求极限:取对数的“套路”
- 格式:pdf
- 大小:71.24 KB
- 文档页数:4
求函数极限的方法与技巧求函数极限是微积分的重要内容之一,也是数学分析中的基本问题。
求函数极限需要掌握一定的方法与技巧,下面将从常用的方法、典型的技巧和注意事项等方面进行详细介绍。
1. 代入法代入法是求函数极限最简单的方法之一。
当函数在极限点附近没有特殊的性质时,可以通过直接代入极限值来求解极限。
求函数f(x)=2x-1在点x=3处的极限,直接代入x=3,即可得到f(3)=2*3-1=5,所以极限值为5。
2. 分式化简法对于复杂的函数极限,通常可以利用分式化简法来解决。
将函数化为分式形式,通过合并同类项或者提取公因式等方法,将分式化简至最简形式,然后再进行极限运算。
这样可以简化计算,并且更容易得到极限值。
3. 夹逼准则夹逼准则也是求解极限常用的方法之一。
夹逼准则是一种利用不等式来求解极限的方法,通常用于求解无穷小的极限。
利用夹逼准则可以将复杂的极限问题转化为相对简单的不等式推导问题,从而更容易求得极限值。
4. 极限换元法极限换元法是求解函数极限的一种有效方法,也是求极限的一个经典技巧。
通过将变量进行适当的换元,可以将原来复杂的极限问题转化为相对简单的形式,从而更容易求解极限值。
常见的换元方式包括三角换元、指数换元、对数换元等。
二、典型的技巧1. 分步求解有些复杂的函数极限问题可以通过分步求解来进行,先将函数进行分解或者阶段性的处理,然后逐步求解各个部分的极限值,最后将结果进行合并得到整体的极限值。
这样可以降低计算的复杂度,更容易求得极限值。
2. 极限的运算法则在进行极限运算时,可以利用极限的运算法则来简化计算。
其中包括加减法法则、乘法法则、除法法则、幂函数法则、复合函数法则等,这些运算法则可以在极限计算中起到一定的简化作用,并帮助求得极限值。
3. 利用对称性对称性在求解函数极限中也是一种常用的技巧。
对于对称性的函数或者函数的特殊性质,可以利用对称性来简化极限计算,例如利用奇偶性、周期性等性质,从而简化计算过程,更容易求得极限值。
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.【解析】(1)函数f(x)=ln x+1ax的定义域为(0,+∞),求导得则f(x)=-ln xax2,由f (x)=0得x=1,若a<0,当0<x<1时,f (x)<0,则f(x)单调递减,当x>1时,f (x)>0,则f(x)单调递增,若a>0,当0<x<1时,f (x)>0,则f(x)单调递增,当x>1时,f (x)<0,则f(x)单调递减;所以当a<0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由ex1x2=ex2x1,两边取对数得x2ln x1+1=x1ln x2+1,即ln x1+1x1=ln x2+1x2,由(1)知,当a=1时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)max=f(1)=1,而f1e=0,x>1时,f(x)>0恒成立,因此当a=1时,存在x1,x2且0<x1<1<x2,满足f x1=f x2,若x2∈[2,+∞),则x21+x22>x22≥4>2成立;若x2∈(1,2),则2-x2∈(0,1),记g(x)=f(x)-f(2-x),x∈(1,2),则g (x)=f (x)+f (2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即有函数g(x)在(1,2)上单调递增,g(x)>g(1)=0,即f(x)>f(2-x),于是f x1=f x2>f2-x2,而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2,又x 21+1>2x 21=2x 1,x 22+1>2x 22=2x 2,则有x 21+1+x 22+1>2x 1+x 2 >4,则x 21+x 22>2,所以x 21+x 22>2.(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.【解析】(1)因为a >0,x ∈0,+∞ ,所以当x ≥1时,f x =ax ln x ,f x =a ln x +a >0,所以f x 在1,+∞ 上单调递增,无极大值;当x ∈0,1 时,f x =-ax ln x ,f x =-a ln x +1 ,所以当x ∈0,1e时,f x >0,f x 单调递增,当x ∈1e ,1时,f 'x <0,f x 单调递减,所以x =1e为极大值点,所以f 1e=-a ⋅1e ⋅ln 1e=1,解得a =e .因为f x ,g x 图像共有三个不同的交点,所以方程ex ln x =b ln x +1 有三个不等正实根.设t =ln x +1,则x =e t -1,且当x >0时,t 与x 一一对应,所以问题转化为关于t 的方程e t t -1 =b t 有三个不等实根.又0不满足方程e t t -1 =b t ,所以方程b =t -1te t有三个实根.设h t =t -1te t ,则函数h t =t -1t e t与函数y =b 的图像有三个交点,当t ≥1或t <0时,h t =t -1te t,∴h t =t 2-t +1t2e t>0,所以h t 在-∞,0 ,1,+∞ 上单调递增;当0<t <1时,h t =-t -1 ett,ht =-t 2-t +1t 2e t<0,所以h t 在0,1 上单调递减.当t ≠0,t ≠1时,h t >0,而h 1 =0;当t →-∞时,h t =1-1te t→0,无论t >0还是t <0,当t →0时,都有h t =1-1te t→+∞,当t →+∞时,h t =1-1te t→+∞.根据以上信息,画出函数h t 的大致图像如下图所示,所以当b >0时,函数h t =t -1te t与函数y =b 的图像有三个交点,故b 的取值范围为0,+∞ .(2)证明:要证x 23x 1x 2<e 2b -2,只需证2ln x 3-ln x 2+ln x 1<2b -2,只需证2ln x 3+1 -ln x 2+1 +ln x 1+1 <2b .设(1)中方程的b =t -1te t三个根分别为t 1,t 2,t 3,且t 1<t 2<t 3,t i =ln x i +1,i =1,2,3,从而只需证明2t 3-t 2+t 1<2b .又由(1)的讨论知t 1<0,0<t 2<1,t 3>1.下面先证明e x ≥x +1,设φx =e x -x -1,则φ x =e x -1.当x >0时,φ x >0,φx 在0,+∞ 上单调递增,当x <0时,φ x <0,φx 在-∞,0 上单调递增,所以φx ≥φ0 =0,所以当x ≠0时,e x >x +1,从而当t ≠0,t ≠1时,h t =t -1te t >t -1tt +1 .又由(1)知h t 在-∞,0 ,1,+∞ 上单调递增,h t 在0,1 上单调递减.所以当t>1时,h t >t2-1t=t-1t,令b=t-1t,解得t=b+b2+42,由h t3=b<hb+b2+42得t3<b+b2+42;当0<t<1时,h t >1t-t,令b=1t-t,解得t=-b+b2+42,由h t2=b<h-b+b2+42得t2>-b+b2+42;当t<0时,h t >t-1t,令b=t-1t,解得t=b-b2+42,由h t1=b<hb-b2+42得t1<b-b2+42.综上,2t3-t2+t1<b+b2+4--b+b2+42+b-b2+42=2b,得证.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.【解析】(1)构造函数f(x)=ln x-x+1,由f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,得f(x)≤f(1)=0,即ln x≤x-1,取x=1,得ln1.1<0.1(2)通过取对数,把比较πe,e3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小选y=ax2+b,令y=ln x与y=ax2+b公切于e则有ln e=ae2+b1e=-2ae3⇒a=-e22,b=32,∴y=-e22x2+3 2记g (x )=ln x +e 22x 2-32,g (x )=1x -e 2x 3=x 2-e 2x 3,∴g (x )在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )≥g (e )=0,∴ln x ≥-e 22x 2+32∴lnπ>-e 22π2+32,下证:32-e 22π2>3e 只需证3e +e 22π2<32∵3e +e 22π2<32.7+(2.72)22×(3.1)2=109+(2.72)22×(3.1)2只需证 2.723.1 2<79∵2.723.1<0.88,(0.88)2=0.7744而79=0.777>0.7744,∴lnπ>3e,即πe >e 3选y =kx +t ,通过取对数,把比较πe ,e 3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小,即较ln1π与-3e大小令y =ln x 与y =kx +t 切于1e,则有ln 1e =k 1e +t e =k⇒k =e ,t =-2,∴y =ex -2令g (x )=ln x -ex +2,g (x )=1x -e =1-ex x∴g (x )在0,1e上单调递增,在1e ,+∞ 上单调递减,∴g (x )≤g 1e =0,∴ln x ≤ex -2,当x =1e取等∴ln 1π≤e π-2下证e π-2<-3e ,只需证e π+3e<2∵e π+3e <2.723.1+32.7<0.88+109,∵2-109=89=0.8 >0.88,∴ln 1π<-3e ,∴lnπ>3e,∴πe >e 3.三、典例展示1(2021全国甲卷高考试题)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f x 的单调区间;(2)若曲线y =f x 与直线y =1有且仅有两个交点,求a 的取值范围.【解析】(1)当a =2时,f x =x 22x ,f x =2x ⋅2x -x 2⋅2x ln22x 2=x ⋅2x 2-x ln2 4x ,令f 'x =0得x =2ln2,当0<x <2ln2时,f x >0,当x >2ln2时,f x <0,∴函数f x 在0,2ln2上单调递增;2ln2,+∞ 上单调递减;(2)f x =x a a x=1⇔a x =x a⇔x ln a =a ln x ⇔ln x x =ln a a ,设函数g x=ln x x ,则g x =1-ln xx2,令g x =0,得x =e ,在0,e 内g x >0,g x 单调递增;在e ,+∞ 上g x <0,g x 单调递减;∴g x max =g e =1e,又g 1 =0,当x 趋近于+∞时,g x 趋近于0,所以曲线y =f x 与直线y =1有且仅有两个交点,即曲线y =g x 与直线y =aln a有两个交点的充分必要条件是0<ln a a <1e,这即是0<g a <g e ,所以a 的取值范围是1,e ∪e ,+∞ .2(2023届新疆高三第三次适应性检测)已知函数f (x )=ax 2+(a +1)x ln x -1,g (x )=f (x )x.(1)讨论g x 的单调性;(2)若方程f (x )=x 2e x +x ln x -1有两个不相等的实根x 1,x 2,求实数a 的取值范围,并证明e x 1+x 2>e 2x 1x 2.【解析】(1)因为g (x )=ax +(a +1)ln x -1x,所以g x =a +a +1x +1x 2=(x +1)(ax +1)x 2(x >0),当a ≥0时,g x >0,所以g (x )在区间(0,+∞)上单调递增,当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a,所以g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减,综上当a ≥0时,g (x )在区间(0,+∞)上单调递增,当a <0时,g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减.(2)方程f (x )=x 2e x +x ln x -1,即ax +a ln x =xe x ,等价于a ln xe x =xe x ,令t =xe x >0,其中x >0,则a ln t =t ,显然t ≠1,令h t =tln t,则ht =ln t-1ln2t,所以h t 在区间0,1上单调递减,且由x→0时h t <0可得在区间0,1上h(t)<0,h t 在区间(1,e)上单调递减,在区间(e,+∞)上单调递增,所以h(t)极小值=h(e)=e,因为方程f(x)=x2e x+x ln x-1有两个实根x1,x2,所以关于t的方程a=tln t有两个实根t1,t2,且t1=x1e x1,t2=x2e x2,所以a∈(e,+∞),要证e x1+x2>e2x1x2,即证x1e x1⋅x2e x2>e2,即证t1t2>e2,只需证ln t1+ln t2>2,因为t1=a ln t1t2=a ln t2,所以t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,则只需证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即ln t1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,p(s)=ln s-2(s-1)s+1,其中s>1,因为p s =1s-4(s+1)2=(s-1)2s(s+1)2>0,所以p s 在区间(1,+∞)上单调递增,所以h(s)>h(1)=0,故e x1+x2>e2x1x2.3已知函数,f x =ln x-x+m,m∈R.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.【解析】(1)函数f x 的定义域为0,+∞,f x =1x-1.当0<x<1时,f x >0,则f x 在0,1上单调递增;当x>1时,f x <0,则f x 在1,+∞上单调递减,所以函数f x 的极大值为f1 =m-1,无极小值.(2)令f x =0,则m=x-ln x.设h x =x-ln x x>0,则h'x =1-1x=x-1x,易知函数h x 在0,1上单调递减,在1,+∞上单调递增.又h1 =1,所以h x ≥1,又f x 有两个零点,所以m >1.因为a <b ,所以0<a <1<b .要证e b +1b <2e m ,即证2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b .又f b =0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b .设t b =ln b 2+1 -b ,b >1,则t 'b =2b b 2+1-1=-b -1 2b 2+1<0,所以t b 在1,+∞ 上单调递减,所以t b <t 1 =ln2-1,故e b +1b<2e m 得证.4设函数f x =-ln x .(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立;(2)设x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,求证:x λ11x λ22⋅⋅⋅x λn n ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .【解析】(1)证明:x λ11x λ22≤λ1x 1+λ2x 2⇔ln x λ11x λ22 ≤ln λ1x 1+λ2x 2 ⇔λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ⇔f λ1x 1+λ2x 2 ≤λ1f x 1 +λ2f x 2 .不妨设0<x 1≤x 2,令g x =λ1f x +λ2f x 2 -f λ1x +λ2x 2 =ln λ1x +λ2x 2 -λ1ln x -λ2ln x 2,其中0<x ≤x 2,则g x =λ1λ1x +λ2x 2-λ1x =λ1x -λ1λ1x +λ2x 2 λ1x +λ2x 2 x =λ1x -λ1x -λ2x 2 λ1x +λ2x 2 x =λ1λ2x -x 2 λ1x +λ2x 2 x≤0,所以,函数g x 在区间0,x 2 上单调递减,因为x 1∈0,x 2 ,则g x 1 ≥g x 2 =ln x 2-ln x 2=0,所以,g x 1 =ln λ1x 1+λ2x 2 -λ1ln x 1-λ2ln x 2≥0,即λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ,所以,当λ1、λ2≥0且λ1+λ2=1,对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立.(2)证明:x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,要证x λ11x λ22⋅⋅⋅x λnn ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .即证λ1ln x 1+λ2ln x 2+⋯+λn ln x n ≤ln λx 1+λ2x 2+⋯+λn x n ,即f λ1x 1+λ2x 2+⋅⋅⋅+λn x n ≤λ1f x 1 +λ2f x 2 +⋅⋅⋅+λn f x n ,当n=2时,由(1)可知,不等式成立,假设当n=k k≥2,k∈N∗时不等式成立,即fλ1x1+λ2x2+⋅⋅⋅+λk x k≤λ1f x1+λ2f x2+⋅⋅⋅+λk f x k,则当n=k+1时,设x k=λkλk+λk+1x k+λk+1λk+λk+1x k+1,由(1)可得f x k≤λkλk+λk+1f x k+λk+1λk+λk+1f x k+1,则fλ1x1+λ2x2+⋅⋅⋅+λk x k+λk+1x k+1=fλ1x1+λ2x2+⋅⋅⋅+λk-1x k-1+λk+λk+1x k≤λ1f x1+⋅⋅⋅+λk-1f x k-1+λk+λk+1f x k≤λ1f x1+⋅⋅⋅+λk f x k+λk+1f x k+1,这说明当n=k+1时,结论也成立,故对任意的n∈N∗,fλ1x1+λ2x2+⋅⋅⋅+λk x n≤λ1f x1+λ2f x2+⋅⋅⋅+λn f x n,所以,-lnλ1x1+λ2x2+⋅⋅⋅+λn x n≤-λ1ln x1-λ2ln x2-⋯-λn ln x n,因此,λ1ln x1+λ2ln x2+⋯+λn ln x n≤lnλx1+λ2x2+⋯+λn x n,故当x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1时,xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.5已知函数f(x)=e x,g(x)=x+a ln x,a∈R(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;【解析】(1)g (x)=1+ax=x+ax(x>0),当a≥0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当a<0时,令g′(x)>0,解得x>-a,令g′(x)<0,解得0<x<-a,∴g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;综上,当a≥0时,g(x)在(0,+∞)上单调递增;当a<0时,g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;(2)f(x)+2x≥g(x)+x a即为e x+x≥a ln x+x a,即e x+ln e x≥ln x a+x a,设h(x)=ln x+x(x>0),则h (x)=1x+1=x+1x,易知函数h(x)在(0,+∞)上单调递增,而h(e x)≥h(x a),所以e x≥x a(两边取对数),即x≥a ln x,当x>1时,即为a≤xln x,设φ(x)=xln x(x>1),则φ (x)=ln x-1ln2x,易知函数φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)≥φ(e)=e,∴a≤e,即a的最大值为e.6已知函数f (x )=x ln x .(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且a b =b a ,证明:2e <1a +1b <1.【解析】 (1)f (x )=ln x +1,定义域为(0,+∞),由f (x )=0,解得x =1e ,由f (x )>0,解得x >1e,由f (x )<0,解得0<x <1e,所以f (x )的单调递增区间为1e ,+∞,单调递减区间为0,1e.(2)∵a ,b 为两个不相等的正数,且a b =b a ,∴b ln a =a ln b ,即1a ln 1a =1b ln 1b,由(1)可知f (x )min =f 1e =-1e,且f (1)=0,x →0时,f (x )→0,则令x 1=1a ,x 2=1b,则x 1,x 2为f (x )=k 的两根,且k ∈-1e ,0 ,不妨设x 1∈0,1e ,x 2∈1e ,1 ,则2e -x 1>1e,先证2e <x 1+x 2,即证x 2>2e -x 1,即证f x 2 =f x 1 >f 2e-x 1 ,令h (x )=f (x )-f 2e -x,即证在x ∈0,1e上,h (x )>0,则h (x )=f (x )-f 2e -x =ln x +ln 2e -x +2=ln -x 2+2ex +2,h (x )在0,1e上单调递增,即h (x )<h 1e =0,∴h (x )<0在0,1e上恒成立,即h (x )在0,1e 上单调递减,h (x )>h 1e =0,∴f (x )>f 2e -x,即可得x 2>2e-x 1;再证x 1+x 2<1,即证1e<x 2<1-x 1,由(1)f (x )单调性可得证f x 2 =f x 1 <f 1-x 1 ,令φ(x )=f (x )-f (1-x ),x ∈0,1e,φ (x )=ln x +ln (1-x )+2=ln -x 2+x +2,φ (x )在0,1e上单调递增,∴φ (x)=φ 1e>0,且当x→0,φ (x)<0,所以存在x0使得φ x0=0,即当x∈0,x0时,φ (x)<0,φ(x)单调递减,当x∈x0,1 e时,φ (x)>0,φ(x)单调递增,又有x→0,φ(x)<0,且φ1e=f1e -f1-1e<0,所以φ(x)<0恒成立,∴x 1+x2<1,则2e<1a+1b<1,即可证得.四、跟踪检测1已知函数f(x)=x ln x+a,(a∈R).(1)求函数f x 的单调区间;(2)当0<a<1e时,证明:函数f x 有两个零点;(3)若函数g(x)=f(x)-ax2-x有两个不同的极值点x1,x2(其中x1<x2),证明:x1⋅x22>e3.【解析】(1)f x =ln x+1,x>0,当0<x<1e时,fx <0,当x>1e时,fx >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,所以函数f x 的单调区间为0,1 e和1e,+∞;(2)证明:由(1)知f x min=f1e=-1e+a,因为0<a<1e,所以f1e<0,又当x→0+时,f x >0,f e =e+a>0,所以函数在0,1 e上存在一个零点,在1e,e上存在一个零点,所以函数f x 有两个零点;(3)证明:g(x)=f(x)-ax2-x=x ln x--ax2-x+a,(x>0),则g x =ln x-2ax,因为函数g(x)有两个不同的极值点x1,x2(其中x1<x2),所以ln x1=2ax1,ln x2=2ax2,要证x 1⋅x 22>e 3等价于证ln x 1⋅x 22 >ln e 3,即证ln x 1+2ln x 2>3,所以3<ln x 1+2ln x 2=2ax 1+4ax 2=2a x 1+2x 2 ,因为0<x 1<x 2,所以2a >3x 1+2x 2,又ln x 1=2ax 1,ln x 2=2ax 2,作差得ln x 1x 2=a x 1-x 2 ,所以a =ln x1x 2x 1-x 2,所以原不等式等价于要证明2ln x1x 2x 1-x 2>3x 1+2x 2,即2ln x 1x 2<3x 1-x 2 x 1+2x 2,令t =x 1x 2,t ∈0,1 ,则上不等式等价于要证:2ln t <3t -1t +2,t ∈0,1 ,令h t =2ln t -3t -1t +2,t ∈0,1 ,则ht =2t -9t +2 2=2t 2-t +8t t +2 2>0,t ∈0,1 ,所以函数h t 在0,1 上递增,所以h t <h 1 =0,所以2ln t <3t -1t +2,t ∈0,1 ,所以x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g(x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g(x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.【解析】(1)由幂指函数导数公式得f (x )=2e x ln x (ln x +1),所以f (1)=2,又f (1)=2,所以,曲线y =f (x )在x =1处的切线方程为y =2x .(2)h (x )=f (x )=2e x ln x (ln x +1),x ∈(0,+∞),则h (x )=2e x ln x (ln x +1)+2e x ln x (ln x +1) =2e x ln x (ln x +1) (ln x +1)+2e x ln x ⋅1x=2e x ln x (ln x +1)2+1x>0,所以h (x )的单调增区间为(0,+∞),无单调减区间.(3)构造F (x )=f (x )-g (x ),x ∈(0,+∞),则F (x )=f (x )-g (x )=2e x ln x (ln x +1)-2x ,令H (x )=F (x )=2e x ln x (ln x +1)-2x ,x ∈(0,+∞),所以H (x )=2e x ln x (ln x +1)2+e(x -1)ln x-1 ,因为x -1与ln x 同号,所以(x -1)ln x ≥0,所以e (x -1)ln x-1≥0,又e x ln x (ln x +1)2≥0,所以H (x )≥0,所以H (x )即F (x )为(0,+∞)上增函数,又因为F (1)=0,所以,当x ∈(0,1)时,F (x )<F (1)=0;当x ∈(1,+∞)时,F (x )>F (1)=0.所以,F (x )为(0,1)上减函数,为(1,+∞)上增函数,所以,F (x )min =F (1)=0,即F (x )=f (x )-g (x )≥0,因此,∀x ∈(0,+∞),f (x )≥g (x )恒成立,即证.3已知函数f (x )=e x 2ln x (x >0).(1)求f (x )的极值点.(2)若有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k .(i )求k 的取值范围(ⅱ)证明x e 2-2e2≤e-e 21x 1.【解析】(1)函数f (x )=e x 2ln x (x >0)的导函数为f (x )=xe x 2ln x (2ln x +1).当x ∈0,e -12时,f(x )<0,所以函数f (x )单调递减;当x ∈e -12,+∞ 时,f (x )>0,所以函数f (x )单调递增.所以x =e-12为f (x )的极值点.(2)因为有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k ,所以x 12ln x 1=x 22ln x 2=k .(i )问题转化为m (x )=x 2ln x -k 在(0,+∞)内有两个零点,则m x =x 1+2ln x .当x∈0,e-1 2时, m x <0,m(x)单调递减;当x∈e-12,+∞时, m x >0,m(x)单调递增.若m(x)有两个零点,则必有m e-1 2<0,解得:k>-12e.若k≥0,当0<x<e-12时,m x =x2ln x-k≤x2ln x<0,无法保证m(x)有两个零点;若-12e<k<0,又m e1k>0,m e-12<0,m1 =-k>0,故存在x1∈e 1 k,e-12使得m x1 =0,存在x2∈e-12,1使得m x2 =0.综上可知, k∈-12e ,0.(ⅱ)设t=x2x1则t∈(1,+∞).将t=x2x1代入x12ln x1=x22ln x2,可得ln x1=t2ln t1-t2,ln x2=ln t1-t2(*).欲证:x e2-2e2≤e-e21x1,需证ln xe2-2e2≤ln e-e2x1即证ln x1+(e2-2e)ln x2≤-e2,将(*)代入,则有(t2+e2-2e)ln t1-t2≤-e2,则只需要证明:(x+e2-2e)ln x1-x≤-e(x>1),即ln x≥e x-1x+e2-2e(x>1).构造φ(x)=x-1ln x-xe-e+2,则φ (x)=ln x-x-1xln2x-1e,φ(x)=(x+1)2(x-1)x+1-ln xx2ln3x(x>1).令ω(x)=2(x-1)x+1-ln x(x>1),则ω (x)=-(x-1)2x(x+1)2<0.所以ω(x)<ω(1)=0,则φ (x)<0,所以φ(x)在1,+∞内单减.又φ (e)=0,所以当x∈(1,e)时,有φ (x)>0,φ(x)单调递增;当x∈(e,+∞)时,有φ (x)<0,φ(x)单调递减;所以φ(x)≤φ(e)=0,因此x-1ln x-xe≤e-2,即ln x≤e x-1x+e2-2e(x>1).综上所述,命题得证.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a【解析】(1)函数的定义域为(0,+∞),F (x)=1x+m-1,当m≥1时,F (x)>0,F(x)在(0,+∞)单调递增;当m<1时,令F (x)<0,解得x>11-m,令F(x)>0,解得0<x<11-m,∴F (x )在0,11-m单调递增,在11-m ,+∞ 单调递减; 综上,当m ≥1时,f (x )的单调递增区间为(0,+∞);当m <1时,f (x )的单调递增区间为0,11-m ,单调递减区间为11-m,+∞ (2)证明:因为G (x )=ln x -x +m ,令G (x )=0,则m =x -ln x ,设t (x )=x -ln x (x >0),则t (x )=1-1x =x -1x,函数t (x )在(0,1)单调递减,在(1,+∞)单调递增,且x →0时,t (x )→+∞,当x →+∞时,t (x )→+∞,t (x )min =t (1)=1,∴m >1,又a <b ,则0<a <1<b ,若证①所证不等式,即2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b ,又G (b )=0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b ,设h (b )=ln b 2+1 -b ,b >1,则h(b )=2b b 2+1-1=-(b -1)2b 2+1<0,∴h (b )在(1,+∞)上单调递减,∴h (b )<h (1)=ln2-1,即2e m -1>1b+b 得证;若证②所证不等式,即2em -1<a +1a ,即证ln2+m -1<ln a 2+1a,即证ln2+m -1<ln a 2+1 -ln a ,又G (a )=0,即m =a -ln a ,故即证ln2+a -ln a -1<ln a 2+1 -ln a ,即证ln2-1<ln a 2+1 -a ,设φ(a )=ln a 2+1 -a ,0<a <1,则φ(a )=2aa 2+1-1=-(a -1)2a 2+1<0,∴φ(a )在(0,1)单调递减,故φa >φ1 =ln2-1,即2e m -1<1a+a 得证.5已知a ∈R ,f (x )=x ⋅e -ax ,(其中e 为自然对数的底数).(1)求函数y =f (x )的单调区间;(2)若a >0,函数y =f (x )-a 有两个零点x ,x 2,求证:x 21+x 22>2e .【解析】(1)解:f ′(x )=e -ax -ax ⋅e -ax =e -ax (1-ax )∵a ∈R ,∴a <0时,f ′(x )=e -ax (1-ax )>0⇒x >1a ,f ′(x )=e -ax (1-ax )<0⇒x <1a∴a <0时,增区间为:1a ,+∞,减区间为:-∞,1a;a =0时,f ′(x )=e -ax (1-ax )=1>0,∴a =0时,增区间为:(-∞,+∞);a >0时,f ′(x )=e -ax (1-ax )>0⇒x <1a ,f ′(x )=e -ax (1-ax )<0⇒x >1a,∴a >0时,增区间为:-∞,1a ,减区间为:1a,+∞ ;(2)因为a >0时,函数y =f (x )-a 有两个零点x 1,x 2,则两个零点必为正实数,f (x )-a =0⇔xe -ax =a 两边取对数ln x -ax =ln a故问题转化为ln x -ax =ln a 有两个正实数解;令g (x )=ln x -ax -ln a (x >0)则g ′(x )=1x -a (x >0),g (x )在0,1a 单调递增,在1a ,+∞ 单调递减,且0<x 1<1a<x 2令G (x )=g (x )-g 2a -x ,x ∈1a,+∞ ,则G ′(x )=1x -a +12a -x -a =2x (2-ax )-2a >21a-2a =0所以G (x )在1a ,+∞ 单调递增,G (x )>G 1a=0又x 2>1a ,故g x 2 >g 2a -x 2 ,x 2∈1a,+∞ 又g x 1 =g x 2 ,所以g x 1 >g 2a-x 2 ,又0<x 1<1a <x 2,所以x 1,2a -x 2∈0,1a ,又g (x )在0,1a 单调递增,所以x 1+x 2>2a所以x 21+x 22>x 1+x 222>2a 2>2e .6已知函数f x =axe -x a ≠0 存在极大值1e.(1)求实数a 的值;(2)若函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,求实数m 的取值范围,并证明:x 1+x 2>2.【解析】(1)f x =a ⋅xe xx ∈R ,f x =a 1-x ex,令f x =0⇒x =1,f 1 =a e =1e ⇒a =1,此时f x =1-xex ,f x 在-∞,1 上f x >0,f x 递增;在1,+∞ 上f x <0,f x 递减,所以当x =1时,f x 取得极大值为f 1 =1e符合题意,所以a =1.(2)由(1)知:f x 在-∞,1 上递增,在1,+∞ 上递减,极大值为f 1 =1e.f x =x e x,f 0 =0,当x <0时,f x <0;当x >0时,f x >0;当x →+∞时,f x →0.由于函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,所以0<m <1e.因为x 1,x 2x 1≠x 2 是F x 的两个零点,则x 1>0,x 2>0.所以F x 1 =F x 2 ,x 1e x 1=x 2ex 2,e x 2e x 1=x 2x 1,e x 2-x 1=x 2x 1,两边取对数得x 2-x 1=ln x 2x 1,要证x 1+x 2>2,只需证明x 2-x 1x 2+x 1<12ln x2x 1,即证x 2x 1-1x 2x 1+1<12ln x 2x 1,不妨设x 1<x 2,令x 2x 1=t ,则t ∈1,+∞ ,即证t -1t +1<12ln t 对t ∈1,+∞ 恒成立.令g t =12ln t -t -1t +1,g t =12t -2t +12=t -1 22t t +1 2>0,所以g t 在1,+∞ 上递增,所以g t >g 1 =0,即12ln t -t -1t +1>0,所以t -1t +1<12ln t .从而x 1+x 2>2成立.7已知函数f (x )=x (e 2x -a ),g (x )=bx +ln x .(1)若y =2x 是曲线y =f (x )的切线,求a 的值;(2)若g (x )有两不同的零点,求b 的取值范围;(3)若b =1,且f (x )-g (x )≥1恒成立,求a 的取值范围.【解析】(1)依题意,设切点为(x 0,2x 0),则2x 0=x 0(e 2x 0-a ),f (x )=e 2x -a +x ⋅2e 2x ,于是得e 2x 0(2x 0+1)-a =2,则有x 0=0且a =-1,x 0≠0时,e 2x 0=a +2,(a +2)(2x 0+1)=a +2无解,所以a =-1;(2)由g (x )=0得-b =ln x x ,令h (x )=ln xx,x >0,则有h (x )=1-ln xx2,0<x <e 时h (x )>0,x >e 时h (x )<0,h (x )在(0,e )上递增,在(e ,+∞)上递减,h (x )max =h (e )=1e,又x >e 时,h (x )>0恒成立,于是得g (x )有两个不同的零点,等价于直线y =-b 与函数h (x )=ln xx,x >0图象有两个不同的公共点,即0<-b <1e ,-1e <b <0,所以g (x )有两不同的零点,b 的取值范围是-1e<b <0;(3)b =1,g (x )=x +ln x ,x >0,∀x >0,f (x )-g (x )≥1⇔x (e 2x -a )≥1+x +ln x ⇔a +1≤e 2x -1+ln xx,令φ(x )=e 2x-1+ln x x (x >0),φ (x )=2e 2x+ln x x 2=2x 2e 2x +ln x x 2,令F (x )=2x 2e 2x +ln x ,F (x )=(4x 2+4x )e 2x +1x>0,即F (x )在(0,+∞)上递增,而F 14=e 8-ln4<0,F (1)=2e 2>0,即∃t ∈(0,1),使得F (t )=0,0<x <t 时F (x )<0,φ (x )<0,x >t 时,F (x )>0,φ (x )>0,φ(x )在(0,t )上递减,在(t ,+∞)上递增,从而有φ(x )min =e 2t -1+ln tt,而F (t )=0,即2t 2e 2t +ln t =0,令t 2e 2t =p ,两边取对数得2t +2ln t =ln p ,则2p +ln t =0=2t +2ln t -ln p ,即有2p +ln p =2t +ln t ,显然函数y =2x +ln x 在(0,+∞)上单调递增,从而得p =t ,于是得t 2e 2t =t ⇔e 2t =1t 两边取对数 2t =-ln t ⇔ln t t=-2,φ(x )min =e 2t -1+ln t t =1t -1t -ln t t=2,所以a +1≤2,a ≤1.8已知函数f (x )=ax ln x ,a ∈R .(1)当a =1时,①求f (x )的极值;②若对任意的x ≥e 都有f (x )≥m xe mx ,m >0,求m 的最大值;(2)若函数g (x )=f (x )+x 2有且只有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.【解析】(1)①a =1时,f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )>0,解得:x >1e ,令f ′(x )<0,解得:0<x <1e,∴f (x )在0,1e递减,在1e ,+∞ 递增,故f (x )的极小值是f 1e =-1e ,没有极大值;②对任意x ≥e 都有f (x )≥m x e m x =e m x ln e m x,即f (x )≥f e mx 恒成立,由m >0,有mx>0,故e mx >1,由①知,f (x )在1e ,+∞ 单调递增,故x ≥e mx ,可得ln x ≥mx,即x ln x ≥m ,当x ≥e 时,f (x )的最小值是f (e )=e ,故m 的最大值是e ;(2)证明:要证x 1x 2>e 2,只需证明ln (x 1x 2)>2即可,由题意,x 1、x 2是方程ax ln x +x 2=0的两个不相等的实数根,又x >1,∴a ln x1+x1=0a ln x2+x2=0,消去a,整理得:ln(x1x2)=x1x2+1x1x 2-1⋅lnx1x2,不妨设x1>x2,令t=x1x2,则t>1,故只需证明当t>1时,t+1t-1⋅ln t>2,即证明ln t>2(t-1)t+1,设h(t)=ln t-2(t-1)t+1,则h′(t)=1t-2⋅t+1-(t-1)(t+1)2=(t-1)2t(t+1)2>0,∴h(t)在(1,+∞)单调递增,从而h(t)>h(1)=0,故ln t>2(t-1)t+1,即x1x2>e2得证.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)【解析】(1)g(x)=f(x)x=ln x-ax-1,g (x)=1x-a,①当a≤0时,g (x)>0,g(x)在(0,+∞)单调递增;②当a>0时,令g (x)=0解得x=1a,x∈0,1a时,g (x)>0,g(x)单调递增;x∈1a ,+∞时,g (x)<0,f(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)单调递增;当a>0时,g(x)在0,1 a上单调递增,在1a,+∞上单调递减,(2)由题意知,f (x)=ln x-2ax,x1,x2是f (x)的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2(*),要证x41x2>e3,即证4ln x1+ln x2>3,即4⋅2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x24x1+x2>3x1<x2,所以应证ln x1x2<3x1-x24x1+x2=3x1x2-14x1x2+1,令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h (t)=1t-15(4t+1)2=16t2-7t+1t(4t+1)2=16t-7322+1564t(4t+1)2>0,所以h(t)在(0,1)上单调递增,所以h(t)<h(1)=0,所以命题得证.10已知函数f x =e x -a ln xx-a (e 为自然对数的底数)有两个零点.(1)若a =1,求f x 在x =1处的切线方程;(2)若f x 的两个零点分别为x 1,x 2,证明:e 2-x 1-x 2-x 1x 2<0.【解析】(1)当a =1时,f x =e x -ln x x -1,f x =e x -1-ln xx 2,又f 1 =e -1,所以切点坐标为1,e -1 ,切线的斜率为k =f 1 =e -1.所以切线方程为y -e -1 =e -1 x -1 ,即y =e -1 x (2)由已知得f x =xe x -a ln x +xx=0有两个不等的正实跟.所以方程xe x -a ln x +x =0有两个不等的正实根,即xe x -a ln xe x =0有两个不等的正实根,a ln xe x =xe x ①要证x 1x 2>e 2ex 1+x 2,只需证x 1e x 1 ⋅x 2e x 2 >e 2,即证ln x 1e x 1 +ln x 2e x 2>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2,由①得a ln t 1=t 1,a ln t 2=t 2,所以a ln t 2-ln t 1 =t 2-t 1,a ln t 2+ln t 1 =t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1ln t 2-ln t 1 =t 2t 1+1ln t2t 1t 2t 1-1,只需证t 2t 1+1ln t2t 1t 2t 1-1>2,设0<t 1<t 2,令t =t 2t 1,则t >1,则t +1 ln tt -1>2,即证ln t +4t +1-2>0构建h t =ln t +4t +1-2>0则h t =1t -4t +12=t -1 2t t +1 2>0,所以h t 在1,+∞ 上单调递增,则h t >h 1 =0,即当t >1时,ln t +4t +1-2>0成立,所以ln t 1+ln t 2>2,即x 1e x 1⋅x 2e x 2>e 2,即x 1x 2>e 2ex 1+x 2,所以e2-x 1-x 2-x 1x 2<0,证毕.11已知函数h x =x -a ln x a ∈R .(1)若h x 有两个零点,a 的取值范围;(2)若方程xe x-a ln x +x =0有两个实根x 1、x 2,且x 1≠x 2,证明:e x 1+x 2>e 2x 1x 2.【解析】(1)函数h x 的定义域为0,+∞ .当a=0时,函数h x =x无零点,不合乎题意,所以,a≠0,由h x =x-a ln x=0可得1a=ln xx,构造函数f x =ln xx,其中x>0,所以,直线y=1a与函数f x 的图象有两个交点,f x =1-ln xx2,由f x =0可得x=e,列表如下:x0,ee e,+∞f x +0-f x 增极大值1e减所以,函数f x 的极大值为f e =1e,如下图所示:且当x>1时,f x =ln xx>0,由图可知,当0<1a<1e时,即当a>e时,直线y=1a与函数f x 的图象有两个交点,故实数a的取值范围是e,+∞.(2)证明:因为xe x-a ln x+x=0,则xe x-a ln xe x=0,令t=xe x>0,其中x>0,则有t-a ln t=0,t =x+1e x>0,所以,函数t=xe x在0,+∞上单调递增,因为方程xe x-a ln x+x=0有两个实根x1、x2,令t1=x1e x1,t2=x2e x2,则关于t的方程t-a ln t=0也有两个实根t1、t2,且t1≠t2,要证e x1+x2>e2x1x2,即证x1e x1⋅xe x2>e2,即证t1t2>e2,即证ln t1+ln t2>2,由已知t1=a ln t1t2=a ln t2,所以,t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,即证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即证lnt1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,即证ln s>2s-1s+1,其中s>1,构造函数g s =ln s-2s-1s+1,其中s>1,g s =1s -4s+12=s-12s s+12>0,所以,函数g s 在1,+∞上单调递增,当s>1时,g s >g1 =0,故原不等式成立.12已知函数f x =e x-2t-ln x+2(1)若x=1是f x 的极值点,求t的值,并讨论f x 的单调性;(2)当t≤1时,证明:f x >2.【解析】(1)函数f(x)的定义域(0,+∞),因为f′(x)=e x-2t-1x,x=1是f(x)的极值点,所以f′(1)=e1-2t-1=0,所以t=1 2,所以f′(x)=e x-1-1 x,因为y=e x-1和y=-1x在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增,所以当x>1时,f′(x)>0;0<x<1时,f′(x)<0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.(2)当t≤1时,f x =e x-2t-ln x+2≥e x-2-ln x+2,设g(x)=e x-2-ln x+2,则g′(x)=e x-2-1 x,因为y=e x-2和y=-1x在(0,+∞)上单调递增,所以g′(x)在(0,+∞)上单调递增,因为g′1 =1e-1<0,g′2 =1-12=12>0,所以存在x0∈(1,2)使得g′(x0)=0,所以当0<x<x0时,g′(x)<0,当x>x0时,g′(x)>0,所以g(x)在(0,x0)单调递减,在x0,+∞上单调递增,所以g x ≥g x0,因为g′(x0)=0,即e x0-2=1x0,两边取对数得ln x0=2-x0,所以g(x0)=e x0-2-ln x0+2=1x0+x0,因为x0∈(1,2),所以g(x0)=1x0+x0>2,所以f(x)>2.。
求函数极限的方法和技巧函数极限是微积分中很重要的一个概念,它在描述函数的性质和行为上起着关键的作用。
在求函数极限时,有许多方法和技巧可以帮助我们得出准确的结果。
本文将介绍一些常用的方法和技巧,帮助读者更好地理解和计算函数极限。
一、基本极限公式和定理在求函数极限时,有一些基本的极限公式和定理是非常有用的,可以帮助我们快速计算极限。
下面是一些常见的基本极限:1. 常数极限:lim(常数)= 常数2. 幂函数极限:lim(xn)= 0 (当n > 0时)、lim(x^n)= 1(当n = 0时)3. 正弦函数和余弦函数极限:lim(sinx)= 0、lim(cosx)= 14. 自然对数函数和指数函数极限:lim(lnx)= -∞(当x→0+时)、lim(ex)= ∞(当x→∞时)除了基本的极限公式外,还有一些常用的极限定理可以简化计算:1. 四则运算法则:若lim(f(x))和lim(g(x))存在,则lim(f(x) ± g(x))= lim(f(x))± lim(g(x))lim(f(x) * g(x))= lim(f(x)) * lim(g(x))lim(f(x) / g(x))= lim(f(x)) / lim(g(x))(此处lim(g(x))≠0)2. 复合函数极限:若lim(f(x))= a,则lim(g(f(x)))= g(a)这些基本极限公式和定理在计算极限时非常有用,可以大大简化计算过程。
二、夹逼定理夹逼定理是求解函数极限的重要工具,它对于求解一些复杂函数的极限非常有帮助。
夹逼定理通常用于以下情况:1.当函数在一些区间内被两个已知函数夹逼时,可以利用夹逼定理求出函数的极限。
具体而言,如果存在函数g(x)≤f(x)≤h(x)以及lim(g(x))= lim (h(x))= a,那么lim(f(x))= a。
这意味着,当一个函数夹在两个已知函数之间,并且这两个函数的极限相等时,该函数的极限也等于这个相等的极限。
求极限的13种方法(简叙)极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限)1...()1)(1(22lim na aa n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++=)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从,012→+n a)1...()1)(1(22limna a a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
高数求极限的方法总结
求极限的方法总结如下:
1. 代入法:将极限中的变量代入函数中进行计算,看是否能得到确定的值。
2. 夹逼定理:当函数夹在两个其他已知函数之间时,如果这两个函数的极限相等,则函数的极限也相等。
3. 幂指函数的极限:根据函数的幂指形式,分别考虑底数和指数的极限。
4. 分子分母除以最高幂次项:将分子和分母都除以最高幂次项,可以简化计算,并得到函数的极限。
5. 极限的四则运算法则:对于四则运算中的极限,可以将它们分别计算求得极限,然后应用四则运算法则得到最终结果。
6. 奇偶函数的极限:奇函数的极限可表示为对称轴两侧的函数极限之和,偶函数的极限可表示为对称轴两侧的函数极限相等。
7. 自然对数的极限:自然对数的极限是1。
8. e的极限:e是一个常数,其极限是e。
9. 无穷小量的极限:无穷小量的极限为0。
10. 级数的极限:当级数的通项趋于0,且满足柯西准则时,级数收敛。
请注意,在应用这些方法时,需要注意条件的合理性和适用范围,并进行必要的证明。
高中数学对数解题方法对数是高中数学中的重要概念,也是解题中常用的工具之一。
本文将介绍高中数学中一些常见的对数解题方法。
1.变底公式变底公式是对数中最基本的公式之一,它可以将对数底数不同的式子互相转化。
变底公式的形式为:loga b = logc b / logc a其中,a、b、c为正数且a≠1、b≠1、c≠1。
应用变底公式可以将不同底数的对数式子转化为同一底数的式子,从而进行计算。
2.求对数的方法在解题中,有时需要求一个数的对数。
这时可以使用换底公式或化简式子的方法来求解。
换底公式可以表示为:loga b = logc b / logc a其中,a、b、c为正数且a≠1、b≠1、c≠1。
通过换底公式,可以将需要求解的对数式子转化为以10为底或以e为底的式子,从而进行计算。
化简式子的方法可以用于求解形如loga (b^m * c^n)的对数式子。
将式子化简为loga b^m + loga c^n,然后应用对数的性质进行计算即可。
3.对数的运算法则在解题中,对数的运算法则也是需要掌握的重要知识点。
对数的运算法则包括以下几个方面:- 乘法法则:loga (b * c) = loga b + loga c- 除法法则:loga (b / c) = loga b - loga c- 幂法法则:loga (b^n) = n * loga b- 换底公式:loga b = logc b / logc a通过应用对数的运算法则,可以将复杂的对数式子化简为简单的形式,从而方便计算。
4.解对数方程对数方程是高中数学中比较常见的题型之一,它可以用于解决各种实际问题。
在解对数方程时,需要掌握以下几个步骤:- 化简式子,将对数式子转化为一般的代数式子。
- 求解一般的代数式子。
- 检查解是否满足原方程,若不满足则舍去。
通过掌握解对数方程的方法,可以更好地解决各种实际问题。
【关键字】情况、方法、条件、问题、充分、配合、掌握、关键、思想、地位、关系、分析、简化、满足、指导、教育求函数极限的方法和技巧作者: 黄文羊摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。
关键词:函数极限引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。
本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。
主要内容一、求函数极限的方法1、运用极限的定义 例: 用极限定义证明:证: 由244122322-+-=--+-x x x x x x0>∀ε 取εδ= 则当δ<-<20x 时,就有由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+ 3、约去零因式(此法适用于型时0,0x x →)例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim-→x 735-=+-x x 4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22xx x ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x) 满足:(I )0)(lim 0=→x f x x(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim 0⋅→ 解: 由 0lim 0=→x x 而 11sin≤x故 原式 =01sinlim 0=⋅→xx x 6、利用无穷小量与无穷大量的关系。
对数函数运算法则f971对数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.由定义知:①负数和零没有对数;②a>0且a≠1,N>0;③loga1=0,logaa=1,alogaN=N,logaab=b.特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.2对数式与指数式的互化式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)3对数的运算性质如果a>0,a≠1,M>0,N>0,那么(1)loga(MN)=logaM+logaN.(2)logaMN=logaM-logaN.(3)logaMn=nlogaM (n∈R).问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?②logaan=? (n∈R)③对数式与指数式的比较.(学生填表)式子ab=NlogaN=b名称a—幂的底数b—N—a—对数的底数b—N—运算性质am·an=am+nam÷an=(am)n=(a>0且a≠1,n∈R)logaMN=logaM+logaNlogaMN=logaMn=(n∈R)(a>0,a≠1,M>0,N>0)难点疑点突破对数定义中,为什么要规定a>0,,且a≠1?理由如下:①若a<0,则N的某些值不存在,例如log-28?②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数?③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数?为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?解题方法技巧1(1)将下列指数式写成对数式:①54=625;②2-6=164;③3x=27;④13m=5?73.(2)将下列对数式写成指数式:①log1216=-4;②log2128=7;③log327=x;④lg0.01=-2;⑤ln10=2.303;⑥lgπ=k.解析由对数定义:ab=N?logaN=b.解答(1)①log5625=4.②log2164=-6.③log327=x.④log135.73=m.解题方法指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N?logaN=b.(2)①12-4=16.②27=128.③3x=27.④10-2=0.01.⑤e2.303=10.⑥10k=π.2根据下列条件分别求x的值:(1)log8x=-23;(2)log2(log5x)=0;(3)logx27=31+log32;(4)logx(2+3)=-1.解析(1)对数式化指数式,得:x=8-23=?(2)log5x=20=1. x=?(3)31+log32=3×3log32=?27=x?(4)2+3=x-1=1x. x=?解答(1)x=8-23=(23)-23=2-2=14.(2)log5x=20=1,x=51=5.(3)logx27=3×3log32=3×2=6,∴x6=27=33=(3)6,故x=3.(4)2+3=x-1=1x,∴x=12+3=2-3.解题技巧①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;思路二,对指数式的两边取同底的对数,再利用对数式的运算求值?解答解法一∵logax=4,logay=5,∴x=a4,y=a5,∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.解法二对所求指数式两边取以a为底的对数得logaA=loga(x512y-13)=512logax-13logay=512×4-13×5=0,∴A=1.解题技巧有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?解答∵x>0,y>0,x·y1+lgx=1,两边取对数得:lgx+(1+lgx)lgy=0.即lgy=-lgx1+lgx(x≠110,lgx≠-1).令lgx=t, 则lgy=-t1+t(t≠-1).∴lg(xy)=lgx+lgy=t-t1+t=t21+t.解题规律对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.∴Δ=S2+4S≥0,解得S≤-4或S≥0,故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).5求值:(1)lg25+lg2·lg50+(lg2)2;(2)2log32-log3329+log38-52log53;(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;(4)求7lg20·12lg0.7的值.解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.(2)转化为log32的关系式.(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,设x=7lg20·12lg0.7能否先求出lgx,再求x?解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2=2lg5+lg2·(1+lg5)+(lg2)2=lg5·(2+lg2)+lg2+(lg2)2=lg102·(2+lg2)+lg2+(lg2)2=(1-lg2)(2+lg2)+lg2+(lg2)2=2-lg2-(lg2)2+lg2+(lg2)2=2.(2)原式=2log3fc12-(log325-log332)+log323-5log59=2log32-5log32+2+3log32-9=-7.(3)由已知lgab=lg(a-2b)2 (a-2b>0),∴ab=(a-2b)2, 即a2-5ab+4b2=0.∴ab=1或ab=4,这里a>0,b>0.若ab=1,则a-2b<0, ∴ab=1(舍去).∴ab=4,∴log2a-log2b=log2ab=log24=2.(4)设x=7lg20·12lg0.7,则lgx=lg20×lg7+lg0.7×lg12=(1+lg2)·lg7+(lg7-1)·(-lg2)=lg7+lg2=14,∴x=14, 故原式=14.解题规律①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0);(2)logab·logbc=logac;(3)logab=1logba(b>0,b≠1);(4)loganbm=mnlogab.解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证.(2)中logbc能否也换成以a为底的对数.(3)应用(1)将logab换成以b为底的对数.(4)应用(1)将loganbm换成以a为底的对数.解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b·logca=logcN,∴b=logcNlogca.∴logaN=logcNlogca.(2)由(1)logbc=logaclogab.所以logab·logbc=logab·logaclogab=logac.(3)由(1)logab=logbblogba=1logba.解题规律(1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用. 对于对数的换底公式,既要善于正用,也要善于逆用.(4)由(1)loganbm=logabmlogaan=mlogabnlogaa= mnlogab.7已知log67=a,3b=4,求log127.解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢?解答已知log67=a,log34=b,∴log127=log67log612=a1+log62.又log62=log32log36=log321+log32,由log34=b,得2log32=b.∴log32=b2,∴log62=b21+b2=b2+b.∴log127=a1+b2+b=a(2+b)2+2b.解题技巧利用已知条件求对数的值,一般运用换底公式和对数运算法则,把对数用已知条件表示出来,这是常用的方法技巧?8已知x,y,z∈R+,且3x=4y=6z.(1)求满足2x=py的p值;(2)求与p最接近的整数值;(3)求证:12y=1z-1x.解析已知条件中给出了指数幂的连等式,能否引进中间量m,再用m分别表示x,y,z?又想,对于指数式能否用对数的方法去解答?解答(1)解法一3x=4y?log33x=log34y?x=ylog34?2x=2ylog34=ylog316, ∴p=log316.解法二设3x=4y=m,取对数得:x·lg3=lgm,ylg4=lgm,∴x=lgmlg3,y=lgmlg4,2x=2lgmlg3,py=plgmlg4.由2y=py, 得 2lgmlg3=plgmlg4,∴p=2lg4lg3=lg42lg3=log316.(2)∵2=log39 ∴2 又3-p=log327-log316=log32716,p-2=log316-log39=log3169,而2716<169,∴log327163-p.∴与p最接近的整数是3.解题思想①提倡一题多解.不同的思路,不同的方法,应用了不同的知识或者是相同知识的灵活运用,既发散了思维,又提高了分析问题和解决问题的能力,何乐而不为呢?②(2)中涉及比较两个对数的大小.这是同底的两个对数比大小.因为底3>1,所以真数大的对数就大,问题转化为比较两个真数的大小,这里超前应用了对数函数的单调性,以鼓励学生超前学习,自觉学习的学习积极性.(3)解法一令3x=4y=6z=m,由于x,y,z∈R+,∴k>1,则 x=lgmlg3,y=lgmlg4,z=lgmlg6,所以1z-1x=lg6lgm-lg3lgm=lg6-lg3lgm=lg2lgm,12y=12·lg4lgm=lg2lgm,故12y=1z-1x.解法二3x=4y=6z=m,则有3=m1x①,4=m1y②,6=m1z③,③÷①,得m1z-1x=63=2=m12y.∴1z-1x=12y.9已知正数a,b满足a2+b2=7ab.求证:logma+b3=12(logma+logmb)(m>0且m≠1).解析已知a>0,b>0,a2+b2=7ab.求证式中真数都只含a,b的一次式,想:能否将真数中的一次式也转化为二次,进而应用a2+b2=7ab?解答logma+b3=logm(a+b3)212=解题技巧①将a+b3向二次转化以利于应用a2+b2=7ab是技巧之一.②应用a2+b2=7ab将真数的和式转化为ab的乘积式,以便于应用对数运算性质是技巧之二.12logma+b32=12logma2+b2+2ab9.∵a2+b2=7ab,∴logma+b3=12logm7ab+2ab9=12logmab=12(logma+log mb),即logma+b3=12(logma+logmb).思维拓展发散1数学兴趣小组专门研究了科学记数法与常用对数间的关系.设真数N=a×10n.其中N>0,1≤a<10,n∈Z.这就是用科学记数法表示真数N.其科学性体现在哪里?我们只要研究数N的常用对数,就能揭示其中的奥秘.解析由已知,对N=a×10n取常用对数得,lgN=n+lga.真数与对数有何联系?解答lgN=lg(a×10n)=n+lga.n∈Z,1≤a<10,∴lga∈〔0,1).我们把整数n叫做N的常用对数的首数,把lga叫做N的常用对数的尾数,它是正的纯小数或0.小结:①lgN的首数就是N中10n的指数,尾数就是lga,0≤lga<1;②有效数字相同的不同正数它们的常用1037允奈彩嗤皇鞘资煌③当N≥1时,lgN的首数n比它的整数位数少1,当N∈(0,1)时,lgN的首数n是负整数,|n|-1与N的小数点后第一个不是0的有效数字前的零的个数相同.师生互动什么叫做科学记数法?N>0,lgN的首数和尾数与a×10n有什么联系?有效数字相同的不同正数其常用对数的什么相同?什么不同?2若lgx的首数比lg1x的首数大9,lgx的尾数比lg1x的尾数小0?380 4,且lg0.203 4=1.308 3,求lgx,x,lg1x的值.解析①lg0.203 4=1?308 3,即lg0.203 4=1+0.308 3,1是对数的首数,0.308 3是对数的尾数,是正的纯小数;②若设lgx=n+lga,则lg1x也可表出.解答设lgx=n+lga,依题意lg1x=(n-9)+(lga+0.380 4).又lg1x=-lgx=-(n+lga),∴(n-9)+(lga+0?380 4)=-n-lga,其中n-9是首数,lga+0?380 4是尾数,-n-lga=-(n+1)+(1-lga),-(n+1)是首数1-lga是尾数,所以:n-9=-(n+1)lga+0.380 4=1-lga?n=4,lga=0.308 3.∴lgx=4+0.308 3=4.308 3,∵lg0.203 4=1.308 3,∴x=2.034×104.∴lg1x=-(4+0.308 3)=5.691 7.解题规律把lgx的首数和尾数,lg1x的首数和尾数都看成未知数,根据题目的等量关系列方程.再由同一对数的首数等于首数,尾数等于尾数,求出未知数的值,是解决这类问题的常用方法.3计算:(1)log2-3(2+3)+log6(2+3+2-3);(2)2lg(lga100)2+lg(lga).解析(1)中.2+3与2-3有何关系?2+3+2-3双重根号,如何化简?(2)中分母已无法化简,分子能化简吗?解题方法认真审题、理解题意、抓住特点、找出明确的解题思路和方法,不要被表面的繁、难所吓倒.解答(1)原式=log2-3(2-3)-1+12log6(2+3+2-3)2=-1+12log6(4+22+3·2-3)=-1+12log66=-12.(2)原式=2lg(100lga)2+lg(lga)=2〔lg100+lg(lga)〕2+lg(lga)=2〔2+lg(lga)〕2+lg(lga)=2.4已知log2x=log3y=log5z<0,比较x,3y,5z的大小.解析已知是对数等式,要比较大小的是根式,根式能转化成指数幂,所以,对数等式应设法转化为指数式.解答设log2x=log3y=log5z=m<0.则x=2m,y=3m,z=5m.x=(2)m,3y=(33)m,5z=(55)m.下面只需比较2与33,55的大小:(2)6=23=8,(33)6=32=9,所以2<33.又(2)10=25=32,(55)10=52=25,∴2>55.∴55<2<33. 又m<0,图2-7-1考查指数函数y=(2)x,y=(33)x,y=(55)x在第二象限的图像,如图2-7-1?解题规律①转化的思想是一个重要的数学思想,对数与指数有着密切的关系,在解决有关问题时要充分注意这种关系及对数式与指数式的相互转化.②比较指数相同,底不同的指数幂(底大于0)的大小,要应用多个指数函数在同一坐标系中第一象限(指数大于0)或第二象限(指数小于0)的性质进行比较?①是y=(55)x,②是y=(2)x,③是y=(33)x.指数m<0时,图像在第二象限从下到上,底从大到小.所以(33)m<(2)m<(55)m,故3y 潜能挑战测试1(1)将下列指数式化为对数式:①73=343;②14-2=16;③e-5=m.(2)将下列对数式化为指数式:①log128=-3;②lg10000=4;③ln3.5=p.2计算:(1)24+log23;(2)2723-log32;(3)2513log527+2log52.3(1)已知lg2=0.301 0,lg3=0.477 1,求lg45;(2)若lg3.127=a,求lg0.031 27.4已知a≠0,则下列各式中与log2a2总相等的是()A若logx+1(x+1)=1 ,则x的取值范围是()A已知ab=M(a>0,b>0,M≠1),且logMb=x,则logMa的值为() A若log63=0.673 1,log6x=-0.326 9, 则x为()A若log5〔log3(log2x)〕=0,则x=.98log87·log76·log65=.10如果方程lg2x+(lg2+lg3)lgx+lg2·lg3=0的两根为x1、x2,那么x1·x2的值为.11生态学指出:生物系统中,每输入一个营养级的能量,大约只有10%的能量流到下一个营养级.H1→H2→H3→H4→H5→H6这条生物链中 (Hn表示第n个营养级,n=1,2,3,4,5,6).已知对H1输入了106千焦的能量,问第几个营养级能获得100千焦的能量?12已知x,y,z∈R+且3x=4y=6z,比较3x,4y,6z的大小.13已知a,b均为不等于1的正数,且axby=aybx=1,求证x2=y2.14已知2a·5b=2c·5d=10,证明(a-1)(d-1)=(b-1)(c-1).15设集合M={x|lg〔ax2-2(a+1)x-1〕>0},若M≠?,M?{x|x<0},求实数a的取值范围.16在张江高科技园区的上海超级计算中心内,被称为“神威Ⅰ”的计算机运算速度为每秒钟384 000 000 000次.用科学记数法表示这个数为N=,若已知lg3.840=0.584 3,则lgN=.17某工厂引进新的生产设备,预计产品的生产成本比上一年降低10%,试问经过几年,生产成本降低为原来的40%?(lg2=0.3, lg3=0.48)18某厂为适应改革开放,完善管理机制,满足市场需求,某种产品每季度平均比上一季度增长10.4%,那么经过y季度增长到原来的x 倍,则函数y=f(x)的解析式f(x)=.名师助你成长1.(1)①log7343=3.②log1416=-2.③lnm=-5.(2)①12-3=8.②104=10 000.③ep=3.5.2.(1)48点拨:先应用积的乘方,再用对数恒等式.(2)98点拨:应用商的乘方和对数恒等式.(3)144点拨:应用对数运算性质和积的乘方.3.(1)0.826 6点拨:lg45=12lg45=12lg902=12(lg32+lg10-lg2).(2)lg0.031 27=lg(3.127×10-2)=-2+lg3.127=-2+a4.C点拨:a≠0,a可能是负数,应用对7e1数运算性质要注意对数都有意义.5.B点拨:底x+1>0且x+1≠1;真数x+1>0.6.A点拨:对ab=M取以M为底的对数.7.C点拨:注意0.673 1+0.326 9=1,log61x=0.326 9,所以log63+log61x=log63x=1.∴3x=6, x=12.8.x=8点拨:由外向内.log3(log2x)=1, log2x=3, x=23.9.5点拨:log87·log76·log65=log85, 8log85=5.10.16点拨:关于lgx的一元二次方程的两根是lgx1,lgx2.由lgx1=-lg2,lgx2=-lg3,得x1=12,x2=13.11.设第n个营养级能获得100千焦的能量,依题意:106·10100n-1=100,化简得:107-n=102,利用同底幂相等,得7-n=2,或者两边取常用对数也得7-n=2.∴n=5,即第5个营养级能获能量100千焦.12?设3x=4y=6z=k,因为x,y,z∈R+,所以k>1.取以k为底的对数,得:x=1logk3,y=1logk4,z=1logk6.∴3x=3logk3=113logk3=1logk33,同理得:4y=1logk44,6z=1logk66.而33=1281,44=1264,66=1236,∴logk33>logk44>logk66.又k>1,33>44>66>1,∴logk33>logk44>logk66>0,∴3x<4y<6z.13.∵axby=aybx=1,∴lg(axby)=lg(aybx)=0,即xlga+ylgb=ylga+xlgb=0.(※)两式相加,得x(lga+lgb)+y(lga+lgb)=0.即(lga+lgb)(x+y)=0.∴lga+lgb=0 或x+y=0.当lga+lgb=0时,代入xlga+ylgb=0,得:(x-y)lga=0, a是不为1的正数lga≠0,∴x-y=0.∴x+y=0或x-y=0,∴x2=y2.14.∵2a5b=10,∴2a-1=51-b.两边取以2为底的对数,得:a-1=(1-b)log25.∴log25=a-11-b(b≠1). 同理得log25=c-11-d(d≠1).即b≠1,d≠1时,a-11-b=c-11-d.∴(a-1)(1-d)=(c-1)(1-b),∴(a-1)(d-1)=(b-1)(c-1).当b=1,c=1时显然成立.15.设lg〔ax2-2(a+1)x-1〕=t (t>0),则ax2-2(a+1)x-1=10t(t>0).∴10t>1 ,ax2-2(a+1)x-1>1,∴ax2-2(a+1)x-2>0.①当a=0时,解集{x|x<-1}?{x|x<0};当a≠0时,M≠?且M?{x|x<0}.∴方程ax2-2(a+1)x-2=0 必有两不等实根,设为x1,x2且x1 ②当a>0时,M={x|xx2},显然不是{x|x<0}的子集;③当a<0时,M={x|x1 a<0,Δ=4(a+1)2+8a>0,x1+x2=2(a+1)a<0,x1·x2=-2a>0.解得3-2 16.N=3.840×1011, lgN=11.584 3.17.设经过x年,成本降为原来的40%.则(1-10%)x=40%,两边取常用对数,得:x·lg(1-10%)=lg40% ,即x=lg0.4lg0.9=lg4-1lg9-1=2lg2-12lg3-1=10.所以经过10年成本降低为原来的40%.18.f(x)=log1.104x〔或f(x)=lgxlg1.104〕.点拨:设原来一个季度产品为a,则a(1+10.4%)y=xa,∴y=log1.104x.。