胶体溶液和表面现象
- 格式:pptx
- 大小:995.71 KB
- 文档页数:41
第9章表面现象和胶体化学1 基本概念1.1界面和表面不同物质或同种物质的密切接触的两个相之间的过渡区叫界面,如液态水和冰的接触面,水蒸气和玻璃的接触面等等。
表面是指固体对真空或固体和液体物质与其自身的蒸气相接触的面。
显然,表面包括在界面的概念之内,但通常并没严格区别两者,“表面”和“界面”互相通用。
1.2 表面能、表面函数和表面功表面上的物质微粒比他们处于体相内部时多出的能量叫表面能或总表面能。
由于表面的变化通常在等温等压条件下进行,因此这时的表面能实际上就是表面吉布斯函数。
在等温等压下且组成不变的条件下以可逆方式增加体系的表面积时所做的非体积功叫表面功,它在量值上等于表面吉布斯函数。
1.03 表面张力(比表面能)简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。
实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。
1.04 附加压力弯曲液面下的附加压力是指液面内部承受的压力与外界压力之差,其方向指向曲面球心。
1.5 铺展和铺展系数某一种液滴在另一种不相溶的液体表面上自行展开形成一层液膜的现象叫铺展,也叫展开。
铺展系数就是某液滴B在液体A的表面上铺展时比表面吉布斯函数的变化值,常用符号为S B/A1.6 湿润凡是液体沾湿在固体表面上的现象都叫润湿,其中又分为铺展润湿(液体在固体表面上完全展开),沾湿湿润(液体在固体表面形成平凹透镜)和浸没湿润(固体完全浸渍在液体中),三种湿润程度的差别是:浸没湿润〉铺展湿润〉沾湿湿润1.7 沾湿功和湿润功在定温定压下,将单位面积的固-液界面分开时外界所做的可逆功叫沾湿功。
这一概念对完全不相溶的两种液体间的界面也适用。
结合功是指定温定压下,将单位面积的液柱拉开时外界所做的可逆功,又叫内聚功。
它是同种分子相互吸引能力的量度。
1.08 接触角液体在固体表面达到平衡时,过三相接触点的切线与固-液界面所夹的最大角叫平衡接触角或润湿角,常用符号θ。
物理化学中的表面现象与胶体化学物理化学是一门探讨物质性质变化及相关规律的学科。
与之相关的表面现象和胶体化学则是物理化学领域中一项重要的分支。
本文将从表面现象和胶体化学两个方面入手,探讨它们的基本概念、相关应用和研究意义。
一、表面现象观察一个物体,我们会发现它的表面是与外界直接接触的部分。
因此,表面现象是物质研究中一种极其普遍和重要的现象。
表面现象是指两种或两种以上介质相接触时,有特殊性质的现象出现。
在物理化学中,表面现象主要包括表面张力、毛细现象和润湿现象。
表面张力是液体表面处由于分子间作用力而表现出来的一种现象。
表面张力较大的液体在容器中形成凸面或水滴状,这种现象称为毛细现象。
液体与固体相接触时,液体能否在固体表面上均匀分布并附着称为润湿现象。
表面现象在自然界和人类生活中都有广泛应用。
例如,水平稳定的大船只是因为水面的表面张力;高楼大厦的毛细管水系统则利用了毛细现象;润滑油、乳液、涂料等都运用了润湿性质。
二、胶体化学胶体化学是涉及无色透明的小粒子(胶体)和它所处的环境之间的相互作用的学科。
胶体是介于小分子和宏观物体之间的一种存在形式,其中粒子的平均大小在1至1000纳米之间。
胶体物理包括多种胶体类型,例如溶胶、凝胶和气溶胶等。
胶体学科研究中的主要问题是如何制备胶体,以及在胶体中所表现出的各种特殊性质。
胶体的制备方法包括溶胶法、凝胶法和胶体化合物分解法等。
在胶体中存在的各种特殊现象包括布朗运动、泡沫现象和重力分选等。
胶体的应用十分广泛,例如在涂料、油墨、胶水、陶瓷、橡胶等方面都得到了广泛的应用。
另外,人类生命活动中的一些基础物质,例如蛋白质、肌肉等,都是以胶体形式存在的。
三、物理化学中的表面现象与胶体化学的关联表面现象与胶体化学之间有着密不可分的联系。
在液态物质中,固液接触面所呈现的动态变化与胶体的形成和演化密切相关。
例如,胶体粒子表面的物理化学特征决定了胶体粒子的成长和聚集行为。
此外,表面现象和胶体化学之间也有着一些实际应用。
胶体的基本特征胶体是一种特殊的物质,具有许多独特的特征。
本文将以胶体的基本特征为标题,探讨胶体的相关知识。
胶体的第一个基本特征是其由两个或多个不相溶的物质组成。
这些物质分别是连续相和分散相。
连续相是胶体中占据主导地位的物质,通常是液体。
分散相则是以微小颗粒或小液滴的形式分散在连续相中的物质。
这种双相结构赋予了胶体独特的性质。
胶体的第二个基本特征是其颗粒或液滴的尺寸通常在1纳米到1微米之间。
这种微小的尺寸使得胶体的分散相可以呈现出均匀的分布,并且在光学上表现出散射现象。
这也是为什么我们能够看到许多胶体溶液呈现出浑浊的外观。
胶体的第三个基本特征是分散相的表面具有相当的活性。
这是因为胶体颗粒或液滴的尺寸非常小,表面积相对较大。
这使得胶体颗粒或液滴能够与周围的分子进行接触和反应。
由于表面活性,胶体能够吸附其他物质,形成吸附层。
这种吸附层可以改变胶体的性质,并且在许多应用中发挥重要作用。
胶体的第四个基本特征是其具有流变性质。
流变性是指胶体在外力作用下能够发生形变和流动的特性。
这是由于胶体中分散相之间的相互作用力和连续相的黏性所决定的。
胶体的流变性质使其在许多工业和生物领域具有广泛的应用,例如润滑剂、涂料和生物医学材料等。
胶体的第五个基本特征是其具有光学性质。
由于胶体中分散相的尺寸与光波长相当,所以胶体溶液会发生散射现象。
这种散射会导致胶体呈现出特定的颜色,这也是为什么我们能够看到一些胶体溶液呈现出不同的颜色。
胶体的第六个基本特征是其具有电学性质。
胶体中的分散相通常带有电荷,可以被溶液中的离子吸附,形成电荷层。
这种电荷层的存在导致了胶体粒子之间的静电斥力,从而维持了胶体的稳定性。
这也是为什么胶体溶液可以长时间保持均匀分散状态的原因。
胶体具有由两个或多个不相溶物质组成、微小尺寸、表面活性、流变性、光学性质和电学性质等基本特征。
这些特征使得胶体在许多领域具有重要的应用价值,并且对我们的生活和工业生产有着重要影响。
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
1.压缩因子任何温度下第七章表面现象1.在相界面上所发生的物理化学现象陈称为表面现象。
产生表面现象的主要原因是处在表面层中的物质分子与系统内部的分子存在着力场上的差异。
2.通常用比表面来表示物质的分散度。
其定义为:每单位体积物质所具有的表面积。
3.任意两相间的接触面,通常称为界面(界面层)。
物质与(另一相为气体)真空、与本身的饱和蒸气或与被其蒸汽饱和了的空气相接触的面,称为表面。
4.表面张力:在与液面相切的方向上,垂直作用于单位长度线段上的紧缩力。
5.在恒温恒压下,可逆过程的非体积功等于此过程系统的吉布斯函数变。
6.影响表面及界面张力的因素:表面张力与物质的本性有关、与接触相的性质有关(分子间作用力)、温度的影响、压力的影响。
7.润湿现象:润湿是固体(或液体)表面上的气体被液体取代的过程。
铺展:液滴在固体表面上迅速展开,形成液膜平铺在固体表面上的现象。
8.亚稳状态与新相生成:a.过饱和蒸汽:按通常相平衡条件应当凝结而未凝结的蒸汽。
过热液体:按通常相平衡条件应当沸腾而仍不沸腾的液体。
过冷液体:按相平衡条件应当凝固而未凝固的液体。
过饱和溶液:按相平衡条件应当有晶体析出而未能析出的溶液。
上述各种过饱和系统都不是真正的平衡系统,都是不稳定的状态,故称为亚稳(或介安)状态。
亚稳态所以能长期存在,是因为在指定条件下新相种子难以生成。
9.固体表面的吸附作用:吸附:在一定条件下一种物质的分子、原子或离子能自动地粘附在固体表面的现象。
或者说,在任意两相之间的界面层中,某种物质的浓度可自动发生变化的现象。
吸附分为物理吸附(范德华力)和化学吸附(化学键力)。
具有吸附能力的物质称为吸附剂或基质,被吸附的物质称为吸附质。
吸附的逆过程,即被吸附的物质脱离吸附层返回到介质中的过程,称为脱附(或解吸)。
10.吸附平衡:对于一个指定的吸附系统,当吸附速率等于脱附速率时所对应的状态。
当吸附达到平衡时的吸附量,称为吸附量。
气体在固体表面的吸附量与气体的平衡压力及系统的温度有关。
第四章胶体溶液学习要点分散系、分散相、分散介质、表面现象、表面能、表面活性物质、吸附、孚L 化剂、乳化作用、溶胶、胶团结构、Tyndall现象、Brown运动、电泳、电渗。
聚沉值、大分子溶液、胶凝、盐析学习指南(一)分散系统分散系统,简称分散系,是由一种或几种物质以较小的颗粒分散于另一种物质中所形成的系统。
分散系中被分散的物质称为分散相,容纳分散相的物质称为分散介质。
根据物态,分散系有固态、液态与气态之分。
液体分散系按其分散相直径的大小不同可分为真溶液、胶体分散系和粗分散系三类。
分散系又可分为均相分散系和非均相分散系两大类。
均相分散系只有一个相(体系内部物理性质和化学性质均一的部分形成一相”,包括真溶液、大分子溶液。
非均相分散系的分散相和分散介质为不同的相,包括溶胶和粗分散系。
(二)表面现象我们把在任何两相界面上产生的物理化学现象总称为表面现象。
胶体的许多性质,如电学性质、稳定性、保护作用等都与表面现象有关。
如果把液体内部分子移到表面层就要克服向内的合力而做功。
这种功称为表面功,它以势能形式储存于表面分子。
单位表面上的表面自由能即增加单位表面所消耗的功,称为比表面能,比表面能在数值上等于表面张力。
根据热力学原理,表面能有自发降低的趋势。
要降低表面能,可通过两种途径:一是缩小物体的表面积;二是降低表面张力或是两者都减小。
表面活性物质分子的一端具有疏水性,另一端具有亲脂性。
如果向水中加入表面活性物质,则表面活性物质会部分地代替水分子聚集在溶液表面上,以降低表面张力,导致表面活性物质在表面层的浓度大于在溶液内部的浓度,产生正吸附。
相反,如果向水中加入某些无机盐类(如NaCl等)、糖类(单糖、双糖)以及溶于水的金属氢氧化物、淀粉等表面张力比水大的表面非活性物质,则这类物质在溶液表面层的浓度将会小于它们在溶液内部的浓度,产生负吸附。
(三)孚L状液水与油这两种液体不相溶,若使其中的一种液体的一种以细小的液滴分散于另一种不相溶的液体中,必须在振荡的同时加入一种能降低比界面能的表面活性物质,这种表面活性物质的分子在油与水两相界面上定向地排列,形成一层保护分散相液滴的薄膜,防止了液滴合并变大而分层,使体系得到一定程度的稳定性. 这种能使乳浊液稳定的的表面活性物质称为乳化剂,乳化剂所起的作用称为乳化作用。