初一上册数学期末试卷有答案(最新试题)
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
2022年初中七年级数学(上册)期末试题及答案(完整)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 计算+ + + + +……+ 的值为()A. B. C. D.2.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 13.关于的一元一次方程的解为, 则的值为()A. 9B. 8C. 5D. 44. 点C在x轴上方, y轴左侧, 距离x轴2个单位长度, 距离y轴3个单位长度, 则点C的坐标为()A. (2, 3)B. (-2, -3)C. (-3, 2)D. (3, -2)5.如图, 在△ABC和△DEC中, 已知AB=DE, 还需添加两个条件才能使△ABC≌△DEC, 不能添加的一组条件是()A. BC=EC, ∠B=∠EB. BC=EC, AC=DCC. BC=DC, ∠A=∠DD. ∠B=∠E, ∠A=∠D6.如果, 那么代数式的值为()A. B. C. D.7.如图所示, 下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 将矩形ABCD沿对角线BD折叠, 点C落在点E处, BE交AD于点F, 已知∠BDC=62°, 则∠DFE的度数为()A. 31°B. 28°C. 62°D. 56°10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, 四边形ACDF是正方形, 和都是直角, 且点三点共线, , 则阴影部分的面积是__________.3. 有4根细木棒, 长度分别为2cm、3cm、4cm、5cm, 从中任选3根, 恰好能搭成一个三角形的概率是__________.4.如图, 圆柱形玻璃杯高为14cm, 底面周长为32cm, 在杯内壁离杯底5cm的点B处有一滴蜂蜜, 此时一只蚂蚁正好在杯外壁, 离杯上沿3cm与蜂蜜相对的点A处, 则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5. 如图, 在△ABC和△DEF中, 点B.F、C.E在同一直线上, BF = CE, AC∥DF, 请添加一个条件, 使△ABC≌△DEF, 这个添加的条件可以是________. (只需写一个, 不添加辅助线)6. 已知|x|=3, 则x的值是________.三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12. 如果关于x, y的方程组的解中, x与y互为相反数, 求k的值.3. 在△ABC中, AB=AC, 点D是射线CB上的一个动点(不与点B, C重合), 以AD为一边在AD的右侧作△ADE, 使AD=AE, ∠DAE=∠BAC, 连接CE.(1)如图1, 当点D在线段CB上, 且∠BAC=90°时, 那么∠DCE=______度. (2)设∠BAC=α, ∠DCE=β.①如图2, 当点D在线段CB上, ∠BAC≠90°时, 请你探究α与β之间的数量关系, 并证明你的结论;②如图3, 当点D在线段CB的延长线上, ∠BAC≠90°时, 请将图3补充完整, 并直接写出此时α与β之间的数量关系(不需证明).4. 如图, 已知直线AB∥CD, 直线EF分别与AB, CD相交于点O, M, 射线OP在∠AOE的内部, 且OP⊥EF, 垂足为点O.若∠AOP=30°, 求∠EMD的度数.5. 为丰富学生的课余生活, 陶冶学生的情趣, 促进学生全面发展, 其中七年级开展了学生社团活动. 学校为了解学生参加情况, 进行了抽样调查, 制作如下的统计图:请根据上述统计图, 完成以下问题:(1)这次共调查了______名学生;扇形统计图中, 表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名, 请估算有多少名学生参加文学类社团?6. 某电器商场销售A, B两种型号计算器, 两种计算器的进货价格分别为每台30元, 40元.商场销售5台A型号和1台B型号计算器, 可获利润76元;销售6台A型号和3台B型号计算器, 可获利120元.(1)求商场销售A, B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A, B两种型号计算器共70台, 问最少需要购进A型号的计算器多少台?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、C4、C5、C6、A7、A8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22、83、3 44、205.AC=DF(答案不唯一)6、±3三、解答题(本大题共6小题, 共72分)1.(1) x=;(2) y=3;(3)x=﹣1;(4)a=4.4.2.x=1, y=-1, k=9.3、(1)90°;(2)①α+β=180°;②α=β.4.60°5.(1)50;72;(2)详见解析;(3)330.6、A型42元, B型56元;30台.。
2024北京石景山初一(上)期末数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12−的相反数是 (A )12(B )12−(C )2 (D )2−2.以河岸边步行道的平面为基准,河面高 1.8m −,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m −(C )6.8m(D ) 6.8m −3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养老助餐服务(其10 534用科学记数法可表示为 (A )310.53410⨯(B )41.053410⨯(C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1(B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是(A )20︒ (B )40︒ (C )50︒ (D )70︒6. 下列运算正确的是(A )325+=a b ab (B )2222−=c c(C )2()2−−=−+a b a b(D )22243−=−x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒, 则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ab >(B )<−a b (C )20+>a(D )20−>a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________.10. 如图是一数值转换机的示意图,若输入1=−x ,则输出的结果是 .11. 若233m x y −与253m x y −−是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25−=x m 的解,则m 的值为 .13.A 村和B 村送水,修在 (请在,,D E F 中选择)处可使所用第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r的字母表示)15.规定一种新运算:1⊕=+−+a b a b ab ,例如:23232310⊕=+−⨯+=,(1)请计算:2(1)⊕−___________.(2)若32x −⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a −称为a 的差倒数,如2的差倒数是1112=−−,-1的差倒数是111(1)2=−− .已知113α=−,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312−+−.18.计算:11124()834−⨯−+19.计算:3122(7)2−+⨯−÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程: (1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=−. 22.解方程:211123x x +−−=. 23.先化简,再求值:22(28)(14)x x x −−−−,其中2x =−.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ;(2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: . 25.列方程解应用题:lA某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套? 26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点.(1)如图,若=4AC ,求CD 的长.根据题意,补全解题过程:∵10,4AB AC CB ===,AB − , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1− 13.E ;两点之间线段最短 14. 22()a r π−15.(1)4;(2)1 16.13−三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=−+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=−+− ………………………… 3分 1=−. ………………………… 5分19.解:原式82(7)2=−+⨯−⨯ ………………………… 2分 828=−− ………………………… 4分 36=−. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x −−−=. ………………………… 5分 21.解:移项,得53182x x −=−−. ………………………… 2分 合并同类项,得 220x =−. ………………………… 4分 系数化为1,得10x =−. ………………………… 5分 ∴10x =−是原方程的解.22.解:去分母,得 3(21)2(1)6x x +−−=. ………………………… 2分 去括号,得 63226x x +−+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =−−−+2217x =−. …………………………4分 当2x =−时,原式22(2)17=⨯−−.9=−. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x −)套. …… 1分 根据题意可得,180210(50)9600x x +−=. ………………………… 3分 解得:30x =. 则5020x −=. ………………………… 5分答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB − AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒,∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠−∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒−︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x −≤≤. …………………………7分。
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
新七年级(上)期末考试数学试题及答案一.填空题(满分18分,每小题3分)1.的相反数是.2.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为.3.已知x=3是方程ax﹣6=a+10的解,则a=.4.把58°18′化成度的形式,则58°18′=度.5.将473000用科学记数法表示为.6.代数式x2+x+3的值为7,则代数式x﹣3的值为.二.选择题(满分32分,每小题4分)7.下列方程中,是一元一次方程的是()A.3x+2y=0 B.=1 C.=1 D.3x﹣5=3x+2 8.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.49.下列各组式子中,不是同类项的是()A.﹣6和﹣B.6x2y和3yx2C.2a2b和3ab2D.3m2n和﹣5m2n10.已知|﹣x+1|+(y+2)2=0,则x+y=()A.﹣3 B.﹣1 C.3 D.111.如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④12.下列平面图形不能够围成正方体的是()A.B.C.D.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元14.一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),则a2018等于()A.﹣1 B.C.1 D.2三.解答题(共9小题,满分70分)15.(8分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+316.(10分)解方程:=1+.17.(6分)∠α和∠β互余,且∠α:∠β=1:5,求∠α和∠β的补角各是多少度?18.(7分)如图,点B是线段AC上一点,且AC=10,BC=4.(1)求线段AB的长;(2)如果点O是线段AC的中点,求线段OB的长.19.(7分)(1)(﹣+﹣)×(﹣48)(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]20.(7分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.21.(7分)如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.22.(7分)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(11分)实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.参考答案一.填空题1.的相反数是.【分析】直接根据相反数的定义求解.解:的相反数是.故答案为.【点评】本题考查了相反数:a的相反数为﹣a.2.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.解:用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.3.已知x=3是方程ax﹣6=a+10的解,则a=8 .【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.【点评】本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.把58°18′化成度的形式,则58°18′=58.3 度.【分析】根据小单位化大单位除以进率,可得答案.解:58°18′=58°+18÷60=58.3°,故答案为:58.3.【点评】本题考查了度分秒的换算,小单位化大单位除以进率60是解题关键.5.将473000用科学记数法表示为 4.73×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.代数式x2+x+3的值为7,则代数式x﹣3的值为﹣2 .【分析】由已知条件得出x2+x=4,代入到原式=(x2+x)﹣3,计算可得.解:∵x2+x+3=7,∴x2+x=4,则原式=(x2+x)﹣3=×4﹣3=1﹣3=﹣2,故答案为:﹣2.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.二.选择题(共8小题,满分32分,每小题4分)7.下列方程中,是一元一次方程的是()A.3x+2y=0 B.=1 C.=1 D.3x﹣5=3x+2 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.解:A、3x+2y=0,含两个未知数,故不是一元一次方程,故错误;B、=1,是一元一次方程,故此选项正确;C、不是整式方程,故错误;D、3x﹣5=3x+2,左右不相等,且整理后不含有未知数,故错误;故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.4【分析】根据相反数的概念、单项式的定义、等式的性质和两点间的距离的定义进行解答即可.解:a,b互为相反数,当a=0时,b=0,无意义,①错误;πxy的系数是π,②错误;若=,则x=y,③正确;A,B两点之间的距离是线段AB的长度,④错误.故选:A.【点评】本题考查的是相反数的概念、单项式的定义、等式的性质和两点间的距离的定义,掌握相关的概念和性质是解题的关键.9.下列各组式子中,不是同类项的是()A.﹣6和﹣B.6x2y和3yx2C.2a2b和3ab2D.3m2n和﹣5m2n【分析】直接利用同类项的定义分析得出答案.解:A、﹣6和﹣,是同类项,不合题意;B、6x2y和3yx2,是同类项,不合题意;C、2a2b和3ab2,不是同类项,符合题意;D、3m2n和﹣5m2n,是同类项,不合题意;故选:C.【点评】此题主要考查了同类项,正确把握相关定义是解题关键.10.已知|﹣x+1|+(y+2)2=0,则x+y=()A.﹣3 B.﹣1 C.3 D.1【分析】直接利用绝对值以及偶次方的性质得出x,y的值进而得出答案.解:∵|﹣x+1|+(y+2)2=0,∴﹣x+1=0,y+2=0,解得:x=1,y=﹣2,故x+y=1﹣2=﹣1.故选:B.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.11.如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.12.下列平面图形不能够围成正方体的是()A.B.C.D.【分析】直接利用正方体的表面展开图特点判断即可.解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.【点评】主要考查了正方体的表面展开图.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元【分析】这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.解:这件商品的进价为x元,根据题意得:220﹣x=10%x,解得:x=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),则a2018等于()A.﹣1 B.C.1 D.2【分析】根据题意可以求得前几个数的值,从而可以发现题目中数字的变化规律,从而可以求得a2018的值.解:∵一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),∴a1=2,a=﹣1,2a=,3a=2,4∴每三个数为一个循环,∵2018÷3=672…2,∴a2018=﹣1,故选:A.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.三.解答题(共9小题,满分70分)15.(8分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+3【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算绝对值运算,再计算加减运算即可求出值.解:(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(10分)解方程:=1+.【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.解:去分母,得4(x+2)=12+3(2x﹣1),去括号,得4x+8=12+6x﹣3,移项,得4x﹣6x=12﹣3﹣8,合并同类项,得﹣2x=1,系数化成1得x=﹣.【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.17.(6分)∠α和∠β互余,且∠α:∠β=1:5,求∠α和∠β的补角各是多少度?【分析】先根据∠α和∠β互余,且∠α:∠β=1:5,设∠α=x,则∠β=5x,利用余角的性质求出∠α和∠β的度数,再根据补角的性质即可解答.解:∵∠α和∠β互余,且∠α:∠β=1:5,∴设∠α=x,则∠β=5x,∴x+5x=90,解得x=15°,∴∠α=15°,∠β=5×15°=75°,∴∠α的补角是180°﹣15°=165°,∠β的补角是180°﹣75°=105°.故答案为:165、105.【点评】本题考查的是余角和补角的定义,比较简单.18.(7分)如图,点B是线段AC上一点,且AC=10,BC=4.(1)求线段AB的长;(2)如果点O是线段AC的中点,求线段OB的长.【分析】(1)直接根据AB=AC﹣BC进行解答即可;(2)先根据中点的定义求出OC的长,再由OB=OC﹣BC即可得出结论.解:(1)∵AC=10,BC=4,∴AB=AC﹣BC=10﹣4=6;(2)∵AC=10,点O是线段AC的中点,∴OC=AC=×10=5,∵BC=4,∴OB=OC﹣BC=5﹣4=1.【点评】本题考查的是两点间的距离,熟线段之间的和、差及倍数关系式解答此题的关键.19.(7分)(1)(﹣+﹣)×(﹣48)(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.解:(1)原式=8﹣36+4=﹣24;(2)原式=﹣1+××(﹣7)=﹣1﹣=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(7分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(7分)如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.【分析】(1)根据角平分线的定义可以得到∠COE=∠AOC,∠COD=∠BOC,然后根据∠DOE=∠COE﹣∠COD即可求解;(2)与(1)的解法相同;(3)根据(2)的结果即可直接写出结论.解:(1)∵∠AOB=90°,∠BOC=38°∴∠AOC=∠AOB+∠BOC=90°+38°=128°又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×128°=64°∠COD=∠BOC=×38°=19°∴∠DOE=∠COE﹣∠COD=64°﹣19°=45°(2)∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β)∠COD=∠BOC=β∴∠DOE=∠COE﹣∠COD=(α+β)﹣β=α+β﹣β=α;(3)∠DOE的大小与∠BOC的大小无关.【点评】本题考查了角度的计算,正确确定角度的和或差,理解角平分线的定义是关键.22.(7分)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60﹣20=t(1+),解答即可;(2)把在工期内的情况进行比较即可;解:(1)设甲、乙两队合作t天,由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,∴60﹣20=t(1+)解得:t=24(2)(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(11分)实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.【分析】(1)根据“开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米”,即可得出a、k之间的关系式,变形后即可得出结论;(2)根据两容器水位间的关系列出a、k、t的代数式,将(1)的结论代入其内整理后即可得出结论;(3)由(1)中的k=4﹣结合a、k均为正整数即可得出a、k的值,经检验后可得出a、k值合适,再将乙容器内水位上升的高度转换成甲容器内水位上升的高度结合水位上升的总高度=单位时间水位上升的高度×注水时间即可得出关于t的一元一次方程,解之即可得出结论.解:(1)根据题意得:a+1=2+,解得;k=4﹣.(2)根据题意得:at=1+2+,∵k=4﹣,∴at=3+(4﹣)=3+at﹣t,∴t=3.(3)∵k=4﹣,且a、k均为正整数,∴或.∵a<=5,k<4,∴或符合题意.①当时,15+(14﹣2)×4=at+akt=2t+4t,解得:t=;②当时,15+(14﹣2)×4=at+akt=4t+12t,解得:t=.综上所述:a、k、t的值为2、2、或4、3、.【点评】本题考查了一元一次方程的应用以及列代数式,根据两容器半径及注水量的关系列出代数式是解题的关键.新七年级(上)期末考试数学试题及答案一.填空题(满分18分,每小题3分)1.的相反数是.2.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为.3.已知x=3是方程ax﹣6=a+10的解,则a=.4.把58°18′化成度的形式,则58°18′=度.5.将473000用科学记数法表示为.6.代数式x2+x+3的值为7,则代数式x﹣3的值为.二.选择题(满分32分,每小题4分)7.下列方程中,是一元一次方程的是()A.3x+2y=0 B.=1 C.=1 D.3x﹣5=3x+2 8.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.49.下列各组式子中,不是同类项的是()A.﹣6和﹣B.6x2y和3yx2C.2a2b和3ab2D.3m2n和﹣5m2n10.已知|﹣x+1|+(y+2)2=0,则x+y=()A.﹣3 B.﹣1 C.3 D.111.如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④12.下列平面图形不能够围成正方体的是()A.B.C.D.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元14.一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),则a2018等于()A.﹣1 B.C.1 D.2三.解答题(共9小题,满分70分)15.(8分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+316.(10分)解方程:=1+.17.(6分)∠α和∠β互余,且∠α:∠β=1:5,求∠α和∠β的补角各是多少度?18.(7分)如图,点B是线段AC上一点,且AC=10,BC=4.(1)求线段AB的长;(2)如果点O是线段AC的中点,求线段OB的长.19.(7分)(1)(﹣+﹣)×(﹣48)(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]20.(7分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.21.(7分)如图所示,OE,OD分别平分∠AOC和∠BOC,(1)如果∠AOB=90°,∠BOC=38°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.22.(7分)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(11分)实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.参考答案一.填空题1.的相反数是.【分析】直接根据相反数的定义求解.解:的相反数是.故答案为.【点评】本题考查了相反数:a的相反数为﹣a.2.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.解:用两根钉子钉木条时,木条就会固定不动,用数学知识解释这两种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.3.已知x=3是方程ax﹣6=a+10的解,则a=8 .【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.解:∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为:8.【点评】本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.把58°18′化成度的形式,则58°18′=58.3 度.【分析】根据小单位化大单位除以进率,可得答案.解:58°18′=58°+18÷60=58.3°,故答案为:58.3.【点评】本题考查了度分秒的换算,小单位化大单位除以进率60是解题关键.5.将473000用科学记数法表示为 4.73×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将473000用科学记数法表示为4.73×105.故答案为:4.73×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.代数式x2+x+3的值为7,则代数式x﹣3的值为﹣2 .【分析】由已知条件得出x2+x=4,代入到原式=(x2+x)﹣3,计算可得.解:∵x2+x+3=7,∴x2+x=4,则原式=(x2+x)﹣3=×4﹣3=1﹣3=﹣2,故答案为:﹣2.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.二.选择题(共8小题,满分32分,每小题4分)7.下列方程中,是一元一次方程的是()A.3x+2y=0 B.=1 C.=1 D.3x﹣5=3x+2 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.解:A、3x+2y=0,含两个未知数,故不是一元一次方程,故错误;B、=1,是一元一次方程,故此选项正确;C、不是整式方程,故错误;D、3x﹣5=3x+2,左右不相等,且整理后不含有未知数,故错误;故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.下列结论正确的个数是()①若a,b互为相反数,则=﹣1;②πxy的系数是;③若=,则x=y;④A,B两点之间的距离是线段AB.A.1 B.2 C.3 D.4【分析】根据相反数的概念、单项式的定义、等式的性质和两点间的距离的定义进行解答即可.解:a,b互为相反数,当a=0时,b=0,无意义,①错误;πxy的系数是π,②错误;若=,则x=y,③正确;A,B两点之间的距离是线段AB的长度,④错误.故选:A.【点评】本题考查的是相反数的概念、单项式的定义、等式的性质和两点间的距离的定义,掌握相关的概念和性质是解题的关键.9.下列各组式子中,不是同类项的是()A.﹣6和﹣B.6x2y和3yx2C.2a2b和3ab2D.3m2n和﹣5m2n【分析】直接利用同类项的定义分析得出答案.解:A、﹣6和﹣,是同类项,不合题意;B、6x2y和3yx2,是同类项,不合题意;C、2a2b和3ab2,不是同类项,符合题意;D、3m2n和﹣5m2n,是同类项,不合题意;故选:C.【点评】此题主要考查了同类项,正确把握相关定义是解题关键.10.已知|﹣x+1|+(y+2)2=0,则x+y=()A.﹣3 B.﹣1 C.3 D.1【分析】直接利用绝对值以及偶次方的性质得出x,y的值进而得出答案.解:∵|﹣x+1|+(y+2)2=0,∴﹣x+1=0,y+2=0,解得:x=1,y=﹣2,故x+y=1﹣2=﹣1.故选:B.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.11.如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.12.下列平面图形不能够围成正方体的是()A.B.C.D.【分析】直接利用正方体的表面展开图特点判断即可.解:根据正方体展开图的特点可判断A、D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选:B.【点评】主要考查了正方体的表面展开图.13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品按220元销售,可获利10%,则这件商品的进价为()A.240元B.200元C.160元D.120元【分析】这件商品的进价为x元,根据利润=销售价格﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.解:这件商品的进价为x元,根据题意得:220﹣x=10%x,解得:x=200.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),则a2018等于()A.﹣1 B.C.1 D.2【分析】根据题意可以求得前几个数的值,从而可以发现题目中数字的变化规律,从而可以求得a2018的值.解:∵一列数a1,a2,a3…满足条件:a1=2,a n=(n≥2,且n为整数),∴a1=2,a=﹣1,2a=,3a=2,4∴每三个数为一个循环,∵2018÷3=672…2,∴a2018=﹣1,故选:A.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.三.解答题(共9小题,满分70分)15.(8分)计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣)÷(﹣)2(3)20×+(﹣20)×+20×(﹣)(4)﹣|﹣|﹣|﹣|+3【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式逆用乘法分配律计算即可求出值;(4)原式先计算绝对值运算,再计算加减运算即可求出值.解:(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(10分)解方程:=1+.【分析】去分母、去括号、移项、合并同类项,系数化成1即可求解.解:去分母,得4(x+2)=12+3(2x﹣1),去括号,得4x+8=12+6x﹣3,移项,得4x﹣6x=12﹣3﹣8,合并同类项,得﹣2x=1,系数化成1得x=﹣.【点评】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.17.(6分)∠α和∠β互余,且∠α:∠β=1:5,求∠α和∠β的补角各是多少度?【分析】先根据∠α和∠β互余,且∠α:∠β=1:5,设∠α=x,则∠β=5x,利用余角的性质求出∠α和∠β的度数,再根据补角的性质即可解答.解:∵∠α和∠β互余,且∠α:∠β=1:5,∴设∠α=x,则∠β=5x,∴x+5x=90,解得x=15°,∴∠α=15°,∠β=5×15°=75°,∴∠α的补角是180°﹣15°=165°,∠β的补角是180°﹣75°=105°.故答案为:165、105.【点评】本题考查的是余角和补角的定义,比较简单.18.(7分)如图,点B是线段AC上一点,且AC=10,BC=4.(1)求线段AB的长;(2)如果点O是线段AC的中点,求线段OB的长.【分析】(1)直接根据AB=AC﹣BC进行解答即可;(2)先根据中点的定义求出OC的长,再由OB=OC﹣BC即可得出结论.解:(1)∵AC=10,BC=4,∴AB=AC﹣BC=10﹣4=6;(2)∵AC=10,点O是线段AC的中点,∴OC=AC=×10=5,。
人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.数据380000用科学记数法表示为()A .338010⨯B .53.8010⨯C .438.010⨯D .60.38010⨯3.下列说法正确的是()A .23x -的系数是3B .25xy π的系数是5C .23x y 的次数是5D .12xy π的次数是34.若23n x y -与35m x y 是同类项,则m-n 的值是()A .0B .1C .1-D .55.下图是正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是()A .礼B .年C .百D .赞6.下列方程的变形,正确的是()A .由35x +=,得53x =+B .由74x =-,得74x =-C .由102y =,得2y =D .由32x +=-,得23x =--7.下列叙述正确的是()A .画直线10AB =厘米B .若两数的和为负数,则这两个数一定负数C .河道改直可以缩短航程是因为“经过两点有一条直线并且只有一条直线”D .由四舍五入得到的近似数36.810⨯,精确到百位8.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则∠BAC 的度数是()A.60°B.100°C.120°D.140°9.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是()A.c<a<b B.abc>0C.a+b>0D.|c﹣b|>|a﹣b|10.某书中有一方程213x+=-■,其中一个数字被污渍盖住了,书后该方程的答案为1x=-,那么■处的数字应是()A.5B.-5C.12D.12-二、填空题11.冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,则冷藏室比冷冻室的温度高_________℃.12.比较大小:-3_________-π.13.若α∠的余角是23°20',则α∠=_________.14.已知3x-8与2互为相反数,则x=________.15.长方形的长是3a,宽是2a-b,则长方形的周长是___________.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为_________.17.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为___.18.按照如图所示的操作步骤,若输入的值为4,则输出的值为______.三、解答题19.计算:(1)5﹣4×(﹣14)﹣|﹣3|(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]20.解方程:(1)10x ﹣12=5x+15(2)1121(1)]()3232x x x --=-21.先化简,再求值:()22(69)63m mn n mn ---,其中1m =,3n =-.22.如图,已知C ,D 是线段AB 上的两点,C 是AD 的中点,3CD BD =.(1)图中以点A ,B ,C ,D 中任意两点为端点的线段共有多少条;(2)设2cm BD =,求AB 的长.23.某车间32名工人生产桌子和椅子,每人每天平均生产桌子15张或椅子50把,一张桌子要配两把椅子,已知车间每天安排x 名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x 的式子表示)(2)如果每天生产的桌子和椅子刚好配套,求x 的值.24.如图,将直角三角尺OCD 的直角顶点O 放在直线AB 上,并且∠AOC 的度数是∠BOD 的度数的2倍.(1)∠BOD 的余角是_________,∠BOD 的补角是____________;(2)求∠BOD 的度数;(3)若OE ,OF 分别平分∠BOD ,∠BOC ,求∠EOF 的度数.25.玲玲用3天时间看完一本课外读物,第一天看了a 页,第二天看的页数比第一天多50页,第三天看的页数比第一天少20页.(1)用含a 的代数式表示这本书的页数;(2)当a =50时,这本书的页数是多少?(3)如果这本书有270页,玲玲第一天看了多少页?26.如图,在数轴上点A 表示数a ,点B 表示数b ,a 、b 满足()2530a b -++=,点O 是数轴原点.(1)计算点A 表示的数、点B 表示的数;(2)若将数轴折叠,使得点A 与点B 重合,则点O 与数_________表示的点重合;(3)点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在线段AB 上找一点C ,使2AC BC =,写出点C 在数轴上表示的数;(4)若点A 以0.5cm/s 的速度向左移动,2秒后,点B 以1cm/s 的速度向右移动,则B 出发几秒后,A 、B 两点相距1个单位长度?参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.B 【分析】根据科学记数法的定义,即可得到答案.【详解】380000=53.8010⨯,故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法的形式:a×10n (1≤|a|<10,n 为整数),是解题的关键.3.C 【分析】根据单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数,逐项判断,选择即可.【详解】23x -的系数是-3,故A 选项错误,不符合题意;25xy π的系数是5π,故B 选项错误,不符合题意;23x y 的次数是5,故C 选项正确,符合题意;12xy π的次数是2,故D 选项错误,不符合题意;故选C .【点睛】本题考查单项式的系数和次数.掌握单项式的系数和次数的定义是解答本题的关键.4.C 【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】由题意得:m=2,n=3,∴231m n -=-=-.故选:C .【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.5.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.6.D 【分析】直接根据等式的性质求解.【详解】3+x=5,两边同时减去3,得x=5-3,A 错误;74x =-,两边同时除以7,得47x =-,B 错误;102y =,两边同时乘以2,得0y =,C 错误;32x +=-,两边同时减去3,得23x =--,D 正确;故答案为:D .【点睛】本题主要考查了等式的性质应用,准确计算是解题的关键.7.D 【分析】根据两点间的距离的含义和求法,近似数,以及直线的性质和应用,逐一判断即可.【详解】∵直线向两边无限延伸,∴直线没有具体的长度,∴选项A 不正确;∵若两数的和为负数,则这两个数可因为一正一负,∴选项B 不正确;∵河道改直可以缩短航程,是因为两点间线段的长度最短,∴选项C 不正确;∵由四舍五入得到的近似数36.810⨯,精确到百位,∴选项D 正确.故选D .【点睛】此题考查近似数,两点间的距离的含义和求法,以及直线的性质和应用,解题关键在于熟练掌握其定义.8.D 【分析】∠BAC 等于三个角的和,求出各角的度数,相加即可.【详解】解:如图,∵∠BAE=60°,∴∠BAD=30°,∴∠BAC=30°+90°+20°=140°,故选:D .【点睛】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.9.C 【分析】由a 、b 、c 在数轴上的位置可判断选项A ;由a 、b 、c 的符号可判断选项B ;由有理数的加法法则可判断选项C ;由两点之间的距离可判断选项D .【详解】解:∵a 、b 、c 在数轴上的位置从左到右排列为:c 、a 、b ,∴c <a <b ,故选项A 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,c <0,∴abc >0,故选项B 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,且|a|>|b|,∴a+b <0,故选项C 错误;由a 、b 、c 在数轴上的位置可知:表示数a 的点到表示数b 的点的距离小于表示数c 的点到表示数b 的点的距离,∴|c ﹣b|>|a ﹣b|,故选项D 正确;故选C .【点睛】本题主要考查了有理数与数轴,解题的关键在于能够通过数轴准确判断a 、b 、c 的符号和绝对值的大小.10.A 【分析】将x=-1代入方程23x +■=−1即可求解.【详解】解:∵x=-1是方程23x +■=−1的解,∴2(1)3+⨯-■=−1,∴■=5,故选:A .【点睛】本题考查了一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.11.12【分析】结合题意,根据正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,∴冷藏室比冷冻室的温度高:()5712--=℃故答案为:12.【点睛】本题考查了正负数、有理数加减运算的知识;解题的关键是熟练掌握有理数加减运算的性质,从而完成求解.12.>【分析】先比较3和π的大小,再根据负数绝对值大的反而小即可比较-3和-π的大小.【详解】解:因为3-<π-,所以-3>-π.故答案为:>.【点睛】本题主要考查了实数的大小的比较,两个负数比较大小,绝对值大的反而小.本题中要注意的是π是无理数即无限不循环小数.13.6640'︒【分析】根据余角的定义“如果两个角的和是直角,那么称这两个角互为余角”,计算即可.【详解】902320896023206640α''''∠=︒-︒=︒-︒=︒,故答案为:6640'︒.14.2【详解】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x 的一元一次方程,解方程即可得答案.15.10a -2b 【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b )=2(5a-b )=10a-2b ,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题的关键.16.2cm 或4cm 【分析】由点在线段的位置关系,线段的和差计算AC 的长为2cm 或4ccm .【详解】AC 的长度有两种情况:①点C 在线段AB 的延长线时,如图1所示:∵AC=AB+BC ,AB=1cm ,BC=3cm ,∴AC=1+3=4cm ;②点C 在线段AB 的反向延长线时,如图2所示:∵AC=BC-AB,AB=1cm,BC=3cm,∴AC=3-1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.【点睛】本题综合考查了线段的延长线,线段的反向延长线,线段的和差计算等知识点,重点掌握两点间距离计算方法,易错点点在线段的反向延长线上时,计算线段的大小.17.2【分析】根据题意,可得:2x+2﹣x=2x+x﹣2,据此求出x的值为多少即可.【详解】解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.【点评】此题主要考查了新定义下的运算,以及解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.28【分析】根据图中的操作步骤一步步计算即可.【详解】根据题意:输入4,得到2416,∵10<16,∴(16-9)×4=28.故答案为28.【点睛】本题是程序类题目,主要考察有理数运算和理解能力,判断大小选择正确的路径计算是关键.19.(1)3(2)-21【分析】(1)根据有理数的混合运算的法则,先计算乘法及绝对值运算,再计算加减运算即可求出值;(2)根据有理数的混合运算的法则,先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)5﹣4×(﹣14)﹣|﹣3|=5+1﹣3=3;(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]=﹣1﹣4×5=﹣21.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)x=5.4;(2)x=1.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【详解】(1)移项,得10x ﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=5.4;(2)去括号,得16x +=213x -,方程的两边同时乘以6,得x+1=4x ﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.21.24m n -,5-.【分析】先去括号,再合并同类项,最后代入1m =,3n =-计算解题,注意添括号的作用【详解】()22(69)63m mn n mn ---2=466m mn n mn--+24m n =-当1m =,3n =-时原式24m n =-241(3)=⨯--49=-5=-【点睛】本题考查整式的化简求值,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)共6条;(2)14cm 【分析】(1)结合题意,根据线段的性质分析,即可得到答案;(2)结合题意,根据线段性质,得6cm CD =;再结合线段中点的性质,推导得2AD CD =,通过线段和差计算,即可得到答案.【详解】(1)根据题意,图中以点A ,B ,C ,D 中任意两点为端点的线段有:AB 、AC 、AD 、CD 、CB 、DB ,共6条;(2)∵2cm BD =,3CD BD=∴6cmCD =∵C 是AD 的中点∴212cmAD CD ==∴14cm AB AD BD =+=.【点睛】本题考查了线段的知识;解题的关键是熟练掌握线段中点、线段和差运算的性质,从而完成求解.23.(1)车间每天生产桌子:15x 张;车间每天生产椅子:501600x -+张;(2)20x =【分析】(1)根据题意,得车间每天安排()32x -名工人生产椅子;结合代数式的性质分析,即可得到答案;(2)结合题意,根据一元一次方程的性质列方程并求解,即可得到答案.【详解】(1)∵车间每天安排x 名工人生产桌子,车间32名工人生产桌子和椅子∴车间每天安排()32x -名工人生产椅子∵一张桌子要配两把椅子∴车间每天生产桌子:15x 张;车间每天生产椅子:()5032501600x x ⨯-=-+张;(2)∵每天生产的桌子和椅子刚好配套∴152501600x x ⨯=-+∴30501600x x +=∴20x =.【点睛】本题考查了代数式、一元一次方程的知识;解题的关键是熟练掌握代数式、一元一次方程的性质,从而完成求解.24.(1)∠AOC ;∠AOD(2)∠BOD=30°;(3)∠EOF=45°.【分析】(1)根据余角和补角的定义可直接得出结论;(2)根据补角的定义得到∠AOC+∠BOD=90°,根据题意列式计算求出∠BOD ;(3)根据角平分线的定义分别求出∠BOF、∠BOE,结合图形计算,得到答案.(1)解:由题意可得∠COD=90°,∴∠AOC+∠BOD=90°,∠AOD+∠BOD=180°,∴∠BOD的余角是∠AOC,补角是∠AOD,故答案为:∠AOC;∠AOD;(2)解:∵∠COD=90°,∠AOC+∠COD+∠BOD=180°,∴∠AOC+∠BOD=90°,∵∠AOC的度数是∠BOD的度数的2倍,∴∠AOC=2∠BOD,∴2∠BOD+∠BOD=90°,∴∠BOD=30°;(3)解:由题意得,∠BOC=∠BOD+∠COD=30°+90°=120°,∵OE,OF分别平分∠BOD,∠BOC,∴∠BOF=12∠BOC=60°,∠BOE=12∠BOD=15°,∴∠EOF=∠BOF-∠BOE=45°.【点睛】本题考查的是角平分线的定义、余角和补角的概念,掌握相关的概念和定义是解题的关键.25.(1)3a+30(2)180(3)80【分析】(1)先用含a的代数式表示出第二天、第三天的读书页码,再表示出这本书的页码;(2)把a=50代入,求出书的页数;(3)利用(1)中关系式把270代入求出答案.【详解】(1)这本书的页数为:a+(a+50)+(a-20)=a+a+50+a﹣20,=3a+30;(2)当a =50时,3a+30,=3×50+30,=180,答:当a =50时,这本书的页数是180页;(3)由题意可得:3a+30=270,解得:a =80,答:玲玲第一天看了80页.【点睛】本题考查了列代数式、求代数式的值.解决本题的关键是弄清关键词,理清题意.26.(1)点A 表示的数为5、点B 表示的数3-;(2)2;(3)13-;(4)B 出发4或163t =秒后,A 、B 两点相距1个单位长度【分析】(1)根据绝对值、乘方的性质,得50a -=,()230b +=,从而得50a -=,30b +=,通过求解一元一次方程,即可得到答案;(2)点G 为线段AB 的中点,根据数轴和线段中点的性质,得点G 表示的数;结合题意,再根据数轴的性质计算,即可得到答案;(3)根据题意,计算得8AB =,结合线段的和差性质,列一元一次方程并求解,得83BC =,再根据坐标的性质计算,即可得到答案;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度,根据题意列一元一次方程并求解,即可得到答案.【详解】(1)∵()2530a b -++=∴50a -=,()230b +=∴50a -=,30b +=∴5a =,3b =-∴点A 表示的数为5、点B 表示的数3-;(2)如图,点G 为线段AB 的中点∵点A 表示的数为5、点B 表示的数3-;∴点G 表示的数为:()5312+-=∴101OG =-=∵将数轴折叠,使得点A 与点B 重合∴将数轴沿点G 折叠∴与点O 重合的点为:112+=,即点O 与数2表示的点重合故答案为:2;(3)∵点A 表示的数为5、点B 表示的数3-;∴()538AB =--=∵点C 在线段AB 上,且2AC BC =,又∵AC BC AB+=∴38BC BC AB +==∴83BC =∵点B 表示的数为3-∴点C 表示的数为:81333-+=-;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度根据题意,得:()0.5281t t ++=-,或()0.528+1t t ++=去括号,得:0.5181t t ++=-,或0.518+1t t ++=移项并合并同类项,得:4t =,或163t =∴B 出发4或163t =秒后,A 、B 两点相距1个单位长度.。
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
2024北京朝阳初一(上)期末数 学(选用)(考试时间90分钟 满分100分)考生须知1.本试卷共6页.在试卷和答题卡上准确填写学校名称、班级、姓名和考号. 2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.3.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷、答题卡和草稿纸一并交回. 一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个. 1.2−的绝对值为( )A .2−B .2−−C .12− D .22.2023年我国规模以上内容创作生产营业收人累计值前三个季度分别约为6500亿元13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为( ) A .239510⨯ B .43.9510⨯ C .33.9510⨯ D .50.39510⨯ 3.若34x y −与a x y 是同类项,则a 的值为( ) A .2− B .2 C .3 D .44.下列图形中可以作为一个正方体的展开图的是( )A B CD5.如果a b =,那么下列等式一定成立的是( ) A .33a b +=− B .0a b += C .44a b= D .1ab = 6.已知α∠与β∠互为补角,并且α∠的2倍比β∠大30︒,则,αβ∠∠分别为( )A .70︒,110︒B .40︒,50︒C .75︒,115︒D .50︒,130︒7.,a b 是有理数,它们在数轴上的对应点的位置如图所示.下列各式正确的是( )A .b a a b −<−<<B .a b a b −<−<<C .b a a b <−<<−D .b b a a <−<−<8.对幻方的研究体现了中国古人的智慧.如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为( )A .5B .1C .0D .1−二、填空题(共24分,每题3分)9.如果60m 表示向东走60m ,那么80m −表示______.10.请写出一个次数为3,系数是负数的单项式:______. 11.计算:2(2)43−÷⨯=______. 12.计算:48296021''︒+︒=______.13.北京冬季某一天的温差是10℃,若这天的最高气温是t ℃,则最低气温是______℃.(用含t 的式子表示)14.举例说明“若,a b 是有理数,则a b a +>”是错误的,请写出一个b 的值:b =______.15.如图,一艘快艇S 从灯塔O 南偏东60︒的方向上的某点出发,绕着灯塔O 逆时针方向以每个时间单位3︒的转速旋转1周,当14AOS BOS ∠=∠时,快艇S 旋转了______个时间单位.16.某社区为增强居民体质,体现以人民为中心的理念,准备到一家健身器材专卖店购置一批健身器材供居民健身使用.该专卖店推出两种优惠活动,并规定只能选择其中一种. 活动一:所购商品按原价打八折;活动二:所购商品按原价每满..400元减100元.(如:所购商品原价为400元,可减100元,需付款300元;所购商品原价为900元,可减200元,需付款700元)(1)若购买一件原价为550元的健身器材,更合算的选择方式为活动______;(2)若购买一件原价为(01200)a a <<元的健身器材,选择活动二比选择活动一更合算,则a 的取值范围是______.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分) 17.如图,已知线段AB 和点,C D 是线段AB 的中点.(1)根据要求画图: ①画直线DC ; ②画射线BC ;③连接AC 并延长到点E ,使CE AC =;④连接BE .(2)(1)中线段,DC BE 之间的等量关系是______. 18.计算:()()81021−+++−.19.计算:()12112236⎛⎫−−⨯−⎪⎝⎭. 20.当x 取何值时,式子37x +与式子322x −的值相等?21.解方程:21224x x+−=. 22.先化简,再求值:()()2222545x x x x −−−−+,其中2x =−.23.小明家经营一家文化创意产品商店,他在课余时间关注了文化创意背包和文化创意摆件两种商品的销售情况,如下表:元,那么售出文化创意背包和文化创意摆件各多少件?24.如图,长方形的一组邻边长分别为10,(1015)m m <<,在长方形的内部放置4个完全相同的小长方形纸片(图中阴影所示),这样得到长方形ABCD 和长方形EFGH .(1)线段,FG EF 之间的等量关系是______;(2)记长方形ABCD 的周长为1C ,长方形EFGH 的周长为2C ,对于任意的m 值,12C C +的值是否为一个确定的值?若是一个确定的值,请写出这个值,并说明理由;若不是一个确定的值,请举出反例. 25.已知AOB ∠与COD ∠共顶点,,O AOB COD αβ∠=∠=.(1)如图1,点,,A O C 在一条直线上,若60,30,OM αβ=︒=︒为AOD ∠的平分线,ON 为COB ∠的平分线,求MON ∠的度数;(2)若2,,AOB COD αβ=∠∠绕点O 运动到如图2所示的位置,OE 为BOD ∠的平分线,用等式表示AOD ∠与COE ∠之间的数量关系,并说明理由.26.对于数轴上的两条线段,给出如下定义:若其中一条线段的中点恰好是另一条线段的一个三等分点,则称这两条线段互为友好线段.(1)在数轴上,点A 表示的数为-4,点B 表示的数为2,点1C 表示的数为52−,点2C 表示的数为2−,点3C 表示的数为4,在线段123,,BC BC BC 中,与线段AB 互为友好线段的是______; (2)在数轴上,点,,,A B C D 表示的数分别为39,2,,22x xx x −−−−,且,A B 不重合.若线段,AB CD 互为友好线段,直接写出x 的值.参考答案一、选择题(共24分,每题3分)9.向西走80m 10.答案不唯一,如3x − 11.3 12.10850'︒ 13.10t − 14.答案不唯一,如1b =− 15.34或50 16.(1)一 (2)400500a ≤<或8001000a ≤<三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17,解:(1)根据要求所画的图形如图所示:(2)12DC BE =. 18.解:原式()()102811293=++−+−=−=.19.解:()121126824236⎛⎫−−⨯−=−++=⎪⎝⎭. 20.解:根据题意,得37322x x +=−. 32327x x +=−. 525x =. 5x =.所以当5x =时,式子37x +与式子322x −的值相等.21.解:21224x x+=. ()2218x x +−=.428x x +−=. 36x =. 2x =.22.解:原式2222454591x r x x x x =−−+++=++. 当2x =−时,原式13=−.23.解:根据题意可得每件文化创意背包单价260元,每件文化创意摆件单价80元. 设小明家的文化创意产品商店售出文化创意背包x 件. 根据题意,得()26080153000x x +−=. 解得10x =. 所以155x −=.答:小明家的文化创意产品商店售出文化创意背包10件,文化创意摆件5件. 24.解:(1)2EF FC =;(2)1240C C +=. 说明:设FG a =. 根据题意可知2EF a =. 所以()226C FG EF a =+=.因为长方形的一组邻边长分别为10,m , 所以102,2,10BC a AB m a m a =−=−−=. 所以()122028C AB BC m a =+=+−. 所以1220286C C m a a +=+−+2022m a =+−()202m a =+− 40=.25.解:(1)因为点,,A O C 在一条直线上,所以180AOC ∠=︒. 因为60,30αβ=︒=︒,所以150,120AOD COB ∠=︒∠=︒. 因为OM 为AOD ∠的平分线,ON 为COB ∠的平分线,所以1175,6022DOM AOD CON COB ∠=∠=︒∠=∠=︒. 所以30DON CON COD ∠=∠−∠=︒. 所以45MON DOM DON ∠=∠−∠=︒. (2)2AOD COE ∠=∠.说明:如图,因为OE 为BOD ∠的平分线,所以12DOE BOD ∠=∠. 因为COE DOE COD ∠=∠−∠,所以12COE BOD COD ∠=∠−∠.因为2αβ=,所以1122COE BOD α∠=∠−. 因为AOD DOB AOB DOB α∠=∠−∠=∠−, 所以2AOD COE ∠=∠. 26.解:(1)12,BC BC .(2)225,7,9,26.。
新人教版七年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果y=+ +3, 那么yx的算术平方根是()A. 2B. 3C. 9D. ±32.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知(a+1)2+|b+5|=b+5, 且|2a-b-1|=1, 则ab=___________. 2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 如图, 有两个正方形夹在AB与CD中, 且AB//CD,若∠FEC=10°, 两个正方形临边夹角为150°, 则∠1的度数为________度(正方形的每个内角为90°)4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:.2. 先化简, 再求值:(1)3x2-[7x-(4x-3)-2x2], 其中x=5(2) , 其中3. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴).(3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. “大美湿地, 水韵盐城”. 某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生, 要求每位同学选择且只能选择一个最想去的景点, 下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息, 解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图, 并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生, 请估计“最想去景点B“的学生人数.6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.C4.D5.C6.C7、B8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2或4.2.105°3、70.4.-15.316.2或-8三、解答题(本大题共6小题, 共72分)1.x=1.2.(1)5x2-3x-3, 原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5, ﹣4);(2)90°;(3)略4.36平方米5、(1)40;(2)72;(3)280.6.(1)200元和100元(2)至少6件。
201X —201X 学年度上期七年级期末考试
数学试卷
一、选择题:请选择一个最适合的答案,填在题前括号中,祝你成功!(每小题3分,共30分) ( ) 1. 与-3的绝对值相等的数是 A.3 B.0 C.1 D.以上都不对 ( ) 2. 若m 与-4互为相反数,则2
1
m 的负倒数是 A.2
B.-2
C. 2
1
D. 2
1
-
( ) 3. 下列变形符合等式性质的是 A.如果3x -2=6,那么3x=6-2 B.如果2x -1=5,那么2x=5+1 C.如果2x -3=x -1,那么2x -x=-1-3
D.如果4
1
-
x=1,那么x=4 ( ) 4. 如果n 是整数,那么6n A.能被6整除 B.被6整除余1 C.被6整除余2 D.被6整除余3
( ) 5. 一个家庭在今年上半年用电的度数如下:89 73 58 69 76 79,那么这个家庭平均每月用电 A.72度 B.73度 C.74度 D.76度 ( ) 6. 如图所示的物体是一个几何体,从正面看到的图形是
( ) 7. 若关于x 的方程5m+3x=2的解是x=1,则m 的值是 A.1/5 B.-1/5 C.1 D.0
( ) 8. 如果两个角互为补角,而其中一个角是另一个角的5倍,那么这两个角是 A.15o ,75o B. 20o ,100o C. 10o ,50o D. 30o ,150o ( ) 9. 已知下列各数:a ,|a|,a 2,a 2-1,a 2+1,其中一定不是负数的有 A.1个 B.2个 C.3个 D.4个
( ) 10. 某人向北京打电话,通话3分钟以内话费为2元,超出3分钟部分按每分钟1.2元收费(不足1分钟按1分钟计),若某人付了8元话费,则此次通话平均每分钟花费
A.1元
B.1.1元
C.1.2元
D.1.3元 二、填空题:(每小题3分,共30分)
11. 与原点距离为5个单位长度的点有 个,它们表示的有理数是 。
12. 最小的正整数是 ,最大的负整数是 。
13. -618000用科学记数法表示为 。
14. 方程0.2x=4的解是 。
15. 三个连续奇数的和是153,则这三个数分别是 、 、 。
16. 当x= 时,3x+2与x -2的值相等。
17. 23o 17’45’’的余角是 ,补角是 。
18. 在笔直的路边植树100棵,且每相邻的两棵之间的距离都为3米,则这排树首尾之间的距离为 米。
19. 如图,C 是线段AB 的中点,D 是线段AC 的中点,已知图中所有线段的长度之和为26,则线段AC 的长度为 。
20. 某人以每小时3千米的速度步行由甲地到乙地,然后又以每小时每小时6千米的速度从乙地返回甲地,那么某人往返一次的平均速度是每小时 千米。
三、解答题:(共32分) 21. 解方程:(每小题4分,共8分) (1)32x -64=16x+32 (2)6
2
x 31635x 2--=+-
22. 计算:(每小题4分,共24分)
(1)6(2ab+3a)-7(4a -ab) (2)5x 2-[12x -(
3
1
x -6)+4x]
(3)18-[25-(-7)-(-4)]+22-33 (4))2
3(29125)2131(|217|-÷-÷-⨯-
(5)21o 44’÷4 (6)15o 24’+32o 47’-6o 55’
四、按要求解答:(每小题4分,共12分)
23. 如图所示,已知OC是∠AOB的平分线,∠BOC=2∠BOD,∠BOD=27o,求∠AOD的度数。
24. 先化简,再求值:2(ab2-3a2b)-3(ab2-a2b)+4(2ab2-a2b),其中a=2,b=3。
25. 若a的倒数为5,b= -2,c是最大的负整数,求10a+b+c2012的值。
五、应用题:(第26、27题各5分,第28题6分,共16分)
26. 某校七年级二班有学生56人,其中男生比女生多10人,这个班女生有多少人?27. 张华和李明登一座山,张华每分钟登高15米,并且先出发20分钟,李明每分钟登高20米,两人同时登上山顶。
若张华登山用了x分钟,求山高是多少米?
28. 某单位计划购买电脑若干台,现从两家商场了解到同一型号电脑每台报价均为5000元,并且多买都有一定的优惠。
甲商场优惠的条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。
设该单位计划购买电脑x台,根据题意回答下列问题:
(1)若到甲商场购买,需用元(填最简结果);
若到乙商场购买,需用元(填最简结果)。
(2)什么情况下两家商场的收费相同?
201X —201X 学年度上期七年级期末考试
数学试卷参考答案及评分意见
二、填空题:(每小题3分,共30分) 11.2;5,-5 12.1,-1
13.-6.18×105 14.x=20
15.49,51,53 16.-2
17.66o 42’15’’ 156o 42’15’’ 18.297 19.4 20.4
三、解答题:(共32分)
21.解方程(每小题4分,共8分) (1)x=6 (2)x= -18/7 22.计算:(每小题4分,共24分) (1)原式=12ab+18a -28a+7ab
………………2分 =19ab -10a ………………2分 (2)原式=5x 2-12x+(
3
1
x -6)-4x ………………2分 =5x 2-
3
47x -6 ………………2分 (3)原式=18-(25+7+4)+4-27
………………2分 =18-36+4-27 =-41 ………………2分 (4)原式=
)32
(29125)61(215-⨯-÷-⨯
………………2分
=3
2
29512)61(215⨯+⨯
-⨯ =-3+3 =0
………………2分 (5)原式=5o 26’
………………4分
(6)原式=41o 16’
………………4分
四、按要求解答:(每小题4分,共12分) 23.∵∠BOC=2∠BOD , ∴∠BOD=
2
1
∠BOC ………………1分
∴∠COD=∠BOC -∠BOD
=∠BOC -2
1
∠BOC =
2
1
∠BOC =∠BOD =27o
………………1分
∵OC 是∠AOB 的平分线 ∴∠AOC=∠BOC=2∠COD
由题意,∠AOD=3∠BOD=3×27o =81o 即AOD=81o
………………2分 24.将原式化简,得到 7ab 2-7a 2b ………………2分
当a=2,b=3时,7ab 2-7a 2b
=7×2×32-7×22×3 =42
………………2分 25.由题意 a=
5
1
,c= -1 ………………2分 所以10a+b+c 2012=10×5
1
-2+(-1)2012=1
………………2分
五、应用题:(第26、27题各5分,第28题6分,共16分) 26.设女生有x 人,由题意得 ………………1分 10+x+x=56 ………………2分 解之,得 x=23 ………………1分 答:这个班女生有23人。
………………1分 27.由题意有:15x=20(x-20) ………………2分 解之,得 x=80 ………………1分 山高: 15×80=1200(米) ………………1分 答:山高为1200米。
………………1分 28.(1)3750x+1250;4000x ………………2分 (2)由题意有 3750x+1250=4000x ………………2分 解之,得 x=5 ………………1分 答:当购买5台电脑时,两家商场的收费相同。
………………1分。