ,,,,,,,,()()()()S V n S P n T V n T P n U H A G A A A Aγ∂∂∂∂====∂∂∂∂ ( 广义的表面自由能) 表面自由能考虑了表面功,热力学基本公式中应相应增加s dA γ一项,即由此可得:B BBB BBB BB B BBd d d d d d d d dA d d d d d d d s s s s U T S P V A dn H T S V P A dn S T P V A dn G S T V P A dn γμγμγμγμ=-++=+++=--++=-+++∑∑∑∑狭义的表面自由能定义:B ,,()p T n G Aγ∂=∂,表面吉布斯(Gibbs )自由能,单位:J ·m -2。
三、界面张力与温度的关系,,,,S B B A V n s T V n S A T γ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭,,,,S B BA P n s T P n S A T γ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 四、溶液的表面张力与浓度的关系对于纯液体,当温度、压力一定时,其表面张力一定。
但对于溶液,由于溶质的加入形成了溶液,表面张力发生变化。
这种变化大致有三种情况:A.表面张力随溶质浓度增大而升高如:NaCl 、KOH 、NH 4Cl 、KNO 3等无机盐类;B.表面张力随浓度增大而降低,通常开始降低较快而后减慢,如醇类、酸类、醛类、酮类等极性有机物;C.一开始表面张力急剧下降,到一定浓度后几乎不再变化,如含8个碳以上的有机酸盐、有机胺盐、磺酸盐等。
表面活性剂物理化学教案中的表面活性剂的界面现象与胶体性质表面活性剂是一类重要的化学物质,广泛应用于各个领域,如洗涤剂、乳化剂、泡沫剂等。
在表面活性剂物理化学教案中,理解表面活性剂的界面现象与胶体性质是必不可少的。
本文将从分子结构、界面张力、胶体稳定性等角度,探讨表面活性剂的相关知识。
一、表面活性剂的分子结构表面活性剂分子通常分为两部分,一个亲水性较强的头基(水溶性基团,如羧酸基、羟基等),一个亲油性较强的尾基(疏水性基团,如烷基链)。
这种结构使得表面活性剂在界面上能够形成疏水区域和亲水区域,从而表现出许多特殊的性质。
二、表面活性剂的界面现象1. 表面张力表面活性剂的存在降低了液体表面的张力。
在纯净溶液中,表面活性剂分子聚集在液体表面,构成单分子层。
表面活性剂的尾基朝向液体内部,而头基则与溶液产生相互作用。
这种排列方式,使得表面张力下降,溶液的界面能变得更加松弛。
2. 乳化与分散表面活性剂能够使亲水性和亲油性物质互相溶解。
当加入适量的表面活性剂后,液体中的油滴会被包覆在表面活性剂的单分子层中,从而形成乳状液体。
这种乳状液体能够有效地分散油滴,使其长时间保持分散状态。
三、表面活性剂的胶体性质胶体是一种介于溶液和悬浊液之间的物质。
表面活性剂在一定条件下能够形成胶体系统。
1. 胶体溶液的稳定性通过加入适量的表面活性剂,可以使胶体溶液中的分散相保持稳定,避免出现沉淀现象。
这是因为表面活性剂的存在能够减小分散相之间的相互作用力,形成稳定的胶体。
2. 胶体的类型根据表面活性剂的尺寸和分子结构,胶体可以分为胶体颗粒、光学胶体和胶体固体等。
其中,胶体颗粒是由表面活性剂分子或粒子聚集形成的微小颗粒,它们能够在溶液中悬浮并形成胶体系统。
四、实验案例与教学方法在表面活性剂物理化学教案中,可以引入一些实验案例和教学方法帮助学生更好地理解和掌握相关知识。
1. 实验案例:利用表面张力测定仪测量不同表面活性剂的表面张力,探究表面活性剂浓度、温度等因素对表面张力的影响。
胶体和界面现象在制药技术中的应用随着科技的发展和人们对生命科学的深入研究,药物研发和生产已成为一个重要的领域。
胶体和界面现象是制药技术中不可缺少的一部分,它们广泛应用于药物研发、生产、质量监测等方面。
本文将从药物包装、药物输送和生物药物等方面讨论胶体和界面现象在制药技术中的应用。
一、药物包装药物包装是制药过程中一项非常重要的环节。
药物包装的质量和安全性直接影响着药效和病人的健康。
胶体和界面现象在药物包装中起到了重要的作用。
例如,药物软胶囊包装材料中添加表面活性剂可以增强材料的稳定性和延迟药物释放。
此外,胶体颗粒可以提高药物输送的精度和药效,从而降低药品的剂量,减少不良反应的发生。
因此,在药物包装过程中的胶体和界面现象的应用可以大大提高药物的质量和疗效。
二、药物输送药物输送是药物研发和生产的关键环节之一。
药物输送系统的设计主要涉及到药物的包装、贮存、输送和释放等方面。
在此过程中,胶体和界面现象的应用显得尤为重要。
例如,采用胶体颗粒和介孔材料作为载体,可以解决药物在输送过程中的不稳定性和低溶解度问题。
另一方面,通过设计药物释放剂型和调节环境pH值等方法,可以实现药物在特定组织中定向释放。
此外,界面现象也被应用在制备药物纳米粒子中。
药物纳米粒子具有较小的粒径,可以有效逃避免疫系统的攻击,并提高药效和减少不良反应发生率。
三、生物药物生物药物是近年来药物研发和生产中的一个热点。
生物药物的制备过程中,胶体和界面现象也有着广泛的应用。
例如,亲水性胶体颗粒可以作为载体,将生物药物加工成纳微粒制剂,从而增强其在体内的稳定性和生物可用性。
生物药物在制备过程中也要注意界面现象对药物结构和活性的影响。
药物热失活和界面活性剂残留等问题需要得到充分的控制,以保证药物的质量和安全性。
总结本文概述了胶体和界面现象在制药技术中的应用,主要包括药物包装、药物输送和生物药物三个方面。
胶体和界面现象在制药技术中具有广泛的应用,在提高药物品质和疗效方面发挥了重要作用。
界面现象和胶体化学的基本概念表面吉布斯自由能和表面张力1、界面:密切接触的两相之间的过渡区(约几个分子的厚度)称为界面(interface),通常有液-气、液-固、液-液、固-气、固-液等界面,如果其中一相为气体,这种界面称为表面(surface)。
2、界面现象:由于界面两侧的环境不同,因此表面层的分子与液体内的分子受力不同:1.液体内部分子的吸引力是对称的,各个方向的引力彼此抵销,总的受力效果是合力为零;2.处在表面层的分子受周围分子的引力是不均匀的,不对称的。
由于气相分子对表面层分子的引力小于液体内部分子对表面层分子的引力,所以液体表面层分子受到一个指向液体内部的拉力,力图把表面层分子拉入内部,因此液体表面有自动收缩的趋势;同时,由于界面上有不对称力场的存在,使表面层分子有自发与外来分子发生化学或物理结合的趋势,借以补偿力场的不对称性。
由于有上述两种趋势的存在,在表面会发生许多现象,如毛细现象、润湿作用、液体过热、蒸气过饱和、吸附作用等,统界面现象。
3、比表面(Ao)表示多相分散体系的分散程度,定义为:单位体积(也有用单位质量的)的物质所具有的表面积。
用数学表达式,即为:A=A/V高分散体系具有巨大的表面积。
下表是把一立方厘米的立方体逐渐分割成小立方体时,比表面的增长情况。
高度分散体系具有巨大表面积的物质系统,往往产4、表面功在温度、压力和组成恒定时,可逆地使表面积增加dA所需要对体系做的功,称为表面功(ω’)。
-δω’=γdA(γ:表面吉布斯自由能,单位:J.m-²)5、表面张力观察界面现象,特别是气-液界面的一些现象,可以觉察到界面上处处存在着一种张力,称为界面张力(interface tension)或表面张力(surface tension)。
它作用在表面的边界面上,垂直于边界面向着表面的中心并与表面相切,或者是作用在液体表面上任一条线两侧,垂直于该线沿着液面拉向两侧。
如下面的例子所示:计算公式:-δω'= γdA (1)式中γ是比例常数,在数值上等于当T、p及组成恒定的条件下,增加单位表面积时所必须对体系作的非膨胀功。
第十三章胶体与大分子溶液练习题一、判断题:1.溶胶在热力学和动力学上都是稳定系统。
2.溶胶与真溶液一样是均相系统。
3.能产生丁达尔效应的分散系统是溶胶。
4.通过超显微镜可以看到胶体粒子的形状和大小。
5.ξ 电位的绝对值总是大于热力学电位φ的绝对值.。
6.加入电解质可以使胶体稳定,加入电解质也可以使胶体聚沉;二者是矛盾的。
7.晴朗的天空是蓝色,是白色太阳光被大气散射的结果。
8.旋光仪除了用黄光外,也可以用蓝光。
9.大分子溶液与溶胶一样是多相不稳定体系。
10.将大分子电解质NaR的水溶液与纯水用半透膜隔开,达到Donnan平衡后,膜外水的pH值将大于7。
二、单选题:1.雾属于分散体系,其分散介质是:(A) 液体;(B) 气体;(C) 固体;(D) 气体或固体。
2.将高分子溶液作为胶体体系来研究,因为它:(A) 是多相体系;(B) 热力学不稳定体系;(C) 对电解质很敏感;(D) 粒子大小在胶体范围内。
3.溶胶的基本特性之一是:(A) 热力学上和动力学上皆属于稳定体系;(B) 热力学上和动力学上皆属不稳定体系;(C) 热力学上不稳定而动力学上稳定体系;(D) 热力学上稳定而动力学上不稳定体系。
4.溶胶与大分子溶液的区别主要在于:(A) 粒子大小不同;(B) 渗透压不同;(C) 带电多少不同;(D) 相状态和热力学稳定性不同。
5.大分子溶液和普通小分子非电解质溶液的主要区分是大分子溶液的:(A) 渗透压大;(B) 丁铎尔效应显著;(C) 不能透过半透膜;(D) 对电解质敏感。
6.以下说法中正确的是:(A) 溶胶在热力学和动力学上都是稳定系统;(B) 溶胶与真溶液一样是均相系统;(C) 能产生丁达尔效应的分散系统是溶胶;(D) 通过超显微镜能看到胶体粒子的形状和大小。
7.对由各种方法制备的溶胶进行半透膜渗析或电渗析的目的是:(A) 除去杂质,提高纯度 ;(B) 除去小胶粒,提高均匀性 ;(C) 除去过多的电解质离子,提高稳定性 ;(D) 除去过多的溶剂,提高浓度 。