中考数学典型试题汇编----投影与视图 专题汇编练习
- 格式:doc
- 大小:429.00 KB
- 文档页数:10
中考数学总复习《投影与视图》专项测试卷-附参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.如图是某个几何体的三视图,该几何体是( )A.长方体B.正方体C.圆柱D.三棱柱2.小卖部货架上摆放着某品牌方便面,它们的三视图如图,货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒3.如图所示几何体的俯视图是( )A.B.C.D.4.如图是由几个相同的小正方体组成的一个几何体.它的左视图是( )A.B.C.D.5.将下面的平面图形绕轴旋转一周,得到的立体图形是( )A.B.C.D.6.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A.12cm2B.14cm2C.16cm2D.18cm27.一个几何体的表面展开图如图所示,这个几何体是( )A.圆柱B.圆锥C.长方体D.球8.下列几何体中,俯视图为三角形的是()A.B.C.D.二、填空题(共5题,共15分)9.(1)底面圆半径为1,高为2的圆柱体,其侧面展开图的周长是.(2)圆柱的侧面展开图是边长为4的正方形,则圆柱的体积是.10.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.11.如图,将圆柱的侧面展开,得到圆柱的侧面展开图,圆柱的侧面展开图是形,它的长等于圆柱的,宽等于圆柱的.12.有一个矩形纸片ABCD,连接矩形对角线AC,如图①;把这个矩形卷成一个圆柱体,如图②.看一看对角线AC这时是一条什么线(直线或曲线).答:是一条.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB= 1.5m,CD=4.5m点P到CD的距离是2.7m,则P到AB的距离是m.三、解答题(共3题,共45分)14.如图,直角梯形ABCD被平行光线从上往下照射BC∥AD,BE⊥AD于点E,AD在投影面上,则AB的投影是什么?BC与CD的投影呢?它们与其对应投影的大小关系呢?15.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,某一时刻她在地面上竖直立了一个2m长的标杆CD,测得其影长DE=0.4m.(1) 请在图中画出此时旗杆AB在阳光下的投影BF;(2) 如果BF=1.6m,求旗杆AB的高.16.一个圆锥的主视图如图所示,根据图中数据,求这个圆锥的侧面积.参考答案1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】B5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】C9. 【答案】4π+4;16π10. 【答案】144或384π11. 【答案】长方;底面的周长;高12. 【答案】曲线13. 【答案】0.914. 【答案】AB的投影是AE AB>AE;BC的投影为ED BC=EDCD的投影是点D.15. 【答案】(1) 略(2) ∵AF∥CE∴∠AFB=∠CED.而∠ABF=∠CDE=90∘∴△ABF∽△CDE∴ABCD =BFDE,即AB2=1.60.4∴AB=8(m).答:旗杆AB的高为8m.16. 【答案】15π。
中考数学总复习《投影与视图》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
《投影与视图》单元检测试卷一、选择题(每小题3分,共36分)1.下列几何体中,主视图和左视图都为矩形的是( )2.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )3.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120°B.约156°C.180°D.约208°4.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A.4个B.5个C.6个D.7个5.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.116.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆B.三角形C.线段D.椭圆7.身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是( )A.10米B.9米C.8米D.10.8米8.如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为( )A.15mB.803m C.21m D.m9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长10.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高h(单位:m)的范围是()A.3<h<5B.5<h<10C.10<h<15D.15<h<2012.如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c2二、填空题(每空3分,共30分)13.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)14.如图是一个三棱柱,它的正投影是下图中的________(填序号).15.如图所示,是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.16.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.17.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.18.一个由小立方块搭成的几何体,其左视图、主视图如图所示, 这个几何体最少由个小立方块搭成的 .三、解答题(7个小题,共66分)19.用7个大小相同的小正方体搭成的几何体如左图所示,请你在右边的方格中画出该几何体的三种视图(用较粗的实线进行描绘):20.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.21.如图是某几何体的展开图.(1) 请根据展开图画出该几何体的主视图;(2) 若中间的矩形长为20πcm,宽为20cm,上面扇形的中心角为240°,试求该几何体的表面积.22.如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m,高为2 m,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?23.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?24.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m.某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.25.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6 m 的小区超市,超市以上是居民住房.在该楼的前面15 m 处要盖一栋高20 m 的新楼,当冬季正午的阳光与水平线的夹角为32°时 (1)问:超市以上的居民住房的采光是否有影响?(2)若要使超市采光不受影响,两楼应至少相距多少米?(结果保留整数,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈58)答案1.B2.D3.C4.C.5.B6.B7.B.8.B.9.D10.B.11.B12.D.13.答案为:③④.14.答案为:②15.答案为:154π.16.答案为:12.17.答案为:618.答案为:519.解:如图所示:20.解:(1)乙杆的影子如图中BC.(2)图中存在相似三角形,即△ABC∽△DCE.因为两条太阳光线AB∥DC,两杆AC∥DE.(3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.21.解:(1)主视图如图(2)表面积为S 扇形+S 矩形+S 圆. ∵S 扇形=12lR ,而20π=n πR180∴R=20×180240=15(cm). S 扇形=12lR=12×20π×15=150π(cm 2).S 矩形=长×宽=20π×20=400π(cm 2),S 圆=π(20π2π)2=100π(cm 2).S 表=150π+400π+100π=650π(cm 2). 22.解:(1)粮仓的三视图如图所示: (2)S 圆柱侧=2π·1×2=4π m 2(3)V=π×12×2=2π(m 3),即最多可存放2π m 3的粮食 23.解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为 l 1=32+4+62=109(cm); l 2=42+3+62=97(cm); l 3=62+3+42=85(cm).通过比较,得最短路径长度是85 cm.24.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题) (2)∵AC ∥DF ∴∠ACB =∠DFE.又∠ABC =∠DEF =90°∴△ABC ∽△DEF.∴AB DE =BCEF.∵AB=3 m,BC=2 m,EF=6 m∴3DE =2 6.∴DE=9 m.∴旗杆DE的高度为9 m.25.解:(1)如图,设CE=x m,则AF=(20-x)m.∵tan 32°=AF:EF,即20-x=15·tan 32°∴x≈11.∵11>6∴超市以上的居民住房的采光有影响.(2)当tan 32°=AB:BC时,BC≈20×1.6=32(m) ∴若要使超市采光不受影响,两楼应至少相距32 m.。
中考数学总复习之投影与视图专项训练卷一.选择题(共5小题)1.如图,该几何体由6个大小相同的正方体组成,从正面看到该几何体的形状图是()A.B.C.D.2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥3.如图所示,几何体的左视图是()A.B.C.D.4.如图,一个几何体由若干个相同的小正方体组成,要保持从上面看到的平面图形不变,最多可以拿走小正方体的个数是()A.1B.2C.3D.45.一个立体图形,从正面看到的形状是,从左面看到的形状是.它可能是下面的哪一个()A.B.C.D.二.填空题(共15小题)6.太阳光线AC和DE是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE的依据是.7.如图,从上面看这个圆柱,看到的平面图形是.8.用小立方块搭一个几何体,从正面看和从上面看的形状如图所示,则这样的几何体最少需要个小立方块.9.用三个大小不等的正方体拼成了一个如图所示的几何体,若该几何体的主视图、左视图和俯视图的面积分别表示为S1、S2、S3,则S1、S2、S3的大小关系是(用“<”从小到大连接).10.小颖将几盒粉笔整齐地摞在讲台桌上,同学们发现从正面,左面,上面三个方向看到的粉笔形状相同(如图所示),那么这摞粉笔一共有盒.11.用小立方块搭一个几何体,下面分别是从它的正面、上面看到的形状图,则它最少需要个立方块.12.如图所示的是一个几何体从正面和从上面看到的图形,该几何体的体积是.13.一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为.14.一个几何体从正面和从左面看到的图形如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=.15.如图,在平面直角坐标系中,点光源位于P(2,2)处,木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的影长CD为.16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是.17.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个小立方块.18.某几何体的三视图如图所示,该几何体的侧面积为(结果保留π)19.用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,最少需要个小立方块,最多需要个小立方块.20.某工程队负责挖掘一处通山隧道,为了保证山脚A,B两处出口能够直通,工程队在工程图上留下了一些测量数据(此为山体俯视图,图中测量线拐点处均为直角,数据单位:米).据此可以求得该隧道预计全长米.三.解答题(共5小题)21.(1)如图是由10个同样大小的小正方体搭成的几何体,请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.(1)由大小相同的6个小立方块搭成的几何体如图,请在方格中画出从上面和左面看到的该几何体的形状图;(2)如果在这个几何体上再添加一些小立方块,并保持从上面看到的形状图和从左面看到的形状图不变,最多可以再添加个小立方块.23.如图,画出分别从正面、左面、上面看这个几何体时所看到的图形.24.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体,请在图中的方格子中分别画出从几何体正面看、左面看、上面看得到的图形.25.一个几何体是由若干个棱长为2cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示.(1)该几何体最少由个小立方体组成,最多由个小立方体组成.(2)将该几何体的形状固定好.①画出该几何体体积最大时的主视图;②体积最大时的几何体表面积(包括底面)为.。
视图、投影与尺规作图检测题一、三视图类型一三视图的判断1.如图所示的几何体的俯视图可能是()2.如图所示的三棱柱的主视图是()3.左下图为某几何体的示意图,则该几何体的主视图应为()4.如图所示的是三通管的立体图,则这个几何体的俯视图是()5.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()6.如图①放置的一个机器零件,若其主(正)视图如图②所示,则其俯视图是()第6题图7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()8.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()9.下列几何体中,正视图是矩形的是( )10.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( )11.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()类型二由三视图还原几何体及相关计算1.一个几何体的三视图如图所示,这个几何体是()A. 棱柱B. 圆柱C. 圆锥D. 球第1题图第2题图2.如图,一个简单几何体的三视图的主视图与左视图都为正三角形,其俯视图为正方形,则这个几何体是( )A. 四棱锥B. 正方体C. 四棱柱D. 三棱锥3.下面是一个几何体的三视图,则这个几何体的形状是()第3题图A. 圆柱B. 圆锥C. 圆台D. 三棱柱4.一个几何体的三视图如图所示,那么这个几何体是()第4题图5.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n 的值是()第5题图A. 6B. 7C. 8D. 96.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )第6题图A. 8B. 9C. 10D. 117.由若干个边长为1 cm的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A. 15 2cmcm D. 24 2cm C. 21 2cm B. 18 2第7题图第8题图8.某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A. 200π3cmcm B. 500π3C. 1000π3cmcm D. 2000π3命题点2 投影1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是()A. (3)(1)(4)(2)B. (3)(2)(1)(4)C. (3)(4)(1)(2)D. (2)(4)(1)(3)命题点3 立体图形的展开与折叠1.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图如图所示,原正方体与“文”字所在的面相对的面上标的字应是( )A. 全B. 明C. 城D. 国第1题图2.下列四个图形是正方体的平面展开图的是()3.把如图中的三棱柱展开,所得到的展开图是( )第3题图 第4题图4.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A. 13 cmB. 261 cmC. 61 cmD. 234 cm命题点4 尺规作图1.如图,在△ABC 中,∠C =90°,∠B =30以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上; ④S △DAC :S △ABC =1∶3.A. 1B. 2C. 3D. 4第1题图2.如图所示,已知线段AB .(1)用尺规作图的方法作出线段AB 的垂直平分线l (保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l 上任意取两点M 、N (线段AB 的上方),连接AM 、AN 、BM 、BN ,求证:∠MAN =∠MBN .第2题图参考答案命题点1三视图类型一三视图的判断1. C【解析】圆锥的主视图、左视图和俯视图分别为等腰三角形、等腰三角形和带圆心的圆.2. B 【解析】主视图是从几何体正面看得到的图形,该几何体从正面看,是两个具有公共边的长方形组成的图形,只有选项B符合题意.3. A【解析】从前往后看,可得到本题的主视图为五边形.4. A【解析】俯视图指的是从上向下看到的平面图形.圆柱体的俯视图是长方形,圆应该在长方形的中间.5. A【解析】A选项是主视图,B选项是左视图,C选项不是这个正六棱柱形密封罐的视图,D选项是俯视图.6. D【解析】长方体的俯视图是一个长方形,从上面看共有三列,所以这个组合体的俯视图是D.7. B【解析】俯视图即从上面看物体所得的平面图形.观察图形可得,从上往下看,该几何体的小正方体共有三行三列,第一行第二列有1个,第二行每列1个,第三行第一列1个,因此B选项正确.8. C【解析】俯视图是由上往下观察几何体所得到的图形.几何体上半部为正三棱柱,下半部为圆柱,所以其俯视图由圆和其内接等边三角形组成,故选C.9. B×××10. C视图都是圆,故选C.11. D【解析】从正面看共三列,第一列有三个小正方形,第二列有两个小正方形,第三列有三个小正方形,故选D.类型二由三视图还原几何体及相关计算1. B【解析】本题的几何体是常见几何体,从正面看到的是一个矩形,从左面看到的是一个矩形,从上面看到的是一个圆,所以这个几何体为圆柱.2. A【解析】由底面是有对角线的正方形,侧面是正三角形可以推断出它是四棱锥.3. B【解析】选项名称三视图(主视图,左视图,俯视图)正误A圆柱矩形,矩形,圆×B圆锥等腰三角形,等腰三角形,带圆心的圆√C圆台等腰梯形,等腰梯形,无圆心的同心圆×D三棱柱矩形,矩形,三角形×4. C【解析】选项逐项分析正误A 圆锥的主视图和左视图是等腰三角形,俯视图为带圆心的圆×B 这个几何体由圆锥和圆柱两部分构成,因此俯视图应该为带圆心的圆×C 主视图为中间有一条竖线的矩形,左视图为矩形,俯视图为三角形√D主视图、左视图、俯视图均为三角形×5. B【解析】由主视图可得这些粉盒共有3层,由俯视图可得最底层有4盒,由主视图和左视图可得第二层有2盒,第三层有1盒,共有7盒.6. B【解析】由三视图得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少有9碗.7. B【解析】由几何体的三视图得几何体如解图所示,这个几何体是由4个边长为1 cm的小正方体组成,且重叠部分的面积正好为一个小正方体的表面积,则这个几何体的表面积为6×3=18 cm2.第7题解图8. B【解析】由三视图可知该几何体是圆柱,且底面圆半径r=5 cm,高h =20 cm,所以v=πr2h=π×52×20=500πcm3.命题点2投影C【解析】从太阳“东升西落”入手.太阳光在物体上的投影随时间而变化,投影的方向是先朝西,再逐渐转向朝东,且影长的变化经历:长→短→长(中午时刻的影长最短),因此(3)表示的时刻最早,(2)表示的时刻最晚;由于地球绕着太阳运转,物体的投影应从西边开始顺时针向东旋转,所以(4)表示的时间比(1)表示的时间早.故按时间顺序应排列为(3)→(4)→(1)→(2).命题点3立体图形的展开与折叠1. C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“全”与“明”是相对面;“国”与“市”是相对面;“文”与“城”是相对面.2. B【解析】选项逐项分析正误A折叠后有两个面重合,缺少一个底面×B可以折叠成一个正方体√C 是“凹”字格,故不能折叠成一个正方体×D 是“田”字格,故不能折叠成一个正方体×3. B【解析】根据“两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱”把图中的三棱柱展开,所得到的展开图是B.4. A【解析】将圆柱沿A所在的高剪开,展平如解图所示.则MM′=NN′=10,作A关于MM′的对称点A′,连接A′B,则线段A′B即蚂蚁走的最短路径.过B作BD⊥A′N于D,则BD=NE=5,A′D=MN+A′M-BE=12+3-3=12,在Rt△A′BD中,由勾股定理得A′B=A′D2+BD2=13.第4题解图命题点4尺规作图1. D【解析】由尺规作图的作法可知,AD是∠BAC的平分线,∴①正确;∵∠BAC=60°,AD又是∠BAC的平分线,则∠CAD=30°,又∵∠C=90°,则∠ADC=60°,∴②正确;∵∠DAB=30°,∠B=30°,则AD=BD,所以点D在AB的中垂线上,∴③正确;设BD=AD=a,因为∠CAD=30°,∠C=90°,则CD=a2,根据勾股定理得:AC=3a2,∴S△ADC=3a28;BC=3a2,S△ABC=33a28,则S△DAC :S△ABC=3a28:33a28=1∶3,∴④正确;正确的共有4个.2. (1)解:如解图:第2题解图①………………………………………………………………………(5分)【作法提示】分别以A、B两点为圆心,以大于12AB为半径画弧,与两弧分别有两个交点,两点确定的直线即为线段AB的垂直平分线l.(2)证明:如解图②,∵直线l是线段AB的垂直平分线,∴MA=MB,∴∠MAB=∠MBA,……………………(6分)同理:∠NAB=∠NBA,∴∠MAB-∠NAB=∠MBA-∠NBA,……………………(8分) 即:∠MAN=∠MBN. ……………………(9分)第2题解图②。
中考数学真题专题训练---投影与视图一.选择题1.(•兴安盟)如图,是一个长方体的主视图与左视图,由图示数据(单位:cm)可得出该长方体的体积是( )A.18cm3B.8cm3C.6cm3D.9cm32.(•河池)如图,该几何体的主视图是( )A.B.C.D.3.(•安丘市)如图是由若干个大小相同的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置的立方体的个数,则这个几何体的左视图是( )A.B.C.D.4.(•营口)如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A向右平移2个单位长度后(如图2),所得几何体的视图( )A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图改变,俯视图不变D.主视图不变,俯视图改变5.(•辽阳)如图所示几何体是由五个相同的小正方体搭成的,它的左视图是( )A.B.C.D.6.(•广元)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.7.(•巴彦淖尔)如图是一个几何体的三视图,则这个几何体的表面积是( )A.60π+48B.68π+48C.48π+48D.36π+48 8.(•锦州)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图( )A.B.C.D.9.(•牡丹江)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.10.(•德阳)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A.16πB.12πC.10πD.4π11.(•绥化)已知某物体的三视图如图所示,那么与它对应的物体是( )A.B.C.D.12.(•毕节市)如图所示的几何体是由一个圆柱体挖去一个长方体后得到的,它的主视图是( )A.B.C.D.13.(•益阳)如图是某几何体的三视图,则这个几何体是( )A.棱柱B.圆柱C.棱锥D.圆锥14.(•抚顺)下列物体的左视图是圆的是( )A.足球B.水杯C.圣诞帽D.鱼缸15.(•阜新)如图所示,是一个空心正方体,它的左视图是( )A.B.C.D.二.填空题16.(•百色)如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG 的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是 (用“=、>或<”连起来)17.(•日照)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是 .18.(•东营)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .19.(•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为 cm.20.(•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm2.21.(•陇南)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .22.(•盘锦)如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是 .(结果保留π)23.(•青岛)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.参考答案一.选择题1.解:观察其视图知:该几何体为立方体,且立方体的长为3cm,宽为2cm,高为3cm,故其体积为:3×3×2=18cm3,故选:A.2.解:由图可得,几何体的主视图是:故选:D.3.解:从左边看有3列,第一列有3行,第二列有1行,第三列有2行,故选:A.4.解:将正方体A向右平移2个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变,故选:D.5.解:从左面可看到从左往右2列小正方形的个数为:2,1.故选:D.6.解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.7.解:此几何体的表面积为π•42××2+•2π•4×6+(4+4)×6=60π+48,故选:A.8.解:左视图有2列,每列小正方形数目分别为2,1.故选:A.9.解:结合主视图、左视图可知俯视图中左上角有2层,其余1层,故选:A.10.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.11.解:从上面物体的三视图看出这是一个圆柱体,故排除A选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体.故选:B.12.解:其主视图是,故选:B.13.解:由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选:D.14.解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.15.解:如图所示:左视图为:.故选:C.二.填空题(共8小题)16.解:∵立体图形是长方体,∴底面ABCD∥底面EFGH,∵矩形EFGH的投影是矩形ABCD,∴S1=S,∵EM>EF,EH=EH,∴S<S2,∴S1=S<S2,故答案为:S1=S<S2.17.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,18.解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π19.解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.20.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.21.解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.22.解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π,故答案为:65π.23.解:由题意和主视图、左视图可知俯视图必定由9个正方形组成,并设这9个位置分别如图所示:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.。
卜人入州八九几市潮王学校备战2021中考:投影与视图精华试题汇编一、选择题1.〔2021,2,3分〕如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是〔〕A .6B .5C .4D .3 【答案】B2.〔2021,12,3分〕一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,那么这个几何体的侧面展开图的面积为〔〕A .2πB .12πC .4πD .8π【答案】C3.〔2021,3,4分〕如下列图,以下几何体中主视图、左视图、俯视图都一样的 是〔〕 【答案】C4.〔2021,3,4分〕在以下几何体中,主视图、左视图与俯视图都是一样的圆,该几何体是 〔〕5.〔2021,5,3分〕如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,那么该几何体的主视图是〔〕 【答案】A6.〔20212,3分〕一个几何体的主视图、左视图、俯视图完全一样,它一定是第12题22 左视图右视图 俯视图A B D C〔A〕圆柱〔B〕圆锥〔C〕球体〔D〕长方体【答案】C7.〔2021,8,3分〕如图,是有几个一样的小正方体搭成的几何体的三种视图,那么搭成这个几何体的小正方体的个数是〔〕A.3个B.4个C.5个D.6个〔第8题〕【答案】B8.〔2021,5,3分〕如图表示一个由一样小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为〔〕【答案】C9.〔2021,6,3分〕以下几何体:其中,左视图是平等四边形的有〔〕A.4个B.3个C.2个D.1个`【答案】B10.〔2021,10,3分〕如图是由一些大小一样的小立方体组成的几何体的主视图和左视图,那么组成这个几何体的小立方体的个数不可能是〔〕A.3个B.4个C.5个D.6个【答案】D11.〔2021,2,4分〕从不同方向看一只茶壶,你认为是俯视效果图的是〔〕【答案】AA B C D12.〔2021,8,3〕如图是一个正六棱柱的主视图和左视图,那么图中的a =〔〕 A.BC .2D .1【答案】B13.〔2021,6,3分〕如下列图的物体的府视图是 【答案】D14.〔2021,1,3分〕如以下列图,以下几何体的俯视图是右面所示图形的是〔〕【答案】A15.〔2021,4,4分〕由5个一样的正方体搭成的几何体如下列图,那么它的左视图是〔〕A.B.C.D.主视方向16.〔2021,2,4分〕以下四个几何体中,主视图是三角形的是〔〕 【答案】B17.〔2021,3,4分〕如下列图的物体由两个紧靠在一起的圆柱体组成,它的主视图是() 【答案】A18.〔2021,4,3分〕如图,以下程度放置的几何体中,主视图不是长方形的是〔〕【答案】BA .B .C .D .19.〔2021,5,4分〕两个大小不同的球在程度面上靠在一起,组成如下列图的几何体,那么该几何体的左视图是〔〕 〔A 〕两个外离的圆 〔B 〕两个外切的圆 〔C 〕两个相交的圆〔D 〕两个内切的圆【答案】D20.〔2021,2,3分〕如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是〔〕 A .6B .5C .4D .3【答案】B21.〔2021,3,3分〕将两个大小完全一样的杯子〔如图甲〕叠放在一起〔如图乙〕,那么图乙中实物的俯视图是〔〕. 【答案】C22.〔2021,6,4分〕如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是A .B .C .D .【答案】D23.〔2021,10,3分〕如图3,是由四个一样的小正方形组成的立体图形,它的左视图是〔〕【答案】A24.〔2021,8,3分〕如图,是由8个一样的小立方块搭成的几何体,它的三个视图都是2×2的正方形,假设拿掉假设干个小立方块后〔几何体不倒掉〕,其三个视图仍都为2×2的正方形,那么最多能拿掉小立方块的个数为〔〕图3主视方ABCD21 1 1主视方向〔第5题〕A .1B .2C .3D .4【答案】B25.〔2021,3,3分〕以下所给的几何体中,主视图是三角形的是〔▲〕【答案】B26.〔2021,4,3分〕右图是一个几何体的三视图,那么这个几何体是A .圆锥B .圆柱C .长方体D .球体【答案】A27.〔2021,10,3分〕如图,是某几何体的三视图及相关数据,那么下面判断正确的选项是 A .a c >B .b c >C .2224ab c +=D .222a b c +=【答案】D28.〔2021,2,3分〕如图,空心圆柱的左视图是〔〕 【答案】C29.〔2021,2,3分〕如下列图的几何体的俯视图是D 【答案】D30.〔2021,9,3分〕由n 个一样的小正方体堆成的几何体,其视图如下所示,那么n 的最大值是〔〕 A .18B .19 C .20D .21第10题正面A .B .C .D .【答案】A31.〔2021,8,3分〕由一些大小一样的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是 ABCD【答案】B32.〔2021,6,3分〕如下列图的几何体的正视图是〔〕【答案】D33.(2021綦江,3,4分)如图,是由两个一样的小正方体和一个圆锥体组成的立体图形,其俯视图是〔〕 A .B .C .D . 【答案】:C34.〔2021,3,3分〕将两个大小完全一样的杯子〔如图甲〕叠放在一起〔如图乙〕,那么图乙中实物的俯视图是〔〕. A.B.C.D.图甲图乙 第3题图 【答案】C35.〔2021,4,3分〕如下列图的几何体的主视图是〔〕A.B. C. D.【答案】BA .B. C. D.〔第6题图〕主视图俯视图36.〔2021,6,3分〕以下程度放置的几何体中,俯视图是矩形的是【答案】B37.〔20218,3〕由四个一样的小正方体搭建了一个积木,它的三视图如右图所示,那么这个积木可能是【答案】B38.〔20214,3分〕如图〔2〕,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是【答案】B39.〔2021凉山州,11,4分〕一个长方体的三视图如下列图,假设其俯视图为正方形,那么这个长方体的外表积为〔〕A.66B.48C.48236D .57【答案】A40.〔2021,3,4分〕如下列图,以下几何体中主视图、左视图、俯视图都一样的是【答案】C41.〔2021,8,3分〕右图是某物体的直观图,它的俯视图是A.B.C.D.【答案】A42.〔2021,5,3分〕如图〔1〕所示的几何体的俯视图是【答案】B43.〔2021,3,3分〕如下列图的几何体的主视图是〔〕A.B.C.D.【答案】B44.〔2021,4,3分〕一个几何体的三视图如下列图,那么这个几何体是A B C D主视图左视图俯视图 〔第4题图〕〔A 〕圆柱〔B 〕三棱锥〔C 〕球〔D 〕圆锥 【答案】D45.〔2021,3,3分〕如图是一个几何体的实物图,那么其主视图是【答案】C46.〔2021,8,3分〕有一些一样的小立方块搭成的几何体的三视图如图2所示,那么搭成该几何体的小立方块有【答案】B47.〔2021,10,3分〕如下列图的几何体的左视图是〔〕【答案】B .48.〔2021,3,3分〕下面四个几何体中,俯视图为四边形的是【答案】D49.〔2021,3,3分〕一个几何体的三视图如下列图,那么这个几何体是〔〕 【答案】CABCDA .B .C .D〔第10题〕图2主视图左视图俯视图图D C BA50.(2021,3,2分)某几何体的三个视图(如图),此几何体是() A.正三棱柱B.三棱锥C.圆锥D.圆柱 【答案】C51.〔2021内蒙古,5,3分〕如图是由五个一样的小正方体搭成的几何体,它的主视图是〔〕【答案】B52.〔2021潼南,6,4分〕如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是 【答案】C53.〔2021,3,4分〕以下列图是五个一样的小正方体搭成的几何体,其左视图是〔〕 A . B . C . D . 【答案】A54.〔20214,3分〕下面四个几何体中,主视图是四边形的几何体有 圆锥圆柱球正方体 A 1个B 2个C 3个D 4个【答案】B55.〔2021,6,3分〕如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,那么这个几何体的主视图是〔〕 A .B .C .D .【答案】A56.〔2021,4,3分〕一个几何体的三视图如以下列图所示,这个几何体是第5题图ACBD正面【答案】B57.〔2021,4,3分〕如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,那么投影三角尺的对应边长为A.8cmB.20cmC.3.2 cmD.10cm【答案】B58.〔2021,6,3分〕如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是().〔第6题图〕【答案】A59.〔2021,8,3分〕一个圆锥体按如下列图摆放,它的主视图是().【答案】A60.二、填空题1.〔2021,12,3分〕如图是正方体的展开图,那么原正方体相对两个面上的数字之和的最小值的是.【答案】62.〔2021,17,4分〕如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中;一共有1个小立方体,其中1个看得见,0个看不见;如图②中;把一共有8个小立方体,其中7个看得见,1个看不见;如图③中;一共有27个小立方体,其中19个看得见,8个看不见;……,那么第⑥个图中,看得见的小立方体有______________个【答案】913.〔2021,14,4分〕如图是由假设干个大小一样的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.【答案】左视图4.〔2021,14,3分〕一个几何体是由一些大小一样的小正方体摆成的,其主视图与左视图如下列图,那么组成这个几何体的小正方体最少有个.【答案】55.6.7.8.三、解答题1.〔2021,20,10分〕5个棱长为1的正方体组成如图5的几何体.〔1〕该几何体的体积是〔立方单位〕,外表积是〔平方单位〕〔2〕画出该几何体的主视图和左视图【答案】〔1〕5,22〔2主视图左视图一、选择题 1.〔2021〕有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的 结果如下列图。
中考数学视图投影空间几何体试题分类汇编一、选择题1、如图(1)放置的一个机器零件,若其主视图如图(2),则其俯视图是( )D2、一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的( )B(A)①② (B)③② (C)①④ (D)③④3、一个几何体的三视图如图所示,那么这个几何体是( )。
C4、如图所示圆柱的左视图是( ).BA .B .C .D .5、将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )D•DCB AC BA5 题图6、如图是小玲在九月初九“重阳节”送给她外婆的礼盒,图中所示礼盒的主视图是( )A7、下面的三个图形是某几何体的三种视图,则该几何体是( C ) A 、正方体 B 、圆柱体 C 、圆锥体 D 、球体 8、下面四个几何体中,主视图、左视图、俯视图是全等图形的几何图形是( )B(A ) (B ) (C ) (D )( 2)( 1) (第1题) 第4题图正面 A . B . C . D .俯视图侧视图主视图A.圆柱B.正方体C.三棱柱D.圆锥9、一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?()BA.12个B.13个C.14个D.18个10、右图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()C11、下图几何体的主视图是()C12、如图所示的几何体的右视图(从右边看所得的视图)是()A13、与如图所示的三视图对应的几何体是( )B14、一个几何体的三视图如图所示,这个几何体是()DA.正方体B.球C.圆锥D.圆柱15、下列三视图所对应的直观图是()C主视图左视图(第10题)A.B.C.D.正视图左视图俯视图第13题A.B.C.D.DCBAA .B .C .D .16、下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是( )D A.球体 B.长方体 C.圆锥体 D.圆柱体 17、如图,这是一幅电热水壶的主视图,则它的俯视图是( )D(第16题图) A . B . C . D .18、桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()C19、小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )A20、小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是( )B左面(第15题)A .B .C.D.21、如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )A (A)24m (B)22m (C)20 m (D)18 m22、如图10,晚上小亮在路灯下散步,在小亮由A 处走 到B 处这一过程中,他在地上的影子( ) A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短 二、填空题1、如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形). 答案不唯一如:长方体、圆柱等2、星期天小川和他爸爸到公园散步,小川身高是160cm ,在阳光下他的影长为80cm ,爸爸身高180cm ,则此时爸爸的影长为____cm.。
初中数学投影与视图真题汇编附答案一、选择题1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.【详解】请在此输入详解!【点睛】请在此输入点睛!2.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.3.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是三个小正方形,第二层右边一个小正方形,故选A.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理.4.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.5.如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.若由图1变到图2,不变化的是()A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图【答案】B【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变;左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变;俯视图底层的正方形位置发生了变化.∴不改变的是主视图和左视图.故选:B.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.6.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为()A .48B .57C .66D .48236+【答案】C【解析】【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得.【详解】由题意,画出长方体如图所示:由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形AC BC ∴=22218AC BC AB +==Q3AC BC ∴==则这个长方体的表面积为24233434184866AC BC AC CE ⋅+⋅=⨯⨯+⨯⨯=+= 故选:C .【点睛】本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键.7.如图是空心圆柱,则空心圆柱在正面的视图,正确的是( )A.B.C.D.【答案】C【解析】【分析】找出从几何体的正面看所得到的视图即可.【详解】解:从几何体的正面看可得:.故选:C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.8.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.9.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】C【解析】【分析】由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥.【详解】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是3个三角形组成的大三角形,∴该物体的形状是三棱锥.故选:C.【点睛】本题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.14.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个【答案】B【解析】【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数即可.【详解】由主视图和左视图可确定所需正方体个数最少时的俯视图(数字为该位置小正方体的个数)为:.所以搭成这个几何体的小正方体最少有5个.故选B.【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是解决问题的关键.15.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.16.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:从左面看去,是两个有公共边的矩形,如图所示:故选D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.17.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm2【答案】B【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图18.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.19.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A.B.C.D.【答案】C【解析】【分析】观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.20.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.。
中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。
初三数学中考复习视图与投影专项复习练习题1.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为( B )2.如图是一个空心圆柱体,它的左视图是( B )3.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”“牛”“羊”“马”“鸡”“狗”.将其围成一个正方体后,则与“牛”相对的是( C )A.羊 B.马 C.鸡 D.狗4.如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是( B ),A) ,B) ,C) ,D)5.经过圆锥顶点的截面的形状可能是( B )6.某几何体的左视图如图所示,则该几何体不可能是( D )7.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( C )8.如图,是由若干个相同的小立方体搭成的几何体俯视图和左视图,则小立方体的个数可能是( D )A.5或6 B.5或7 C.4或5或6 D.5或6或79.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( D )A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥10.有一个正方体,A,B,C的对面分别是x,y,z三个字母,如图所示,将这个正方体从现有位置依次翻到第1,2,3,4,5,6格,当正方体翻到第3格时正方体向上一面的字母是__x__.11.太阳光形成的投影是__平行__投影,灯光形成的投影是__中心__投影,身高相同的两名同学站在同一路灯下,影子长的离路灯__远__.12.已知,如图所示,木棒AB在投影面P上的正投影为A1B1,且AB=20 cm,∠BAA1=120°,则正投影A1B1=__103__cm.13.三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为__6__cm.14.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是__4或5__.15.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为__3__m. 16.画出如图所示立体图形的三视图.解:如图所示:17.如图①所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图②所示,已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度,这样的线段可画几条?(2)试比较立体图形中∠BAC与平面展开图中∠B′A′C′的大小关系.解:(1)最长线段为10,有4条.(2)连结B′C′.由勾股定理得A′B′=5,B′C′=5,A′C′=10.∴A′B′2+B′C′2=A′C′2.∴∠A′B′C′=90°.∴∠C′A′B′=45°.又∠CAB=45°,∴∠BAC=∠B′A′C′.18.如图是一个几何体的三视图.(1)这个几何体的名称为__圆锥__;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.解:(2)16π cm 2.(3)如图,将圆锥侧面展开,得到扇形ABB′,则线段BD 为所求最短路程.设∠BAB′=n °,∵n π×6180=4π,∴n =120,即∠BAB′=120°.∵C 为BB′︵的中点,∴∠ADB =90°,∠BAD =60°,∴BD =AB·sin ∠BAD =33cm ,∴线路的最短路程为3 3 cm.19.如图,在一间黑屋子里用一盏白炽灯照一个球.(1)球在地面上的阴影是什么形状?(2)当球沿铅垂方向下落时,阴影的大小会怎样变化?(3)若白炽灯到球心的距离是1 m ,到地面的距离是3 m ,球的半径是0.2 m ,求球在地面上留下的阴影的面积.解:(1)圆.(2)变小.(3)设如图所示各点,连结点O 与切点B ,由题意得△OAB∽△DAC.∵OB =0.2 m ,AO =1 m ,∴AB =256 m ,∴2563=0.2CD ,∴CD =64 m .∴S 阴影=(64)2π=38π m 2.。
投影与视图专题汇编练习
一、平行投影
1、(·湖北孝感)小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()
2、(·四川乐山)某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图(1)所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()
A.6米B.7米C.8.5米D.9米
3、(·四川内江)如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6m、与树相距15m,则树的高度为__________m.
4、(·浙江义乌)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的投影BC长为24米,则旗杆AB的高度约是米.(结果保
留3个有效数字,3≈1.732)
5、(·山东德州)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.
6、(四川达州)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻,AB在阳光下的投影BC=4 m.
(1)请你在图中画出此时DE在阳光下的投影,并简述画图步骤;
(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6 m,请你计算DE的长.
二、中心投影
7、(湖北荆州,4,3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相
似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为
A.8cm B.20cm C.3.2 cm D.10cm
8、(湖北宜昌,6,3分)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是( ).
A.越来越小
B.越来越大
C.大小不变
D.不能确定
(第6题图)
9、(·江苏南京)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()
10、(·甘肃兰州)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现
身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是 1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()
A.24m B.25m C.28m D.30m
11、(·江西南昌)如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.
其中,正确的结论的序号是.(多填或错填的得0分,少填的酌情给分)
12、(·广东茂名)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB、CD.
(1)请你在图中画出路灯灯泡所在的位置(用点P表示);
(2)画出小华此时在路灯下的影子(用线段EF表示).
三、从不同的方向看
13、(吉林,12,3分)如图所示,小华看到桌面上的几何体是由五个完全相同的小正方体组成的,他看的几何体的主视图是()
14、(广东河源,3,3分)下面是空心圆柱在指定方向上的视图,正确的是()
A.B.C.D.
四、由物体到三视图
15、(江苏淮安,4,3分)如图所示的几何体的主视图是()
A. B. C. D.
16、(江苏宿迁,3,3分)下列所给的几何体中,主视图是三角形的是(▲)
正面
17、(湖北宜昌,8,3分)一个圆锥体按如图所示摆放,它的主视图是( ).
18、(江苏南通,6,3分)下列水平放置的几何体中,俯视图是矩形的是
19、(江苏扬州,5,3分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是()
20、(重庆市潼南,6,4分)如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是
21、(陕西,2,3分)下面四个几何体中,同一几何体的主视图和俯视图相同的共有()
A.1个B.2个C.3个D.4个
22、(广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是
6
题图
A B C D
23、( 广西桂林,7,3分)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图
2的几何体,则图2的俯视图是( ).
图1 图2 A B C D
24、( 贵州毕节,3,3分)将下图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )
A B C D
25、( 天津,7,3分)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都同一长度,则它的三视图是( )
26、( 广东佛山,9,3)如图,一个由小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是
2412
1
A 24221
B 132
1111 C D
C
B
A
1111
23
1
D
27、( ·四川自贡)作出下面立体图形的三视图。
五、由三视图判断物体的形状
28、( 江苏泰州,4,3
分)右图是一个几何体的三视图,则这个几何体是
俯视图
左视图主视图
A .圆锥
B .圆柱
C .长方体
D . 球体
29、(
山东东营,
3,3分)一个几何体的三视图如图所示,那么这个几何体是( )
30、( ·山东日照)如图是一个三视图,则此三视图所对应的直观图是( )
31、( ·湖北咸宁)一个几何体的三视图完全相同,该几何体可以是 .(写出一个即可)
六、三视图的探究问题
32、( 湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有
A.3块
B.4块
C.6块
D.9块 图2
主视图
左视图 俯视图
33、( 江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...
),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )
A .1
B .2
C .3
D .4
34、( 湖北孝感,14,3分)一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个.
主视图 左视图
35、( ·广东深圳)如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是 个.
九、由三视图确定物体的表面积或体积
36、( 湖北省随州市,4,4分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )
A .2π
B .21π
C .4π
D .8π
主视图 左视图 俯视图
第4题图
37、( ·河北)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )
A .20
B .22
C .24
D .26
38、( 山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .
39、( 广西梧州,17,3分)图9
是由两个长方体组合而成的一个立体图形的三视图,根
据图中所标尺寸(单位:mm ),计算出这个立体图形的表面积是________mm 2.
40、( 广东广州市,20,10分)
5个棱长为1的正方体组成如图5的几何体.
(1)该几何体的体积是 (立方单位),表面积是 (平方单位)
(2)画出该几何体的主视图和左视图
41、( ·湖北荆门)如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是( )
A .75(1+3)cm 2
B .75(1+23)cm 2
C .75(2+3)cm 2
D .75(2+2
3)cm 2
4
4
6
2
2 8 3
主视图
左视图 俯视图 图9 正面
图5。