相交线与平行线,实数检测题
- 格式:docx
- 大小:149.80 KB
- 文档页数:2
七年级数学下册第一月考试题考试范围:相交线与平行线、实数考试时间:90分钟满分:120分一、选择题1.√81的平方根是()A.±9B.9C.±3D.32.如图,AD⊥BC,DE∥AB,则∠CDE与∠BAD的关系是()A.互为余角B.互为补角C.相等D.不能确定3.估算√32+1的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间4.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60°B.70C.80°D.90°(第4题)(第5题)(第6题)5.如图,生活中,将一个宽度相等的纸条按图所示折叠,如果∠1=150°,那么∠2的度数为()A.150°B.130°C.105°D.80°6.如图,将一直角三角板与两边平行的纸条,如图所示放置,下列结论(1)∠1=∠2 (2)∠3=∠4 (3)∠2+∠4=90° (4)∠5-∠2=90°,其中正确的个数是()A.1个B.2个C.3个D.4个7.已知x,y两个实数在数轴上位置如图所示,则化简|y-x|+√(x−y)2的结果是()A.2xB.2yC.2x-2yD.2y-2x8.下列说法:①√(−10)2=-10;②数轴上的点与实数成一一对应关系;③一个数的算术平方根仍是它本身,这样的数有三个;④任何实数不是有理数就是无理数:⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.5B.4C.3D.29.如图,直线AB与CD相交于点E,在∠CEB的平分线上有一点F,FM∥AB.当∠DEB=10°时,∠F的度数是()A. 85°B.80°C.75°D.70°10.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ⊥BC ,下列结论:①BC 平分∠ABG;②AC ∥BG;③与∠DBE 互余的角有2个;④若∠A=α,则∠BDF=180°- α2,其中正确的有( ) A.①② B.②③④ C.①②④ D.①②③④二、填空题11. √2-1的相反数是_______,|3.14-π|=_______.12.若√2a −2与|b+2|互为相反数,则(a-b)2的平方根是_______.13.将命题“在同一平面内,垂直于同一条直线的两条直线平行”改写为如果……,那么的形式为_________________________________.14.一副直角三角板中,∠A=60°,∠D=30°,∠E=∠B=45°将直角顶点C 按照如图方式叠放,点E 在直线AC 上方,且0°<∠ACE<180°,能使三角形ADC 有一条边与EB 平行的所有∠ACE 的度数的和为_______.15.①如图1,AB ∥CD ,则∠A+∠E+∠C=180°; ②如图2,AB ∥CD ,则∠E=∠A+∠C; ③如图3,若AB ∥EF ,则∠x=180°-∠a-∠γ+∠B; ④如图4,AB ∥CD ,则∠A=∠C+∠P.以上结论正确的是_________.三、解答题16.计算(−1)3 +|1-√3|+√273 √(−5)33+(−3)2-√16+|√3-2|+(√3)217.解方程16(x +1)2 -81=0 (2x −1)3=-2718.已知2a-1的平方根是±3,b-9的立方根是2,c是√12的整数部分.(1)求a、b、c的值;(2)若x是√12的小数部分,求x-√12+12的值.19.如图,直线EF,CD相交于点O,OC平分∠AOF,∠AOE=2∠BOD.(1)若∠AOE=40°,求∠DOE的度数.(2)猜想OA与OB之间的位置关系,并证明.20.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,试说明:∠GDC=∠B.请补充说明过程,并在括号内填上相应的理由.证明:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°()∴AD∥EF()∴ _____+∠2=180°()∠2+∠3=180°∴∠1=∠3()∴ABP ______()∴∠GDC=∠B()21.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数.(2)求证:BE∥CD22.解答下面的问题:(1)某房间的面积为17.6m2,房间地面恰好由110块相同的正方形地砖铺成,每块地砖的边长是多少?(2)已知第一个正方体水箱的棱长是60cm,第二个正方体水箱的体积比第一个水箱的体积的3倍还多81000cm3,则第二个水箱需要铁皮多少平方米?23.已知AB∥CD,点M、N分别是AB、CD上的点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CMG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=32°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.。
中考数学总复习《相交线与平行线》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69∘若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69∘B.49∘C.31∘D.21∘2.下列四个命题中,它的逆命题成立的是( )A.如果x=y,那么x2=y2B.直角都相等C.全等三角形对应角相等D.等边三角形的每个角都等于60∘3.如图,直线AB,CD相交于点O,OE,OF,OG分别是∠AOC,∠BOD,∠BOC的平分线,以下说法不正确的是( )A.∠DOF与∠COG互为余角B.∠COG与∠AOG互为补角C.射线OE,OF不一定在同一条直线上D.射线OE,OG互相垂直4.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35∘,则∠2等于( )A.45∘B.55∘C.35∘D.65∘5.如图,下列几组角的位置关系是内错角的是( )A.∠1和∠2B.∠3和∠4C.∠2和∠3D.∠1和∠46.如图,ED,CM与AO交于点C,OB,ON与AO交于O点,那么下列说法正确的是( )① ∠2和∠4是同位角;② ∠1和∠3是同位角;③ ∠ACD和∠AOB是内错角;④ ∠1和∠4是同旁内角;⑤ ∠ECO和∠AOB是内错角;⑥ ∠OCD和∠4是同旁内角.A.②③⑤B.①③⑤C.②③④D.①⑤⑥7.如图,两条直线被第三条直线所截,在所标注的角中,下列说法不正确的是( )A.∠1与∠5是同旁内角B.∠1与∠2是邻补角C.∠3与∠5是内错角D.∠2与∠4是对顶角8.如图,点O在直线AB上,OC⊥OD若∠AOC=120∘,则∠BOD的度数为( )A.30∘B.40∘C.50∘D.60∘二、填空题(共5题,共15分)9.已知∠AOB和∠BOC互为邻补角,且∠BOC:∠AOB=4:1,射线OD平分∠AOB,射线OE⊥OD,则∠BOE=.10.如图,若∠ADE=∠ABC,则DE∥BC,理由是.11.如图,已知∠B=∠D,要使BE∥DF,还需补充一个条件,你认为这个条件应该是.(填一个即可)12.如图,已知∠1=60∘,∠2=60∘,∠3=120∘,则直线a,b,c之间的位置关系为.13.如图,如果∠2=100∘,那么∠1的同位角的度数为.三、解答题(共3题,共45分)14.如图EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116∘,∠ACF=20∘求∠FEC的度数.15.如图,已知两条直线DM∥CN,线段AB的两个端点.A,B分别在直线OM,CN上∠C=∠BAD,点E在线段BC上,且DB平分∠ADE.(1) 求证:AB∥CD.(2) 若沿着NC方向平移线段AB,那么∠CBD与∠CED度数之间的关系是否随着AB 位置的变化而变化?若变化,请找出变化规律;若不变化,请确定它们之间的数量关系.16.如图,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2求证:CD⊥AB.参考答案1. 【答案】D2. 【答案】D3. 【答案】C4. 【答案】B5. 【答案】B6. 【答案】D7. 【答案】C8. 【答案】A9. 【答案】72∘或108∘10. 【答案】同位角相等,两直线平行11. 【答案】∠B=∠COE(答案不唯一)12. 【答案】a∥b∥c13. 【答案】80∘14. 【答案】∵EF∥AD,AD∥BC∴EF∥BC.∵AD∥BC∴∠ACB+∠DAC=180∘.∵∠DAC=116∘∴∠ACB=64∘.∵∠ACF=20∘∴∠FCB=∠ACB−∠ACF=44∘.∵CE平分∠BCF∴∠BCE=22∘.∵EF∥BC∴∠FEC=∠ECB.∴∠FEC=22∘.15. 【答案】(1) ∵DM∥CN∴∠BAD=∠NBA∵∠C=∠BAD∴∠C=∠NBA∴AB∥CD.(2) ∵DB平分∠ADE∴∠ADB=∠EDB∵DM∥CN∴∠ADB=∠CBD∴∠CBD=∠EDB∵DM∥CN∴∠CED=∠EDA∵∠EDA=2∠EDB∠CED.∴∠CDB=1216. 【答案】∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90∘(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90∘(垂直的定义)∴∠ADC=90∘(等量代换)∴CD⊥AB(垂直的定义).。
相交线与平行线专项练习题一、选择题:1.如图,DE ∥AB ,∠CAE=31∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( ) A .70° B .65° C .60° D .55°1题 2题 3题 4题2.如图所示,∠1的邻补角是( )A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOC 和∠AOF3.如图所示,内错角共有( )A.4对B.6对C.8对D.10对4.如图,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a ∥b 的条件的序号是( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(3)、(4)5.如图,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( )A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°5题 6题7题 8题6.如图,如果AB ∥CD ,则α、β、γ之间的关系为 ( )A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7.如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( )A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A8.如图,AB ∥CD ,∠ABF=32∠ABE ,∠CDF=32∠CDE ,则∠E ∶∠F 等于( ) A .2:1 B .3:1 C .3:2 D .4:39.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F=45°,那么与∠FCD 相等的角有( )B DE 1 3 A CF 2 A .1个 B .2个 C .3个 D .4个二、填空题:10.观察图中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.10题11题12题13题11.如图,已知CD ⊥AB 于D ,EF ⊥AB 于F ,∠DGC=105°,∠BCG=75°,则∠1+∠2=____度.12.如图,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
第五章《相交线与平行线》专项训练卷1.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34° C.56° D.68°2.如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A,B两岛的视角∠ACB等于()。
A.90° B.80° C.70° D.60°3.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5.其中能判定AB∥CD的条件的个数有…()A.1 B.2 C.3 D.44.如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度5.将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=140°,那么∠2的度数是A.100° B.110° C.120° D.140°6.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角7.已知:OE平分∠AOD,AB∥CD,OF⊥OE于O,∠D = 50°,则∠BOF=________。
8. 尺规作图(不写作法,但要保留作图痕迹)如图,点E为∠ABC边BC上一点,过点E作直线MN,使MN//AB.9.如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2,求证:∠CED+∠ACB=180°.请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G、D(已知)∴∠FGB=∠CDB=90°(),∴GF∥CD ().∵GF∥CD(已证)∴∠2=∠BCD ()又∵∠1=∠2(已知),∴∠1=∠BCD (),∴,()∴∠CED+∠ACB=180°().10.(1)已知:如图,AE//CF,易知∠A P C=∠A +∠C,请补充完整证明过程:证明:过点P作MN//AE∵MN//AE(已作)∴∠APM= (),又∵AE//CF,MN//AE∴∠MPC=∠()∴∠AP M+∠CPM=∠A +∠C即∠APC=∠A +∠C11.如图,AB∥CD,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.12.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.13.如图,要判定AB∥CD,需要哪些条件?根据是什么?14.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.AC FPM N15.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.16.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.17.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.18.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?19.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.20.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE 的位置关系,并说明理由.第六章《实数》专项训练卷一、选择题(每小题3分,共30分)1.下列语句中正确的是()A.的平方根是3- B.9的平方根是3C.9的算术平方根是3± D.9的算术平方根是32.下列结论正确的是()A.6)6(2-=-- B.9)3(2=-C.16)16(2±=- D.251625162=⎪⎪⎭⎫⎝⎛--3.2)9(-的平方根是x, 64的立方根是y,则yx+的值为()A.3B.7C.3或7D.1或74.当43时,2x的值为( )A.43B.43C.43D.12+a5.下列关于数的说法正确的是()A. 有理数都是有限小数B. 无限小数都是无理数C. 无理数都是无限小数D. 有限小数是无理数6.与数轴上的点具有一一对应关系的数是()A.实数B.有理数C.无理数D.整数7.下列说法正确的是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.如果一个数有立方根,则它必有平方根D.不为0的任何数的立方根,都与这个数本身的符号同号8.下列各式成立的是()A. B. C.D.9.在实数,,,,中,无理数有()A.1个B.2个C.3个D.4个10.在-3,-3,-1,0这四个实数中,最大的是()A. B. C. D.二、填空题(每小题3分,共24分)11.的平方根是,的算术平方根是 .12.比较大小:31_____315-(填“>”“<”“=”).13.已知5-a+3+b,那么.14.在中,________是无理数.15.的立方根的平方是________.16.若的平方根为,则 .17._____和_______统称为实数.18.若a、b互为相反数,c、d互为负倒数,则=_______. 19.已知一个正数的两个平方根分别是4a+1和a–11,则这个正数是__________.20.求下列各数的平方根和算术平方根:.1615289169,21.求下列各数的立方根:.64,729.02718125,,-22.已知5x+19的立方根是4,求2x+7的平方根.。
相交线与平行线单元测试题一、选择题(每题2分,共20分)1. 下列说法中,正确的是:A. 经过直线外一点,有且只有一条直线与已知直线平行B. 经过直线外一点,有且只有一条直线与已知直线相交C. 经过直线外一点,可以画无数条直线与已知直线平行D. 经过直线外一点,可以画无数条直线与已知直线相交2. 如果两直线相交,那么它们相交所成的角是:A. 锐角B. 直角C. 钝角D. 任意角3. 两条直线被第三条直线所截,如果同侧的内错角相等,那么这两条直线:A. 平行B. 相交C. 垂直D. 无法判断4. 平行线的性质中,下列说法不正确的是:A. 平行线之间的距离处处相等B. 平行线永不相交C. 两条平行线可以确定一个平面D. 平行线之间的夹角是锐角5. 对于两条平行线,下列说法正确的是:A. 它们之间的距离在任何地方都是相同的B. 它们可以相交C. 它们之间的夹角可以是任意角D. 它们可以确定一个平面二、填空题(每题2分,共10分)6. 如果两条直线相交成直角,则称这两条直线互相______。
7. 两条直线相交,如果其中一个角是锐角,则其他三个角分别是______。
8. 平行线之间的距离是指______。
9. 两条直线相交所成的角中,最大的角是______。
10. 如果两条直线被第三条直线所截,那么内错角相等的条件是这两条直线______。
三、判断题(每题1分,共10分)11. 两条直线相交所成的角都是锐角。
()12. 平行线在任何地方的距离都是相等的。
()13. 两条直线相交,形成的对顶角相等。
()14. 两条平行线之间的夹角是直角。
()15. 如果两条直线被第三条直线所截,同位角相等,则这两条直线平行。
()四、简答题(每题5分,共20分)16. 解释什么是“同位角”、“内错角”和“同旁内角”,并说明它们在判断两条直线是否平行时的作用。
17. 描述如何使用直角三角板来检验两条直线是否平行。
18. 给出两条直线相交的几何图形,并说明如何确定它们相交所成的角的大小。
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
相交线与平行线、实数测试题内容:相交线与平行线、实数时间:100分钟总分:120分班级:姓名:得分:一、选择题(每题4分,共32分)1、下列说法错误的是()A、1的平方根是1B、-1的立方根是-1C、2是2的平方根D、-3是2)3(-的平方根2、最接近60的正整数值有()A、3B、7C、8D、7或83、在下列各数中是无理数的有()-0.333…,4,5, 3 ∏,3.1415,2.010101…, 76.0123456…A、3个B、4个C、5个D、6个4、下列语句错误的是( )A.锐角的补角一定是钝角B.一个锐角和一个钝角一定互补C.互补的两角不能都是钝角D.互余且相等的两角都是45°5、下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行6、如图1,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )A.AD∥BCB.∠B=∠CC.∠2+∠B=180°D.AB∥CD7、如图2,直线AB、CD、EF相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于( )A.40°B.45°C.55°D.65°8、如图3,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°图1 图2 图3二、填空题(每空3分,共36分)9、两条直线相交,有_____对对顶角10、如图4,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.11、如图5,若l1∥l2,∠1=45°,则∠2=_____.图4 图5 图612、如图6,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.13、一个角的余角比这个角的补角小_____度.14、如图7,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.图7 图815、如图8,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.16、比较大小:2______3; 6_____217、2)4(-=______,18、81的平方根是______三、计算(8分)︱—2︱+2)4(--(-3)+327-四、解方程(每题6分,共12分) ⑴x 225=81⑵)2(2-x =25五、解答题(每题8分,共32分)21、如图9,(1)∵∠A =_____(已知), ∴AC ∥ED ( ) (2)∵∠A +_____=180°(已知),∴AB ∥FD ( ) (3)∵AB ∥_____(已知),∴∠2+∠AED =180°( ) (4)∵AC ∥_____(已知),∴∠C =∠1( )图922、如图10,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠ECD 的度数.图1023、如图11,已知AB ∥CD ,∠B =60°,CM 平分∠BCE ,∠MCN =90°,求∠DCN 的度数.图1124.如图12,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?图12。
相交线与平行线专项训练及解析答案一、选择题1.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.4.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.5.下列结论中:①若a=b a b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥a b②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离 33正确的个数有②④两个6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.13.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个 【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.16.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.。
《相交线与平行线》《实数》综合测试卷一、选择题(本大题共8小题,每小题3分,共24分)1.的平方根是()A.B.﹣C.±D.±2.下列等式正确的是()A.3.实数B.,0,,3.14159,C.,D.,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个4.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b 互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4 C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°5.b在数轴上对应点的位置如图所示,实数a、则化简A.b B.﹣2a+b C.2a+b D.2a﹣b﹣|a+b|的结果为()6.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°第6题图第7题图第8题图7.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°8.AB∥DE,如图,玲玲在美术课上用丝线绣成了一个“2”,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120° D.100°二、填空题(本大题共8小题,每小题3分,共24分)9.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.第9题图第10题图第11题图10.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.11.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.12.若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.13.满足-2<x<3的整数是.14.观察下列式子,根据你得到的规律回答:=333;…….请你说出=3;= 33;的值是.15.下列命题中,真命题的是.(请填序号)①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离16.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[72进行如下操作: []=8 []=2 []=1,现对72]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共5小题,共52分)17.(10分)计算:(1)|(2)﹣1|﹣|﹣2|+|﹣|18.(10分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.19.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.20.(12分)(1)计算32=____,0.72=____,1(-6)2=____,(-)2=____,(-0.28)2=____,02=____;2(2)根据(1)中的计算结果可知,a2一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来;(3)利用上述规律计算:(3.14-π)2=.21.(12分)如图,已知∠1+∠2=180°,∠B=∠3,试判断:(1)AB与EF的位置关系;(2)∠C与∠AED的大小关系,并说明理由.《相交线与平行线》《实数》综合测试卷一、选择题(本大题共8小题,每小题3分,共24分)1.的平方根是(C)A.B.﹣C.±D.±2.下列等式正确的是(D)A.A.B.C.D.=4,正确,;B.原式=﹣(﹣)=;C.-9没有平方根;D.原式=,0,,3.14159,,3.实数,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有(B)A.2个B.3个C.4个D.5个无理数:,,0.1010010001…(相邻两个1之间依次多一个0)4.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b 互相平行的是(C)A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4 C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°5.实数a、b在数轴上对应点的位置如图所示,则化简A.b B.﹣2a+b C.2a+b D.2a﹣b﹣|a+b|的结果为(A)由图知:a<0,a+b<0,原式=﹣a﹣[﹣(a+b)] =﹣a+a+b=b.6.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为(A)A.71°B.64°C.80°D.45°由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠BCD=45°,∵∠A=26°,可推∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°第6题图第7题图第8题图7.如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为(D)A.50°B.60°C.70°D.80°∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,8.AB∥DE,如图,玲玲在美术课上用丝线绣成了一个“2”,∠A=30°,∠ACE=110°,则∠E的度数为(D)A.30°B.150°C.120° D.100°拐点问题过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°二、填空题(本大题共8小题,每小题3分,共24分)9.如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短(不是“两点之间,线段最短”)第9题图第10题图第11题图10.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=42 °.∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°11.如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于12cm.由平移的性质得AD=CF=1,AC=DF,∵△ABC的周长=10,∴AB+BC+AC=10,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF=10+1+1=12cm12.若x、y为实数,且满足|2x+3|+3927273=0,则xy的立方根为-.23X=-,y=,xy=-,-的立方根是-。
《相交线、平行线、实数》检测题
一.选择题(每小题3分,共30分)
1.在实数0.3,0,7 ,2
π
,0.123456…中,其中无理数的个数是( )
A.2
B.3
C.4
D.5 2、如图,若m ∥n ,∠1=105 o ,则∠2=(
)
A 、55 o
B 、60 o
C 、65 o
D 、75 o
3.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )
A. 43∠=∠
B. 21∠=∠
C. DCE D ∠=∠
D.
180=∠+∠ACD D
4.下列说法中,正确..
的是( ) A. 图形的平移是指把图形沿水平方向移动. B 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
5、同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( ) A 、a ∥d
B 、b ⊥d
C 、a ⊥d
D 、b ∥c
6.如右图,CD AB //,且 25=∠A ,
45=∠C ,则E ∠的度数是( )
A. 60
B. 70
C. 110
D.
80
7.若=,则a 的值是( )
A .78
B .78-
C .78±
D .343512
-
8.若2
25a =,3b =,则a b +=( )
A .-8
B .±8
C .±2
D .±8或±2
9. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )
A. 3对
B. 4对
C. 5对
D. 6对
10.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那
么以下线段大小的比较必定成立....
的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <
二,填空题(每小题3分,共30分)
1.若一个数的立方根就是它本身,则这个数是 。
2._______ 3.若,902
1︒=∠+∠,9023︒=∠+∠则31∠∠与的关系是 ,理由是 。
4.如图⑥,为了把ABC ∆平移得到‘
’‘C B A ∆,可以先将ABC ∆向右平移 格,再向上平移 格。
5.如图⑤,已知b a //,若
501=∠,则=∠2 ; 若
1003=∠,则
=∠2 。
6.如图(3)是一把剪刀,其中︒=∠401,则=∠2 , 其理由是 。
72-的相反数是 ;绝对值是 。
8= 。
9.用吸管吸易拉罐内的饮料时,如图①,
1101
=∠,则=2∠ (拉罐的上下底面互相平行) 10. 如果52-a 与2+b 互为相反数,则ab= __________。
三.解答题。
11、读句画图:如图,直线CD 与直线AB 相交于C ,根据下列语句画图(6分) (1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R
E
D
C
B
A 4
32
1E
D C
B
A
D
C
B
A
E D
C
B
A
图⑥
A’C ’
B ’
A
B
C
2
图⑤
c
b
a 3
12
1
图①
·
12、在下图中平移三角形ABC ,使点A 移到点A ',点B 和点C 应移到什么位置?请在图中画出平移后图形(5分)
13.仔细想一想,完成下面的推理过程(每空1分,共7分)
如图EF ∥AD ,∠1=∠2,∠BAC=70 o ,求∠AGD 。
解:∵EF ∥AD ,
∴∠2= ( )
又∵∠1=∠2, ∴∠1=∠3, ∴AB ∥ (
) ∴∠BAC+ =180 o ( )
∵∠BAC=70 o ,∴∠AGD= 。
14.计算(每小题4分,共8分)
(1
) (3
15.求下列各式中的x 值(每小题4分,共8分)
(1)x 2 = 17; (2)x 2 -121
49
= 0。
16.(本题4分)
13-
17.(本题5分)
一个正数x 的平方根是2a -3与5-a ,则a 是多少?
18.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
(5分)
19、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30 o ,求∠EAD 、∠DAC 、∠C 的度数。
(6分)
20.如图,EB ∥DC ,∠C=∠E ,请你说出∠A=∠ADE 的理由(本题6分)。
H
G 2
1
F
E
D
C B
A
A
B
C
A '
·。