2016年秋季学期新版新人教版七年级数学上册1.4.1 有理数的乘法同步练习1
- 格式:doc
- 大小:140.50 KB
- 文档页数:3
人教版数学七年级上册第1章 1.4.1有理数的乘法同步练习一、单选题(共12题;共24分)1、下列说法中,不正确的是()A、零是绝对值最小的数B、倒数等于本身的数只有1C、相反数等于本身的数只有0D、原点左边的数离原点越远就越小2、计算(﹣3)× ÷(﹣)×3的结果是()A、﹣9B、9C、1D、﹣13、下列计算错误的是()A、0﹣(﹣5)=5B、(﹣3)﹣(﹣5)=2C、D、(﹣36)÷(﹣9)=﹣44、若有理数a,b满足a+b<0,ab<0,则()A、a,b都是正数B、a,b都是负数C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值5、若a+b<0,ab<0,则()A、a>0,b>0B、a<0,b<0C、a,b两数一正一负,且正数的绝对值大于负数的绝对值D、a,b两数一正一负,且负数的绝对值大于正数的绝对值6、下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷ ×(﹣2)=16.其中正确的个数()A、4个B、3个C、2个D、1个7、如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A、互为相反数但不等于零B、互为倒数C、有一个等于零D、都等于零8、下列说法中,正确的有()①任何数乘以0,其积为0;②任何数乘以1,积等于这个数本身;③0除以任何一个数,商为0;④任何一个数除以﹣1,商为这个数的相反数.A、2个B、3个C、4个D、1个9、下列说法错误的是()A、0不能做除数B、0没有倒数C、0除以任何数都得0D、0的相反数是010、计算×(﹣8)÷(﹣)结果等于()A、8B、﹣8C、D、111、如果mn>0,且m+n<0,则下列选项正确的是()A、m<0,n<0B、m>0,n<0C、m,n异号,且负数的绝对值大D、m,n异号,且正数的绝对值大12、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、4二、填空题(共6题;共6分)13、已知|a+3|+|b﹣1|=0,则ab的值是________.14、若xy>0,z<0,那么xyz________0.15、若ab<0,则=________.16、如果>0,>0,那么7ac________0.17、计算:6÷(﹣)×2÷(﹣2)=________.18、在数2 ,﹣2016,﹣6.3,﹣,5.20,0,31中,所有整数的积为________.三、计算题(共4题;共25分)19、(﹣)×(﹣18)+(﹣)×(﹣3)×2.20、计算:(﹣81)÷2 × ÷(﹣16)21、计算:(1)(﹣36 )÷9(2)(﹣)×(﹣3 )÷(﹣1 )÷3.22、若a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)的值.答案解析部分一、单选题1、【答案】B【考点】相反数,绝对值,倒数【解析】【解答】解:由于任何数的绝对值都是非负数,所以0是绝对值最小的数,故选项A正确;±1的倒数都等于它本身,故选项B错误;相反数等于它本身的数只有0,故选项C正确;在原点左边,离原点越远数就越小,故选项D正确.故选B.【分析】根据绝对值、倒数、相反数的意义判断每个选项.2、【答案】B【考点】有理数的乘法,有理数的除法【解析】【解答】解:原式=3× ×3×3=9,故选B【分析】原式从左到右依次计算即可得到结果.3、【答案】D【考点】有理数的减法,有理数的乘法,有理数的除法【解析】【解答】解:A、0﹣(﹣5)=5,计算正确;B、(﹣3)﹣(﹣5)=﹣3+5=2,计算正确;C、×(﹣)=﹣,计算正确;D、(﹣36)÷(﹣9)=4,原题计算错误;故选:D.【分析】根据有理数的加法、减法、乘法、除法法则分别进行计算即可.4、【答案】D【考点】正数和负数,绝对值,有理数的加法,有理数的乘法【解析】【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.5、【答案】D【考点】有理数的加法,有理数的乘法【解析】【解答】解:∵ab<0,∴a、b异号,又∵a+b<0,∴负数的绝对值大于正数的绝对值.故选D.【分析】先根据ab<0,结合乘法法则,易知a、b异号,而a+b<0,根据加法法则可知负数的绝对值大于正数的绝对值,解可确定答案.6、【答案】C【考点】有理数的乘法,有理数的除法【解析】【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)= ,故原题计算正确;④(﹣4)÷ ×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【分析】根据有理数的乘法和除法法则分别进行计算即可.7、【答案】A【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵两个有理数的和除以它们的积,所得的商为零,∴这两个有理数的和为0,且它们的积不等于0,∴这两个有理数:互为相反数但不等于零.故选A.【分析】由两个有理数的和除以它们的积,所得的商为零,可得这两个有理数的和为0,且它们的积不等于0,继而可求得答案.8、【答案】B【考点】有理数的乘法,有理数的除法【解析】【解答】解:①任何数乘以0,其积为0,正确;②任何数乘以1,积等于这个数本身,正确;③0除以一个不为0的数,商为0,故本选项错误;④任何一个数除以﹣1,商为这个数的相反数,正确;正确的有3个.故选B.【分析】根据任何数乘0得0,任何数乘以1得本身,0除以一个不为0的数得0,任何一个数除以﹣1,得这个数的相反数,即可得出答案.9、【答案】C【考点】相反数,倒数,有理数的除法【解析】【解答】解:A、0不能做除数,正确;B、0没有倒数,正确;C、0除以任何不为0的数得0,错误;D、0的相反数是0,正确,故选C【分析】利用相反数,倒数的定义,以及有理数的除法法则判断即可.10、【答案】A【考点】有理数的乘法,有理数的除法【解析】【解答】解:×(﹣8)÷(﹣)=(﹣1)÷(﹣)=8.故选:A.【分析】从左往右依次计算即可求解.11、【答案】A【考点】绝对值,有理数的加法,有理数的乘法【解析】【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.12、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.二、填空题13、【答案】-3【考点】有理数的加减混合运算,有理数的乘法,绝对值的非负性【解析】【解答】解:由题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,ab=(﹣3)×1=﹣3.故答案为:﹣3.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.14、【答案】<【考点】有理数的乘法【解析】【解答】解:∵xy>0,z<0,∴xyz<0.故答案为:<.【分析】由于xy>0,z<0,根据正数与负数的积为负得到xyz<0.15、【答案】0【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵ab<0,则a,b异号,∴=0.故答案为:0.【分析】根据题意得出a,b异号,进而得出答案.16、【答案】>【考点】有理数的乘法,有理数的除法【解析】【解答】解:∵>0,>0,∴a与b同号,b与c同号,即a与c同号,则7ac>0,故答案为:>【分析】利用有理数的乘除法则判断即可.17、【答案】12【考点】有理数的乘法,有理数的除法【解析】【解答】解:6÷(﹣)×2÷(﹣2)=﹣12×2×(﹣)=12;故答案为:12.【分析】根据有理数的除法法则先把除法转化成乘法,再根据有理数的乘法法则进行计算即可得出答案.18、【答案】0【考点】有理数的乘法【解析】【解答】解:整数有:﹣2016,0,31,﹣2016×0×31=0,故答案为:0.【分析】先确定其整数:正整数、负整数、0,再相乘.三、计算题19、【答案】解:原式=4+3=7.【考点】有理数的乘法【解析】【分析】先依据有理数的乘法法则进行计算,然后再将所得结果相加即可.20、【答案】解:原式=81× × × =1【考点】有理数的乘法,有理数的除法【解析】【分析】原式从左到右依次计算即可得到结果.21、【答案】(1)解:原式=﹣(36+ )× ,=﹣(36× + × ),=﹣4(2)解:原式=﹣(× × × ),=﹣【考点】有理数的乘法,有理数的除法【解析】【分析】(1)根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数进行计算即可;(2)首先根据除法法则统一成乘法,然后再确定结果的符号,然后计算即可.22、【答案】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,∴a+b=0,cd=1,m=±1,n=0,∴20161﹣(a+b)+m2﹣(cd)2016+n(a+b+c+d)=2016+1﹣1+0=2016.【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据相反数以及倒数、绝对值、有理数的定义分别得出各代数式的值进而得出答案.。
1.4 有理数的乘除法1.4.1 有理数的乘法5分钟训练(预习类训练,可用于课前)1.口答:(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6).思路解析:依照有理数法则计算.答案:(1)-54 (2)54 (3)-54 (4)-6 (5)6 (6)-6 (7)0 (8)02.口答:(1)1×(-5);(2)(-1)×(-5); (3)+(-5);(4)-(-5);(5)1×a;(6)(-1)×a.思路解析:答案:(1)-5 (2)5 (3)-5 (4)5 (5)a (6)-a3.填空:(1)有理数乘法法则两数相乘,同号得______,异号得______,并把绝对值______,任何数同零相乘都得0;(2)n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为_______;当负因数的个数为偶数个时,积为_______.这是多个非零因数相乘,积的符号规律;(3)n个数相乘,有一个因数为0,积就为_______.思路解析:有理数乘法法则的正确使用,关键在于确定好正负号.答案:(1)正负相乘(2)负正(3)010分钟训练(强化类训练,可用于课中)1.如下图所示,a,b,c在数轴上的位置,用“>”“<”“=”填空.(1)a-c_______0; (2)b_______c;(3)ab______0; (4)abc______0.思路解析:这道题首先要确定a、b、c这三个数的大小关系及它们本身的正负号.由于“数轴上的数,右边的总是比左边的大”,所以可知a>0>b>c.知道了这个关系,判断就简单了.答案:(1)> (2)> (3)< (4)>2.判断题:(1)同号两数相乘,符号不变;()(2)异号两数相乘,取绝对值较大的因数的符号;()(3)两数相乘,如果积为正数,则这两个因数都为正数;()(4)两数相乘,如果积为负数,则这两个因数异号;()(5)两数相乘,如果积为0,则这两个数全为0;()(6)两个数相乘,积比每一个因数都大. ()思路解析:注意因数中有负数、正数、零之分.答案:(1)× (2)× (3)× (4)√ (5)× (6)×4.计算(1)(-9)×(+23 );(2)(-2)×(-7)×(+5)×(-17 );(3)(+317)×(317-713)×722×2122.思路解析:先确定结果符号,然后计算.解:(1)原式=-9×23=-6;(2)原式=-2×7×5×17=-10;(3)原式=227×722×(227×2122-223×2122)=3-7=-4.5.用简便方法计算:(1)(-1 000)×(310-12+15-0.1);(2)(-3.59)×(-47)-2.41×(-47)+6×(-47);(3)191314×(-14).思路解析:灵活运用运算律简化计算.解:(1)原式=-1 000×(0.3+0.2-0.5-0.1)=100;(2)原式=-47×(-3.59-2.41+6)=-47(-6+6)=0;(3)原式=(20-114)×(-14)=-20×14+114×14=-219.快乐时光首相和司机丘吉尔有一次应邀到广播电台发表重要演说.他叫来一部出租车,对司机说:“送我到BBC广播电台.”“抱歉,我不能送你去.”司机说,“因为我要回家收听丘吉尔的演说.”丘吉尔听了很高兴,马上掏出一英镑给了司机.司机也很高兴,叫道:“上来吧!去他的丘吉尔!”30分钟训练(巩固类训练,可用于课后)1.如果abc=0,那么一定有()A.a=b=0B.a=0,b≠0,c≠0C.a、b、c至少有一个为0D.a、b、c最多有一个为0思路解析:三个数乘积为0,说明因数中有零.但不能确定零的个数,所以只能选C.答案:C2.填空题:(1)五个数相乘,积为负,则其中正因数有________;(2)四个各不相等的整数a、b、c、d,它们的积abcd=25,那么a+b+c+d=_______.思路解析:(1)五个数相乘积为负,说明五个数中,负因数的个数是1个,3个或5个. (2)因为25=1×5×5,又a、b、c、d是四个各不相等的整数,所以这四个数只能是±1和±5.答案:(1)4个,2个或0个.(2)03.若ab>0,且a+b<0,则a_____0,b______0.思路解析:先由这两个条件判定a,b 可能的符号,再看同时满足两个条件的结果是哪种情ab>0知a与b是同号的(两数相乘,同号为正),则a与b可能同时为正,也可能同时为负数.而a+b<0.若a与b同时为正数,和不会是负数,只能是“同时为负”这种情况了.答案:<<4.计算:(1)(-12)×(+4);(2)(-9)×(-8);(3)(-1)×756;(4)1×(-116);(5)0×(-213).思路解析:根据有理数乘法则来解.答案:(1)-48;(2)72;(3)-756;(4)-116;(5)0.5.用简便方法计算:(1)(-3)×(-5)×(-13)×(-37)×(-45)×(-724);(2)(-7.5)×(+25)×(-0.04);(3)(23-56-58)×(-24).思路解析:本题中(1)(2)都是几个不等于0的有理数相乘,要先确定符号,还要运用乘法的结合律,使计算简便.运用了乘法的分配律.解:(1)原式=3×13×5×45×37×724=12;(2)原式=7.5×25×0.04=7.5;(3)原式=-23×24+56×24+58×24=-16+20+15=19.6.计算:(1)(+9)×(-10)×(-1329)×0×(+947)×(-5.75);(2)(-0.12)×112×(-200)×(-14);(3)(13+19-512)×(-36).思路解析:本题属于多个有理数相乘,第(1)题是几个有理数相乘,但有一个因数为0,则它们的积为0.第(2)(3)题是几个不等于0的有理数相乘,应先决定积的符号,它由负因数的个数决定.第(3)小题可以运用乘法分配律较简便,也可先算括号内的,但比较麻烦! 解:(1)原式=0;(2)原式=-0.12×100×112×2×14=-12;(3)原式=-13×36-19×36+512×36=-12-4+15=-1.7.计算:201×(-199).思路解析:仿照上题中的(2)小题,201可以写成(200+1),199可以写成(200-1),将结果的符号先确定,为负则题目化为-(200+1)(200-1),展开后计算量很小.答案:原式=-(200+1)×(200-1)=-[(200+1)×200-(200+1)×1]=-(200×200+200-200-1)=-(40 000-1)=-39 999.8.判断下列方程的解是正数还是负数或0:(1)4x=-16; (2)-3x=18;(3)-9x=-36; (4)-5x=0.思路解析:根据乘法法则来判断.答案:(1)负数;(2)负数;(3)正数;(4)0.9.我们来观察两个算式:①63×67=6×(6+1)×100+3×7=4 200+21=4 221;②692×698=69×(69+1)×100+2×8=483 000+16=483 016.我们来观察,这两个算式中两个因数个位上数字之和是多少?其余各位上的数字有什么明显的特征?并计算734×736.思路解析:个位上数字之和为10,其余各位上的数字相同.如734×736=73×(73+1)×100+4×6=540 200+24=540 224.答案:个位上数字之和为10,其余各位上的数字相同,734×736=540 224.。
人教版数学七年级上册同步课时训练第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第1课时有理数的乘法法则巩固提升练习1. 计算(-3)×2的结果是()A. 5B. -5C. 6D. -62. 计算(-5)×(-2)的结果是()A. 7B. -10C. 10D. -33. -2的倒数是()A. 2B. -2C. 12 D. -124. 下列说法正确的是()A. 14与-0.25互为倒数 B.14与-4互为倒数C. 0.1与10互为倒数D. 0的倒数是05. 若□×(-5)=1,则□内填一个数应是()A. 15 B. 5 C. -5 D. -156. 下列说法错误的是()A. 一个数同0相乘,仍得0B. 一个数同1相乘,仍得原数C. 一个数同-1相乘,得原数的相反数D. 互为相反数的积为负数7. 若两数的和为负数,它们的积为正数,则这两个数一定()A. 同为负数B. 同为正数C. 有一个数是0D. 为一个正数和一个负数8. 某种商品的单价每提高1元,每月的销售量就减少10件,若将此商品的单价提高5元,则每月的销售量将减少()A. -50件B. 50件C. 10件D. -10件9. 下列说法正确的是()①两个正数中倒数大的反而小;②两个负数中倒数大的反而小;③两个有理数中倒数大的反而小;④两个符号相同的有理数中倒数大的反而小.A. ①②④B. ①C. ①②③D. ①④ 10. 如图,数轴上点A 所表示的数的倒数是( )A. -2B. 2C. 12D. -1211. 如图,A ,B 两点在数轴上表示的数分别是a ,b ,下列式子成立的是( )A. ab >0B. a +b <0C. (b -1)(a +1)>0D. (b -1)(a -1)>0 12. 下列说法正确的有( )①-3的倒数是13;②a 的倒数是1a ;③倒数是它本身的数是1;④正数的倒数是正数,负数的倒数是负数.A. 1个B. 2个C. 3个D. 4个 13. -0.4的倒数是 ,⎪⎪⎪⎪-17的倒数是 ,6的倒数的相反数是 . 14. 用“>”或“<”填空.(1)如果a >b >0,则ab 0,b (a -b ) 0. (2)如果b <0<a ,则ab 0,b (a -b ) 0.15. 在-2,-3,4,-5这四个数中,任取两个数相乘,所得的积最大的是 . 16. 形如⎪⎪⎪⎪⎪⎪ac bd 的式子叫做二阶行列式,它的运算法则用公式表示为⎪⎪⎪⎪⎪⎪ac bd =ad -bc ,依此法则计算⎪⎪⎪⎪⎪⎪21-3 4的结果为 . 17. 计算:(1)(+4)×(-5); (2)(-0.125)×(-8);(3)(-213)×(-37); (4)0×(-13.52).18. 已知|a |=2,|b |=2,求ab 的值.19. 一天中午,地面气温是15℃,七年级某班计划登上一座海拔3000m 的高山,已知每登高1000m 气温的变化量是-6℃,则当同学们登上山顶的时候气温是多少?20. 已知a ,b 互为相反数,c ,d 互为倒数,|x |=2,求10a +10b +cdx 的值.21. 定义:a 是不为1的有理数,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依次类推.(1)求a 2,a 3,a 4的值; (2)猜想a 2019的值.答案:1. D2. C3. D4. C5. D6. D7. A8. B9. A 10. D 11. C 12. A 13. -52 7 -1614. (1)> > (2)< < 15. 15 16. 1117. 解:(1)原式=-20. (2)原式=1. (3)原式=1. (4)原式=0.18. 解:因为|a |=2,|b |=2,所以a =±2,b =±2.(1)当a =b =2时,ab =2×2=4; (2)当a =2,b =-2时,ab =2×(-2)=-4; (3)当a =-2,b =2时,ab =(-2)×2=-4; (4)当a =-2,b =-2时,ab =(-2)×(-2)=4. 18. 解:15+3000÷1000×(-6)=15-18=-3(℃).20. 解:因为a ,b 互为相反数,所以a +b =0.又因为c ,d 互为倒数,所以cd =1.又因为|x |=2,所以x =±2.所以10a +10b +cdx =10(a +b )+cdx =x =±2.21. 解:(1)a 2=11-(-13)=34,a 3=11-34=4,a 4=11-4=-13. (2)a 2019=34.根据差倒数定义:a 1=-13,a 2=34,a 3=4,a 4=-13,…,由以上可知每三个循环一次.又2019÷3=673,故a 2019和a 3的值相等,其值为4,所以a 2019=4.人教版数学七年级上册同步课时训练第一章有理数1.4有理数的乘除法1.4.1有理数的乘法第2课时有理数乘法的运算律及运用1. n个不等于零的有理数相乘,它们的积的符号()A. 由因数的个数决定B. 由正因数的个数决定C. 由负因数的个数决定D. 由负因数的大小决定2. 计算-3×2×(-6)的结果是()A. 9B. -9C. 36D. -363. 下列各式中,积为负数的是()A. (-2)×3×(-5)B. (-3.7)×(+5.6)×(-19)×0×(-4)C. (-1)×(-5)×(-15)×(-7) D. 4×(-2)×(-9)×(-13)4. 在2×(-7)×5=-7×(2×5)中,运用了()A. 乘法交换律B. 乘法结合律C. 乘法分配律D. 乘法交换律和乘法结合律5. 下列变形不正确的是()A. 5×(-6)=(-6)×5B. (14-12)×(-12)=(-12)×(14-12)C. (-16+13)×(-4)=(-4)×(-16)+13×4D. (-25)×(-16)×(-4)=[(-25)×(-4)]×(-16)6. 在-2,3,4,-7这四个数中,任取三个数相乘,所得积的最大值是 .7. 112的相反数与-23的绝对值的积是 . 8. 填空: (1)5×(-6)×(-15)=[5× ]×(-6)= . (2)-0.01×13×(-200)=13×[(-0.01)× ]= .9. 除0以外绝对值小于4的所有整数的积是 .10. 用简便方法计算(-8)×(-12)×(-0.125)×(-4),结果是 .11. 计算:-317×(-3)+(-3)×(517-113) =(-3)×[(-317)+(517-113)] ①=-3×(2-113) ② = . ③ (1)完成以上填空.(2)第①步是 用分配律,第②步是计算-317+517,第③步求括号中的减法,再与-3相乘,得出结果.12. 计算:(1)(-2)×3×4×(-1); (2)710×(-1314)×(-59)×(-613);(3)(-3)×(-1)×2×(-6)×0×(-2); (4)-113×3×(-34);(5)(-12-113+179)×(-34); (5)13×23-57×0.35-13×(-13)-27×0.35.13. 阅读材料,回答问题. (1+12)×(1-13)=32×23=1, (1+14)×(1-15)=54×45=1,(1+12)×(1+14)×(1-13)×(1-15)=32×54×23×45=(32×23)×(54×45)=1.根据以上信息,请求出下式的结果. (1+12)×(1+14)×(1+16)×…×(1+120)×(1-13)×(1-15)×(1-17)×…×(1-121).14. 我们知道:12×23=13,12×23×34=14,12×23×34×45=15,…,12×23×34×…×n n +1=1n +1.试根据以上规律,解答下面两题: (1)计算:(12-1)×(13-1)×(14-1)×…×(1100-1); (2)将2020减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……依此类推,直到减去余下的12020,最后的结果是多少?15. 已知x ,y 为有理数,如果规定一种新运算*,其意义是x *y =xy +1,试根据这种运算完成下列各题: (1)求2*4的值; (2)求(1*4)*(-2)的值;(3)任意选取两个有理数,分别填入下列□和○内,并比较两个运算结果,你有何发现?□*○和○*□(4)根据以上方法,设a ,b ,c 为有理数.请探索a *(b +c )与a *b +a *c 的关系,并用等式把它们表示出来.答案:1. C2. C3. D4. D5. C6. 567. -18. (1)(-15) 6 (2)(-200) 239. -36 10. 211. (1)-2 (2)逆 12. 解:(1)原式=24. (2)原式=-16.(3)原式=0.(4)原式=-43×(-34)×3=3.(5)原式=(-12)×(-34)+(-43)×(-34)+169×(-34)=9+1-43=823.(6)原式=13×(23+13)-0.35×(57+27)=13-0.35=12.65.13. 解:原式=[(1+12)×(1-13)×(1+14)×(1-15)×(1+16)×(1-17)×…×(1+120)×(1-121)]=1×1×…×1=1.14. 解:(1)原式=-(1-12)×(1-13)×(1-14)×…×(1-1100)=-12×23×34×…99100=-1100.(2)由题意,得2020×(1-12)×(1-13)×…×(1-12020)=2020×12×23×34×…×20192020=1.15. 解:(1)9(2)-9(3)若取3,-2,则3*(-2)=3×(-2)+1=-5;(-2)*3=(-2)×3+1=-5.若取-4,0,则-4*0=-4×0+1=1;0*(-4)=0×(-4)+1=1.若取-3,-5,则-3*(-5)=(-3)×(-5)+1=16;(-5)*(-3)=(-5)×(-3)+1=16.可以发现,无论选取任何有理数,总有□*○=○*□,即x*y=y*x,这种运算也有交换律.(4)a*(b+c)=a×(b+c)+1=ab+ac+1=ab+1+ac+1-1=a*b+a*c-1.。
1.4.1有理数的乘法学校:___________姓名:___________班级:___________ 一.选择题(共10小题)1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.计算(﹣1)×(﹣2)的结果是()A.2 B.1 C.﹣2 D.﹣3 3.已知:a=﹣2+(﹣10),b=﹣2﹣(﹣10),c=﹣2判断正确的是()A.a>b>c B.b>c>a C.c>b >a D.a>c>b4.下列各数中,与﹣2的积为1的是()AB.2 D.﹣25.如果□×(﹣3)=1,则“□”内应填的实数是()AB.3 C.﹣3 D6.四个互不相等的整数的积为4,那么这四个数的和是()A.0 B.6 C.﹣2 D.2 7.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 8.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1的值为()AB.49! C.2450 D.2!9.若|a|=4,|b|=5,且ab<0,则a+b 的值是()A.1 B.﹣9 C.9或﹣9 D.1或﹣110.观察算式(﹣425)×28,在解题过程中,能使运算变得简便的运算律是()A.乘法交换律B.乘法结合律C.乘法交换律、结合律D.乘法对加法的分配律二.填空题(共10小题)11.计算= .12.绝对值不大于3的所有整数的积是.13.若|a|=3,|b|=5,ab<0,则a+b= .14.若m<n<0,则(m+n)(m﹣n)0.(填“<”、“>”或“=”)15.如果a>0,b<0,那么ab 0(填“>”、“<”或“=”).16.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c= .17.在数﹣5,4,﹣3,6,﹣2中任取三个数相乘,其中最大的积是.18.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x﹣y= .19.若a、b为有理数,ab>0,则= .20.课本29页有这样一组算式:(﹣1)×3= ,(﹣2)×3= ,(﹣3)×3= ,当我们利用前面所发现的规律,完成这三个填空以后,由这个三个算式可以归纳得出有理数乘法法则的具体内容是.参考答案与试题解析一.选择题(共10小题)1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:(﹣1)×(﹣2)=2.故选:A.3.解:a=﹣2+(﹣10)=﹣12,b=﹣2﹣(﹣10)=﹣2+10=8,c=﹣2×∵812,∴b>c>a,故选:B.4.解:∵﹣2×(﹣2)=4,﹣2×2=﹣4,﹣2﹣1,﹣2=1,∴与﹣2的积为1故选:B.5)×(﹣3)=1,故选:D.6.解:∵1×2×(﹣1)×(﹣2)=4,∴这四个互不相等的整数是1,﹣1,2,﹣2,和为0.故选:A.7.解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选:A.49=2450故选:C.9.解:∵|a|=4,|b|=5,且ab<0,∴a=4,b=﹣5;a=﹣4,b=5,则a+b=1或﹣1,故选:D.10.解:原式=[(﹣4)×(﹣25)] 28)=100×4=400,所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律.故选:C.二.填空题(共10小题)111212)(﹣12)=﹣3+6﹣8=﹣5.故答案为:﹣5.12.解:绝对值不大于3的所有整数是:±3,±2,±1,0,它们的积是:(﹣1)×(﹣2)×(﹣3)×1×2×3×0=0.故答案是:0.13.解:∵ab<0,∴a、b异号,又∵|a|=3,|b|=5,∴a=±3,b=±5,有两种情况:当a=3时,b=﹣5,则a+b=﹣2;当a=﹣3时,b=5,则a+b=2;∴a+b=2或﹣2,故答案为2或﹣2.14.解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.15.解:因为a>0,b<0,由异号得负,所以ab<0.答案:<16.解:4的所有因数为:±1,±2,±4,由于abc=4,且a、b、c是互不相等的整数,当c=4时,∴ab=1,∴a=1,b=1或a=﹣1,b=﹣1,不符合题意,当c=﹣4时,∴ab=﹣1,∴a=1,b=﹣1或a=﹣1,b=1,∴a+b+c=﹣4,当c=2时,∴ab=2,∴a=1,b=2或a=2,b=1,不符合题意,舍去,a=﹣1,b=﹣2或a=﹣2,b=﹣1,∴a+b+c=﹣1当c=﹣2时,∴ab=﹣2,∴a=﹣1,b=2或a=2,b=﹣1,∴a+b+c=﹣1当c=1时,ab=4,∴a=1,b=4或a=4,b=1,不符合题意舍去,a=﹣1,b=﹣4或a=﹣4,b=﹣1∴a+b+c=﹣4,∴当c=﹣1时,∴ab=﹣4,∴a=2,b=﹣2或a=﹣2,b=2,∴a+b+c=﹣1a=﹣1,b=4或a=4,b=﹣1∴a+b+c=2,不符合题意综上所述,a+b+c=﹣1或﹣4故答案为:﹣4或﹣1.17.解:最大的积=﹣5×6×(﹣3)=90.故答案为:90.18.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.19.解:∵ab>0,∴a、b同号,当a、b同为负数时,原式=﹣1﹣1+1=﹣1,当a、b同为正数时,原式=1+1+1=3,故答案为:﹣1或3.20.解:(﹣1)×3=﹣3,(﹣2)×3=﹣6,(﹣3)×3=﹣9,两数相乘,异号得负,并把绝对值相乘,故答案为:﹣3,﹣6,﹣9,两数相乘,异号得负,并把绝对值相乘.。
1.4.1第1课时有理数的乘法法则1.我们用有理数的运算研究下面的问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4 cm,那么3天后的水位变化用算式表示正确的是()A.(+4)×(+3)cmB.(+4)×(-3)cmC.(-4)×(+3)cmD.(-4)×(-3)cm2.两数相乘,若积为正数,则这两个数()A.都是正数B.都是负数C.都是正数或都是负数D.一个是正数,一个是负数3.下列说法正确的是()A.5个有理数相乘,当负因数为3个时,积为负B.绝对值大于1的两个数相乘,积比这两个数都大C.3个有理数的积为负数,则这3个有理数都为负数D.任何有理数乘-1都等于这个数的相反数4.如果5个有理数(其中至少有一个正数)的积是负数,那么这5个因数中,正数的个数是()A.1B.2或4C.5D.1或3×(-2020)的结果是()5.计算12020A .-2020 B.-1C .-12020D .16.计算-112×-23的结果是 ( ) A .1 B .-1C .13 D.-137.-114的倒数乘14的相反数,其结果为 ( )A .5B .-5C .15D .-15 8.两个负数相乘的结果为6,这两个数不可能为 ( )A .-12和-13 B .-2和-3C .-1和-6D .-4和-1.59.下列各式中积为正的是 ( )A .2×3×5×(-4)B .2×(-3)×(-4)×(-3)C .(-2)×0×(-4)×(-5)D .(+2)×(+3)×(-4)×(-5)10.计算0.24×116×-514的结果是 ( )A .1B .-25C .-110D .0.1 11.计算-531×-92×-3115×29的结果是 ( )A .-3B .-13 C .3 D .13。
1.4.1 有理数的乘法同步练习卷一、选择题(共11小题).1.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和﹣1互为负倒数2.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有()A.4个B.3个C.2个D.1个3.已知abc>0,a>c,ac<0,下列结论正确的是()A.a<0,b<0,c>0B.a>0,b>0,c<0C.a>0,b<0,c<0D.a<0,b>0,c>04.如果两个有理数的和是正数,积是负数,那么这两个有理数()A.都是正数B.绝对值大的那个数正数,另一个是负数C.都是负数D.绝对值大的那个数负数,另一个是正数5.观察算式(﹣4)××(﹣25)×28,在解题过程中,能使运算变得简便的运算律是()A.乘法交换律B.乘法结合律C.乘法交换律、结合律D.乘法对加法的分配律6.﹣的倒数的绝对值是()A.﹣2020B.C.2020D.﹣7.计算(﹣2)×(﹣3)×(﹣1)的结果是()A.﹣6B.﹣5C.﹣8D.58.在﹣3,3,4,﹣7这四个数中,任取两个数相乘,所得积最大的是()A.12B.﹣6C.21D.289.某种细胞开始有2个,1h后分裂成4个并死去1个,2h后分裂成6个并死去1个,3h后分裂成10个并死去1个,按此规律,问6h后细胞存活的个数有()A.63B.65C.67D.7110.若|ab|=ab,则必有()A.ab≥0B.ab>0C.a<0,b<0D.ab<011.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.5万元,7~10月平均每月亏损1.3万,11~12月平均每月盈利3.4万,这个公司总盈亏情况为()A.盈利3.1万元B.盈利3.5万元C.亏损3.1万元D.亏损0.8万元二、填空题12.已知|a+3|+|b﹣1|=0,则ab的值是.13.绝对值小于100的所有整数的积是.14.﹣的倒数的相反数是.15.如图所示,根据有理数a、b、c在数轴上的位置,填写下列各式:(1)a+b+c0;(2)ab0;(3)c﹣a﹣b0;(4)ac0.16.计算8×(﹣0.125)×0×(﹣2016)的结果是.17.若|a|=5,b=﹣2,且ab>0,则a+b=.18.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是.三、解答题19.计算:(1)(﹣2)×;(2)(﹣6)×5×;(3)(﹣4)×7×(﹣1)×(﹣0.25);(4)20.(1)如果两个有理数a、b满足关系式(a﹣1)(b﹣1)<0,那么它们与1的大小关系如何?(2)如果两个有理数a、b满足关系式(a﹣1)(b﹣1)>0,那么它们一定都大于1吗?21.读一读:式子“1×2×3×4×5×…×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×…×100”表示为n,这里“Π”是求积符号.例如,1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为1(2n﹣1),又如可表示13×23×33×43×53×63×73×83×93×103为n3,通过对以上材料的阅读,请解答下列问题.(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为.(2)1×12×13×…×110用求积符号可表示为.(3)计算:(1﹣).参考答案一、选择题1.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两个数同号D.1和﹣1互为负倒数【分析】选项A要特别考虑0;B、C两个选项考查了倒数的定义;D选项1和﹣1互为负倒数.解:A、0是有理数,但0没有倒数.故本选项错误.B、数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.故本选项正确.C、倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,所以互为倒数的两个数同号.故本选项正确.D、1和﹣1互为负倒数,故本选项正确.故选:A.2.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有()A.4个B.3个C.2个D.1个【分析】根据几个不为零的有理数相乘,负因数的个数是奇数个时积是负数,可得答案.解:由abcd<0,a+b=0,cd>0,得这四个数中的负因数至少有1个,故选:D.3.已知abc>0,a>c,ac<0,下列结论正确的是()A.a<0,b<0,c>0B.a>0,b>0,c<0C.a>0,b<0,c<0D.a<0,b>0,c>0【分析】由ac<0,根据两数相乘,异号得负,得出a与c异号;由a>c,得a>0,c <0;由abc>0,得b与ac同号,又ac<0,得b<0.解:由ac<0,得a与c异号;由a>c,得a>0,c<0;由abc>0,得b<0.故选:C.4.如果两个有理数的和是正数,积是负数,那么这两个有理数()A.都是正数B.绝对值大的那个数正数,另一个是负数C.都是负数D.绝对值大的那个数负数,另一个是正数【分析】根据同号得正,异号得负和有理数的加法运算法则解答.解:∵两个有理数的积是负数,∴这两个数一正一负,∵两个有理数的和是正数,∴正数的绝对值大,故,绝对值大的那个数正数,另一个是负数.故选:B.5.观察算式(﹣4)××(﹣25)×28,在解题过程中,能使运算变得简便的运算律是()A.乘法交换律B.乘法结合律C.乘法交换律、结合律D.乘法对加法的分配律【分析】利用交换律和结合律计算可简便计算.解:原式=[(﹣4)×(﹣25)](×28)=100×4=400,所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律.故选:C.6.﹣的倒数的绝对值是()A.﹣2020B.C.2020D.﹣【分析】直接利用倒数以及绝对值的性质分别分析得出答案.解:﹣的倒数为:﹣2020,﹣2020的绝对值是:2020.故选:C.7.计算(﹣2)×(﹣3)×(﹣1)的结果是()A.﹣6B.﹣5C.﹣8D.5【分析】根据多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正计算即可.注意乘法要将带分数化为假分数后再计算.解:(﹣2)×(﹣3)×(﹣1)=﹣××1=﹣8.故选:C.8.在﹣3,3,4,﹣7这四个数中,任取两个数相乘,所得积最大的是()A.12B.﹣6C.21D.28【分析】先根据有理数的乘法法则计算,再根据有理数的大小比较法则比较,得到答案.解:(﹣3)×(﹣7)=21,3×4=12,其余两个数的积都是负数,∵21>12,∴任取两个数相乘,所得积最大的是21,故选:C.9.某种细胞开始有2个,1h后分裂成4个并死去1个,2h后分裂成6个并死去1个,3h 后分裂成10个并死去1个,按此规律,问6h后细胞存活的个数有()A.63B.65C.67D.71【分析】根据细胞分裂过程,归纳总结得到一般性规律,即可得到结果.解:根据题意得:按此规律,6小时后存活的个数是26+1=65个,经过n个小时后,细胞存活的个数为(2n+1)个.故选:B.10.若|ab|=ab,则必有()A.ab≥0B.ab>0C.a<0,b<0D.ab<0【分析】首先根据:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零;判断出ab≥0;然后判断出若|ab|=ab,不一定a<0,b<0,也有可能a≥0,b≥0,据此判断即可.解:∵|ab|=ab,∴ab≥0;若|ab|=ab,不一定a<0,b<0,也有可能a≥0,b≥0;综上,可得若|ab|=ab,则必有ab≥0.故选:A.11.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.5万元,7~10月平均每月亏损1.3万,11~12月平均每月盈利3.4万,这个公司总盈亏情况为()A.盈利3.1万元B.盈利3.5万元C.亏损3.1万元D.亏损0.8万元【分析】根据题意列出算式,然后先算乘法,后算加减进行计算即可.解:由题意得:2×3﹣3×1.5﹣4×1.3+2×3.4=6﹣4.5﹣5.2+6.8=3.1,故选:A.二、填空题12.已知|a+3|+|b﹣1|=0,则ab的值是﹣3.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解:由题意得,a+3=0,b﹣1=0,解得a=﹣3,b=1,所以,ab=(﹣3)×1=﹣3.故答案为:﹣3.13.绝对值小于100的所有整数的积是0.【分析】先找出绝对值小于100的所有整数,再求它们的乘积.解:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.14.﹣的倒数的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.解:﹣的倒数的相反数是,故答案为:.15.如图所示,根据有理数a、b、c在数轴上的位置,填写下列各式:(1)a+b+c<0;(2)ab>0;(3)c﹣a﹣b>0;(4)ac<0.【分析】(1)根据数轴上点的位置可得b<a<0,c>0,因为|a|>c,所以a+c<0,又a+b<0,即可得出答案;(2)根据数轴上点的位置可得b<a<0,c>0,即可得出答案;(3)根据数轴上点的位置可得b<a<0,c>0,因为a+b<0,可得﹣(a+b)>0,根据不等式的性质,即可得出答案;(4)根据数轴上点的位置可得b<a<0,c>0,即可得出答案.解:(1)由题意可得,b<a<0,c>0,∴a+b<0,∵|a|>c,∴a+c<0,∴a+b+c<0.故答案为:<;(2)由题意可得,b<a<0,∴ab>0.故答案为:>;(3)由题意可得,b<a<0,c>0,∵a+b<0,∴﹣(a+b)>0,∴﹣(a+b)+c>0,即c﹣(a+b)>0,∴c﹣a﹣b>0.故答案为:>;(4)由题意可得,b<a<0,c>0,∴ac<0.故答案为:<.16.计算8×(﹣0.125)×0×(﹣2016)的结果是0.【分析】根据一个数与0相乘积为0计算求解.解:8×(﹣0.125)×0×(﹣2016)=0,故答案为0.17.若|a|=5,b=﹣2,且ab>0,则a+b=﹣7.【分析】考查绝对值的意义及有理数的运算,根据|a|=5,b=﹣2,且ab>0,可知a=﹣5,代入原式计算即可.解:∵|a|=5,b=﹣2,且ab>0,∴a=﹣5,∴a+b=﹣5﹣2=﹣7.故答案为:﹣7.18.在等式3×□﹣2×□=15的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立.则第一个方格内的数是3.【分析】根据相反数的定义,结合方程计算.解:设第一个□为x,则第二个□为﹣x.依题意得3x﹣2×(﹣x)=15,解得x=3.故第一个方格内的数是3.故答案为:3.三、解答题19.计算:(1)(﹣2)×;(2)(﹣6)×5×;(3)(﹣4)×7×(﹣1)×(﹣0.25);(4)【分析】根据多个有理数相乘的法则:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正计算.解:(1)(﹣2)×=﹣(2××)=﹣;(2)(﹣6)×5×=6×;(3)(﹣4)×7×(﹣1)×(﹣0.25)=﹣(4×)=﹣7;(4)=×××=.20.(1)如果两个有理数a、b满足关系式(a﹣1)(b﹣1)<0,那么它们与1的大小关系如何?(2)如果两个有理数a、b满足关系式(a﹣1)(b﹣1)>0,那么它们一定都大于1吗?【分析】(1)根据两数相乘异号为负可列不等式,解不等式即可求解;(2)根据两数相乘同号为正可列不等式,解不等式即可求解.解:(1)当(a﹣1)(b﹣1)<0时,a﹣1>0且b﹣1<0,或a﹣1<0且b﹣1>0,解得a>1,b<1或a<1,b>1;故当a<1时,b>1;当a>1时,b<1;(2)当(a﹣1)(b﹣1)>0时,a﹣1>0且b﹣1>0,或a﹣1<0且b﹣1<0,解得a>1,b>1或a<1,b<1;当a<1时,b<1;当a>1时,b>1.21.读一读:式子“1×2×3×4×5×…×100”表示从1开始的100个连续自然数的积,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1×2×3×4×5×…×100”表示为n,这里“Π”是求积符号.例如,1×3×5×7×9×…×99,即从1开始的100以内的连续奇数的积,可表示为1(2n﹣1),又如可表示13×23×33×43×53×63×73×83×93×103为n3,通过对以上材料的阅读,请解答下列问题.(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为.(2)1×12×13×…×110用求积符号可表示为.(3)计算:(1﹣).【分析】(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积),由新定义可得公式;(2)由新定义可得结果;(3)由新定义可知:,据此计算便可.解:(1)2×4×6×8×10×…×100(即从2开始的100以内的连续偶数的积)用求积符号可表示为,故答案为:;(2)1×12×13×…×110=12×13×…×110用求积符号可表示为,故答案为:;(3)==.。
七年级数学上1.4.1《有理数的乘法》同步练习一、单选题1.﹣2的倒数是()A. 2B. ﹣2C. ﹣D.2.用简便方法计算﹣6×(﹣12)×(﹣0.5)×(﹣4)的结果是()A.6B.3C.2D.13.﹣2×4的结果是()A. -B.C. 2D. -84.下列计算正确的是()A.(﹣4)×(﹣3)×(﹣2)×(﹣2)=4×3×2×2=48B.(﹣12)×(13-14)=﹣4+3:=﹣1C.(﹣9)×5×(﹣4)×0=9×5×4=180D.﹣2×5﹣2×(﹣1)﹣(﹣2) ×2=﹣2×(5+1﹣2)=﹣8二、填空题5.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,0,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.6.已知|a|=2,|b|=3,且ab<0,则a+b的值为.7.(1)奇数个负数相乘,结果的符号是.(2)偶数个负数相乘,结果的符号是.8.已知四个数:﹣2,﹣3,4,﹣1,任取其中两个数相乘,所得的积的最小值是________9.最大的负整数与最小的正整数的乘积是________10.﹣0.01×13×(﹣200)=13×[(﹣0.01)×______]=______.11.若m<n<0,则(m+n)(m﹣n)0.(填“<”、“>”或“=”)12.计算:(﹣3)×(﹣4)=________三.解答题13.计算:( 1 )25×+25×-+25×.(2)(﹣5)×(﹣6)×3×(﹣2);(3)(﹣273)×(﹣4)+(+273)×(﹣7)﹣(+273)×(﹣3).(4)(﹣3)×(﹣1)×2×(﹣6)×0×(﹣2).14.已知有理数a,b,c满足,求的值15已知x,y为有理数,如果规定一种新的运算※,定义x※y=xy+1.根据运算符号的意义完成下列各题.(1)求2※4的值;(2)求1※4※0的值;16.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?七年级数学上1.4.1《有理数的乘法》同步练习答案一、单选题1.﹣2的倒数是( C )A. 2B. ﹣2C. ﹣D.2.用简便方法计算﹣6×(﹣12)×(﹣0.5)×(﹣4)的结果是(A )A.6B.3C.2D.13.﹣2×4的结果是(D)A. -B.C. 2D. -84.下列计算正确的是(A )A.(﹣4)×(﹣3)×(﹣2)×(﹣2)=4×3×2×2=48B.(﹣12)×(13-14)=﹣4+3:=﹣1C.(﹣9)×5×(﹣4)×0=9×5×4=180D.﹣2×5﹣2×(﹣1)﹣(﹣2) ×2=﹣2×(5+1﹣2)=﹣8二、填空题5.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,0,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为-120.6.已知|a|=2,|b|=3,且ab<0,则a+b的值为1.7.(1)奇数个负数相乘,结果的符号是负.(2)偶数个负数相乘,结果的符号是正.8.已知四个数:﹣2,﹣3,4,﹣1,任取其中两个数相乘,所得的积的最小值是___-12_____9.最大的负整数与最小的正整数的乘积是___-1_____10.﹣0.01×13×(﹣200)=13×[(﹣0.01)×_(-200)_____]=__32____.11.若m<n<0,则(m+n)(m﹣n)>0.(填“<”、“>”或“=”)12.计算:(﹣3)×(﹣4)=____12____三.解答题13.计算:( 1 )25×+25×-+25×.=25(2)(﹣5)×(﹣6)×3×(﹣2);=-180(3)(﹣273)×(﹣4)+(+273)×(﹣7)﹣(+273)×(﹣3).=2184(4)(﹣3)×(﹣1)×2×(﹣6)×0×(﹣2).=014.已知有理数a,b,c满足,求的值=115已知x,y为有理数,如果规定一种新的运算※,定义x※y=xy+1.根据运算符号的意义完成下列各题.(1)求2※4的值;(2)求1※4※0的值;(1)9(2)116.如图,A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,|a|=10,a+b=80,ab<0.(1)求出a,b的值;(2)现有一只电子蚂蚁P从点A出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q从点B出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点C相遇,求出点C对应的数是多少?②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?(1)|a|=10ab<0且点A在点B的左边a=10-a+b=80b=90(2)A,B两点之间的距离为90-(-10)=100 100÷(3+2)=20秒20×3=6060+(-10)=50C对应的数是5080÷(2+3)=16秒或(100+20)÷(2+3)=24秒。
1.4.1有理数的乘法 同步练习一、选择题1.两个互为相反数的有理数相乘,积为( )A. 正数B.负数C.零D.负数或零 2.下列说法正确的是( )A.一个有理数和它相反数相乘,积大于零;B.两个负数相乘,积大于任一因数;C.两个负数相乘积为负;D.同号两数相乘,积的符号不变.3. 有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( ) a b 0 A.0<+b a B.0<-b a C.0<ab D.a b >||4.三个数的积为正数,那么这三个数中负因数的个数是( )A.1个B.2个C.3个D.0个或2个5.在算式14)391825()14(3914181425⨯++-=-⨯-⨯+⨯-中,这是逆用了( ) A .加法交换律 B .乘法交换律 C .乘法结合律 D .乘法分配律二、填空题6. 计算:2.54-⨯=_______;______;)5(0=-⨯._________)5()4(=-⨯-7.如果a >0,b <0,那么a ·b________0.若a<0,b<0,则ab________0;若a>0,b >0,则ab_________0;8.绝对值小于2008的所有整数的积等于 .9.(1)_____]6[)3(]6)3[(7⨯⨯-=⨯-⨯; (2).21______)8(]21)41[()8(⨯+⨯-=+-⨯-三、解答题10.计算:(1)(-4)×(-41) (2)(-87)×(-78)(3) (-65)×(-156) (4) )135()26(+⨯-(5)0.125×(-7)×8 (6)()()()81065-⨯-⨯⨯-(7) [8×(-9)]×(-181) (8) 12×(32+41)(9)-92322×(-69); (10)(211-83+127))24(-⨯第1课时1. D2. B 1.C 2.D3.D3. 20.8, 0, 204. < , > , >5. 0 4.(1) 7; (2))41(),41(--8(1)1 (2)1 (3)31 (4)-10 9.6(1) -7; (2) -2400; (3) 4 ; (4) 11; (5)687; (6)-41; 7. 100;。
1.4.1有理数的乘法一 选择题1.若a+b <0,ab <0,则( )A .a >0,b >0B .a <0,b <0C .a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D .a ,b 两数一正一负,且负数的绝对值大于正数的绝对值2.七个有理数的积为负数,其中负因数的个数不可能是( )A.1B.3C.6D.73.—20201 的倒数的绝对值是( ) A .-2020 B .20201 C .2 020 D .—20201 4.下列各数中积为正的是( )A .2×3×5×(-4)B .2×(-3)×(-4)×(-3)C. (-2)×0×(-4)×(-5)D. (-2)×(-3)×(-4)×(-5)5.如果两数之和等于零;之积为负数,那么这两个数只能是[ ]A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数6.在-3,3,4,-7这四个数中,任取两个数相乘,所得积最大的是( )A .12B .-6C .21D .287.如果两个有理数a 、b 互为相反数,则a 、b 一定满足的关系为[ ]A. a ·b=1B. a ·b=-1C. a+b=0D. a -b=08.下列结论:①两数之积为正,这两数同为正;②三数相乘,积为负,这三个数都是负数;③两数之积为负,这两数为异号;④几个数相乘,积的符号由负因数的个数决定. 正确的有 ( )A .0个B .1个C .2个D .3个9.如果abcd <0,a+b=0,cd >0,那么这四个数中负因数的个数至少有( )A.4个B.3个C.2个D.1个10.已知|a|=2,|b|=5,且ab <0,则a+b 的值为( ).A .5B .-1C .3D .711.计算(-4)×(-7)×(-41)的结果是( ) A .-7 B .-1 C .1 D .712.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.5万元,7~10月平均每月亏损1.3万,11~12月平均每月盈利3.4万,这个公司总盈亏情况为( )A. 盈利3.1万元B. 盈利3.5万元C. 亏损3.1万元D. 亏损0.8万元二 填空题1.计算:(-2)×(-3)=______ 。