安徽省阜阳市颍上县二中2013-2014学年八年级(上)数学月考试卷
- 格式:doc
- 大小:219.00 KB
- 文档页数:6
八年级上学期第二次月考数学试卷 (解析版) 一、选择题 1.4的平方根是( )A .2B .2±C .2D .2±2.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .323.如图,在ABC ∆中,AB AC =,AD 是边BC 上的中线,若5AB =,6BC =,则AD 的长为( )A .3B .7C .4D .114.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处5.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .46.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.4 的算术平方根是( )A .16B .2C .-2D .2± 8.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)9.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题11.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )12.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 13.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.14.2x -x 可以取的最小整数为______.15.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.16.已知直角三角形的两边长分别为3、4.则第三边长为________.17.若函数y=kx +3的图象经过点(3,6),则k=_____.18.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.19.计算:16=_______.20.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.三、解答题21.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.22.已知一次函数y=kx+b 的图象经过点A (—1,—5),且与正比例函数的图象相交于点B (2,a ).(1)求a 的值;(2)求一次函数y=kx+b 的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y 轴围成的三角形的面积.23.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C -(1)作出三角形ABC 关于y 轴对称的三角形111A B C(2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .24.如图,点B 、E 、C 、F 在同一条直线上,∠A=∠D ,∠B=∠DEF ,BE=CF .求证:AC=DF .25.已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).四、压轴题26.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.27.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF28.如图,在平面直角坐标系中,直线334y x=-+分别交,x y轴于A B,两点,C为线段AB的中点,(,0)D t是线段OA上一动点(不与A点重合),射线//BF x轴,延长DC 交BF于点E.(1)求证:AD BE=;(2)连接BD,记BDE的面积为S,求S关于t的函数关系式;(3)是否存在t的值,使得BDE是以BD为腰的等腰三角形?若存在,求出所有符合条件的t的值;若不存在,请说明理由.29.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】22+2,11∴点A2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3.C解析:C【解析】首先根据等腰三角形的性质:等腰三角形的三线合一,求出DB=DC12=CB,AD⊥BC,再利用勾股定理求出AD的长.【详解】∵AB=AC,AD是边BC上的中线,∴DB=DC12=CB=3,AD⊥BC,在Rt△ABD中,∵AD2+BD2=AB2,∴AD==4.故选:C.【点睛】本题考查了等腰三角形的性质与勾股定理的应用,做题的关键是根据等腰三角形的性质证出△ADB是直角三角形.4.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC,BC两边的垂直平分线,它们的交点为P,由线段垂直平分线的性质,P A=PB=PC,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.5.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.8.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.9.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.10.B解析:B【解析】【分析】由垂直平分线可得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度即可.【详解】∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长=AB+BD+AD=16,∴△ABC的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B.【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD=DC,进而将求△ABC的周长转换成△ABD的周长再加上AC的长度.二、填空题11.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km(精确到100km).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km ≈6.4×103 km (精确到100km ).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.12.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【解析】计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.【详解】解:当P 在直线上时,,当P 在直线上时,,则.故答案为【点睛】此题主要考查了一次函数与解析:0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.14.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.15.10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D 的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面解析:10【解析】试题分析:如图,根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,∵正方形A、B、C、D的面积分别为2,5,1,2,∵最大的正方形E的面积S3=S1+S2=2+5+1+2=10.16.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:57试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.17.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),k+=,解得:k=1.∴336故答案为:1.18.15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.19.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式24.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.20.【解析】【分析】由直线与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.三、解答题21.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =, ∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM,在△OBN与△BAM中,M ONBOBN BAMOB AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBN≌△BAM(AAS),∴AM=BN,ON=BM,设AM=x,则BN=AM=x,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B的坐标(3,1);如图同理可得,点B的坐标(-1,3),综上所述,点B的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.22.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴521k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象23.(1)见解析(2)点1A的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A、B、C三点关于y轴的对称点位置A1、B1、C1,再连接即可得到△ABC关于y轴对称的△A1B1C1;(2)根据平面直角坐标系写出点1A的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC+的最小值为BC的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即BC=2224+=20.【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.24.证明见解析【解析】试题分析:要证明AC =DF 成立,只需要利用AAS 证明△ABC ≌△DEF 即可.试题解析:证明:∵BF =EC (已知),∴BF +FC =EC +CF ,即BC =EF ,在△ABC 和△DEF 中, ,∴△ABC ≌△DEF (AAS ),∴AC =DF考点:全等三角形的判定与性质.25.详见解析.【解析】【分析】根据题目要求画出线段a 、h ,再画△ABC ,使AB=a ,△ABC 的高为h ;首先画一条直线,再画垂线,然后截取高,再画腰即可.【详解】解:作图:①画射线AE ,在射线上截取AB=a ,②作AB 的垂直平分线,垂足为O ,再截取CO=h ,③再连接AC 、CB ,△ABC 即为所求.【点睛】此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、压轴题26.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD⊥ x轴于D,BE⊥x轴于E,由点A,B的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD⊥x轴于D,BE⊥x轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=12×(2+4)×6﹣12×2×2﹣12×4×4=8;(2)作CH // x轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.27.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.28.(1)详见解析;(2)36(04)2BDEt tS-+≤<=;(3)存在,当78t=或43时,使得BDE是以BD为腰的等腰三角形.【解析】【分析】(1)先判断出EBC DAC∠=∠,CEB CDA∠=∠,再判断出BC AC=,进而判断出△BCE≌△ACD,即可得出结论;(2)先确定出点A,B坐标,再表示出AD,即可得出结论;(3)分两种情况:当BD BE=时,利用勾股定理建立方程2223(4)t t+=-,即可得出结论;当BD DE=时,先判断出Rt△OBD≌Rt△MED,得出DM OD t==,再用OM BE=建立方程求解即可得出结论.【详解】解:(1)证明:射线//BF x轴,EBC DAC∴∠=∠,CEB CDA∠=∠,又C为线段AB的中点,BC AC∴=,在△BCE和△ACD中,CEB CDAEBC DACBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△ACD(AAS),BE AD∴=;(2)解:在直线334y x=-+中,令0x =,则3y =,令0y =,则4x =,A ∴点坐标为(4,0),B 点坐标为(0,3),D 点坐标为(,0)t ,4AD t BE ∴=-=,113(4)36(04)222BDE ABD B S S AD y t t t ∴==⋅=-⨯=-+<;(3)当BD BE =时,在Rt OBD ∆中,90BOD ∠=︒,由勾股定理得:222OB OD DB +=,即2223(4)t t +=-解得:78t =; 当BD DE =时,过点E 作EM x ⊥轴于M , 90BOD EMD ∴∠=∠=︒,//BF OA ,OB ME ∴=在Rt △OBD 和Rt △MED 中,==BD DE OB ME ⎧⎨⎩, ∴Rt △OBD ≌Rt △MED (HL ),OD DM t ∴==,由OM BE =得:24t t =- 解得:43t =, 综上所述,当78t =或43时,使得△BDE 是以BD 为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.29.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∵CD=DE+CE,∴CD2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)过点N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S112=AC•NE,S212=AB•CD,∴12S ACS AB=;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。
八年级上学期第二次月考数学试卷 (解析版)(1)一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1) 2.某一次函数的图像与x 轴交于正半轴,则这个函数表达式可能是( )A .2y x =B .1y x =+C .1y x =--D .1y x =-3.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .454.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒5.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 6.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm7.如图,∠AOB=60°,点P 是∠AOB 内的定点且3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A .362B .332C .6D .38.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( ) A .1B .2C .4D .无数9.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( )A .x >-1B .x <-1C .x <-2D .无法确定10.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL二、填空题11.如图,在ABC ∆中,90ACB ∠=︒,点D 为AB 中点,若4AB =,则CD =_______________.12.点(2,1)P 关于x 轴对称的点P'的坐标是__________.13.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.14.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____. 15.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______. 16.化简:|32|-=__________.17.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.18.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____. 19.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.20.若点(3,)P m -与(,6)Q n 关于x 轴对称,则m n +=__________.三、解答题21.已知函数y=(2m +1)x+m ﹣3. (1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围; (3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围. 22.求下列各式中x 的值: (1)240x -=; (2)3216x =- 23.已知21a =,求代数式223a a -+的值.24.如图,函数 483y x =-+的图像分别与 x 轴、 y 轴交于 A 、 B 两点,点 C 在 y 轴上, AC 平分 OAB ∠.(1) 求点 A 、 B 的坐标; (2) 求 ABC 的面积;(3) 点 P 在坐标平面内,且以A 、 B 、P 为顶点的三角形是等腰直角三角形,请你直接写出点 P的坐标.25.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?四、压轴题26.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由;(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= ゜.27.ABC 是等边三角形,作直线AP ,点C 关于直线AP 的对称点为D ,连接AD ,直线BD 交直线AP 于点E ,连接CE .(1)如图①,求证:CE AE BE +=;(提示:在BE 上截取BF DE =,连接AF .)(2)如图②、图③,请直接写出线段CE ,AE ,BE 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若26BD AE ==,则CE =__________.28.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.29.如图,在平面直角坐标系中,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且AB =BC .(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A,点(3,2)C-建立平面直角坐标系,再结合图形即可确定出点B的坐标.【详解】解:∵点A的坐标是:(1,1),点C的坐标是:(3,-2),∴点B的坐标是:(2,0).故选:C.【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.D解析:D【解析】【分析】分别求出每个函数与x轴的交点,即可得出结论.【详解】A.y=2x与x轴的交点为(0,0),故本选项错误;B.y=x+1与x轴的交点为(-1,0),故本选项错误;C.y=-x-1与x轴的交点为(-1,0),故本选项错误;D.y=x-1与x轴的交点为(1,0),故本选项正确.故选:D.【点睛】本题考查了一次函数的性质.掌握求一次函数与x轴的交点坐标的方法是解答本题的关键.3.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.4.A解析:A 【解析】 【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解. 【详解】解:∵AB=AC ,∴∠B=∠C , 在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ), ∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A . 【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.5.C解析:C 【解析】 【分析】作DF ⊥AC 于F ,根据角平分线的性质求出DF ,根据三角形的面积公式计算即可. 【详解】解:作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC , ∴DF=DE=4,∴112228AB DE AC DF即112246428AB解得,AB=8, 故选:C . 【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C解析:C 【解析】 【分析】全等图形中的对应边相等. 【详解】根据△ABC ≌△DCB ,所以AB=CD,所以CD=6,所以答案选择C 项. 【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.7.D解析:D 【解析】分析:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,利用轴对称的性质得MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH ⊥CD 于H ,则CH=DH ,然后利用含30度的直角三角形三边的关系计算出CD 即可. 详解:作P 点分别关于OA 、OB 的对称点C 、D ,连接CD 分别交OA 、OB 于M 、N ,如图,则MP=MC ,NP=ND ,∠BOP=∠BOD ,∠AOP=∠AOC ,∴PN+PM+MN=ND+MN+MC=DC ,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°, ∴此时△PMN 周长最小, 作OH ⊥CD 于H ,则CH=DH , ∵∠OCH=30°,∴OH=12OH=32, ∴CD=2CH=3. 故选D .点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.8.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.9.B解析:B【解析】【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.10.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题11.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CDAB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜解析:2【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半即可求出CD.【详解】∵D是AB的中点,∴CD12AB=2.故答案为:2.【点睛】本题主要是运用了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.12.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;13.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.14.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 15.4【解析】【分析】先求出直线与y轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.16.【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】解:∵,∴原式,故答案为:.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小解析:2【解析】【分析】先判断两个实数的大小关系,再根据绝对值的代数意义化简,进而得出答案.【详解】2<,∴原式2)=-2=-故答案为:2.【点睛】此题主要考查了绝对值的代数意义,正确判断实数的大小是解题关键.17.8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 18.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键. 19.6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB 的周长比△BOC 的周长大2,∴OA+OB+AB -OB-解析:6【解析】【分析】由已知可得到AB 比BC 长2,根据平行四边形的周长可得到AB 与BC 的和,从而不难求得AB 的长.【详解】解:∵△AOB 的周长比△BOC 的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD 是平行四边形,∴OA=OC ,∴AB-BC=2,∵平行四边形ABCD 的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.20.-9【解析】【分析】先根据关于轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点与关于轴对称,∴m=-6,n=-3,∴m+n=-6-3=-解析:-9【解析】【分析】先根据关于x 轴对称对称的两点横坐标相等,纵坐标互为相反数求出m 和n 的值,然后代入m+n 计算即可.【详解】∵点(3,)P m 与(,6)Q n 关于x 轴对称,∴m=-6,n=-3,∴m+n=-6-3=-9.故答案为:-9.【点睛】本题考查了坐标平面内的轴对称变换,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数;关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.三、解答题21.(1)m=3;(2)m <-12;(3)m≥3 【解析】 试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b 中,y 随x 的增大而减小说明k <0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y 随x 的增大而减小说明k <0,即2m+1<0,m <-;(3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m >3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限.22.(1)2x =-或2x =;(2)2x =-【解析】【分析】(1)根据平方根的性质解方程即可;(2)根据立方根的性质解方程即可.【详解】解:(1)240x -= 24x =解得:2x =-或2x =(2)3216x =-38x =-解得:2x =-【点睛】此题考查的是含平方和立方的方程,掌握平方根的性质和立方根的性质是解决此题的关键.23.4【解析】试题分析:先将223a a -+变形为(a-1)2+2,再将21a =代入求值即可. 试题解析:223a a -+=221a a -++2=(a-1)2+2当2+1时,原式=2+1-1)2+2=2)2+2=2+2=4.24.(1)A (6,0),B (0,8);(2)15;(3)使△PAB 为等腰直角三角形的P 点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【详解】解:(1)在483y x=-+中,令y=0可得0=-43x+8,解得x=6,令x=0,解得y=8,∴A(6,0),B(0,8);(2)如图,过点C作CD⊥AB于点D,∵AC平分∠OAB,∴CD=OC,由(1)可知OA=6,OB=8,∴AB=10,∵S△AOB=S△AOC+S△ABC,∴12×6×8=12×6×OC+12×10×OC,解得OC=3,∴S△ABC=12×10×3=15;(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x y x y x y⎧+-=⎨+-+=-+⎩,解得814x y =⎧⎨=⎩或82x y =-⎧⎨=⎩, 此时P 点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA 2=PB 2且PA 2+PB 2=AB 2,即22222222(6)(8)(6)(8)100x y x y x y x y ⎧-+=+-⎨-+++-=⎩,解得11x y =-⎧⎨=⎩或77x y =⎧⎨=⎩, 此时P 点坐标为(-1,1)或(7,7);综上可知使△PAB 为等腰直角三角形的P 点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC 的长是解题的关键,在(3)中用P 点坐标分别表示出PA 、PB 的长,由等腰直角三角形的性质得到关于P 点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.25.(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得1504560k b b +=⎧⎨=⎩,解得:11060k b ⎧=-⎪⎨⎪=⎩, ∴该一次函数解析式为y=﹣110x+60; (2)当y=﹣110x+60=8时, 解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.四、压轴题 26.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠, 112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.27.(1)见解析;(2)图②中,CE+BE=AE ,图③中,AE+BE=CE ;(3)1.5或4.5【解析】【分析】(1)在BE上截取BF DE=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取BF DE=,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE=,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,∴CE+AE= BF+FE =BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE =60°∴∠EAF=∠BAE+∠BAF =60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF= BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD ,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC ,BE=CF ,∴△ACF ≌△ABE ,∴AE=AF ,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF =60°∴∠EAF=∠BAF+∠BAE =60°∴△AFE 为等边三角形,∴EF=AE ,∴CE =EF+CF= AE + BE ,即AE+BE=CE ;(3)在(1)的条件下,若26BD AE ==,则AE=3,∵CE+AE=BE ,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.5;在(2)的条件下,若26BD AE ==,则AE=3,因为图②中,CE+BE=AE ,而BD=BE-DE=BE-CE ,所以BD 不可能等于2AE ;图③中,若26BD AE ==,则AE=3,∵AE+BE=CE ,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.5.即CE=1.5或4.5.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828 ,0).【解析】【分析】(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)(42,0)A ,(0,42)B ,∴OA=OB=2∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD , ∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=-,∴OD=OA−DA=8-,∴点D 的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.29.(1)y =﹣2x +6;(2)点P (m ﹣6,2m ﹣6);(3)y =﹣x +32【解析】【分析】(1)先求出点A ,点B 坐标,由等腰三角形的性质可求点C 坐标,由待定系数法可求直线BC 的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.【详解】(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。
八年级上学期第二次月考数学试卷 (解析版) 一、选择题 1.4的平方根是( )A .2B .2±C .2D .2±2.下列四组线段a ,b ,c ,能组成直角三角形的是( )A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c = 3.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .45 4.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .125.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 6.点(3,2)A -关于y 轴对称的点的坐标为( ) A .(3,2) B .(3,2)- C .(3,2)--D .(2,3)- 7.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是() A . B .C .D .8.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =ACB .BD =CDC .∠B =∠CD .∠BDA =∠CDA 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-二、填空题11.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.13.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.14.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 15.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;16.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.17.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________18.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
乡镇学校姓名考号2014年秋季第一次月考八年级数学试题(满分:120分时间:120分钟)一、选择题(每题3分,共27分)1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°2.下面四个图形中,线段BE是⊿ABC的高的图是()3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3个B、4个C、5个D、6个5.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18006.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A、4B、5C、6D、77.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不准确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.在△ABC和△A B C'''中,AB=A B'',∠B=∠B',补充条件后仍不一定能保证△ABC≌△A B C''',则补充的这个条件是( )A.BC=B C'' B.∠A=∠A' C.AC=A C'' D.∠C=∠C'9.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA第4题图AB CDE140801第7题第5题图二、填空题(每题3分,共30分)10.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
八年级上学期第二次月考数学试题(1)一、选择题1.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°2.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm 3.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间4.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .155.下列各点中,在函数y=-8x图象上的是( ) A .(﹣2,4)B .(2,4)C .(﹣2,﹣4)D .(8,1)6.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .15 7.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 9.9的平方根是( ) A .3B .81C .3±D .81±10.估算x =5值的大小正确的是( ) A .0<x <1B .1<x <2C .2<x <3D .3<x <4二、填空题11.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.12.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____. 132(5)-=_____.14.3x -有意义的x 的取值范围是__________.15.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____. 16.2,227,2543.14,这些数中,无理数有__________个. 17.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.18.如图,在平面直角坐标系中,()1,1A ,()1,1B -,()1,2C --,()1,2D -.把一条长为2020个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A B C D A -----…的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是__________.19.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________20.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是______.三、解答题21.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.22.如图,△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发以每秒1cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上(但不与A 点重合),求t 的值.23.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天? 24.(1)计算:()1131133-⎛⎫⎪⎝⎭+--(2)已知()23227x -=,求x 的值.25.某工厂计划生产A 、B 两种产品共50件,已知A 产品成本2000元/件,售价2300元/件;B 种产品成本3000元/件,售价3500元/件,设该厂每天生产A 种产品x 件,两种产品全部售出后共可获利y 元. (1)求出y 与x 的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______. (3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由;(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= ゜.28.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.29.如图,直线l1的表达式为:y=-3x+3,且直线l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求点P的坐标.30.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.2.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.3.B解析:B【解析】【分析】直接利用32=9,42=1611的取值范围.【详解】∵32=9,42=16,11在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.4.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN,即DN+BN=AB=9,可得△DNB的周长.【详解】解:∵D是BC的中点,BC=6,由折叠的性质可知DN=AN,∴△DNB的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.6.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 7.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.8.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.9.C解析:C【解析】【分析】根据平方根的定义进行求解即可.【详解】.解:9的平方根是3故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.10.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.二、填空题11.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.12.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.13.5【解析】根据二次根式的性质知:5.解析:5【解析】=5.14.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;15.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).16.1【解析】【分析】根据无理数的定义,即可得到答案.【详解】解:根据题意,是无理数;,,3.14是有理数;∴无理数有1个;故答案为:1.【点睛】本题考查了无理数的定义,解题的关键是熟解析:1【解析】【分析】根据无理数的定义,即可得到答案.【详解】是无理数;227, 3.14是有理数; ∴无理数有1个;故答案为:1.【点睛】 本题考查了无理数的定义,解题的关键是熟练掌握无理数的定义.17.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.18.【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵,,,∴AB=2,BC=3,CD解析:()1,1【解析】【分析】根据各个点的坐标,分别求出AB 、BC 、CD 和DA 的长,即可求出细线绕一圈的长度,然后用2020除以细线绕一圈的长度即可判断.【详解】解:∵()1,1A ,()1,1B -,()1,2C --,()1,2D -∴AB=2,BC=3,CD=2,DA=3∴细线绕一圈所需:AB+BC+CD+DA=10个单位长度2020÷10=202(圈),即细线正好绕了202圈故细线另一端所在位置正好为点A ,它的坐标为()1,1故答案为:()1,1.【点睛】此题考查的是探索点的坐标规律题,掌握把坐标转化为线段的长是解决此题的关键. 19.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y =kx (k 是常数,k ≠0)的函数,其中k 叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.20.15【解析】【分析】延长AD 到点E ,使DE=AD=6,连接CE ,可证明△ABD ≌△CED ,所以CE=AB ,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△A解析:15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,BD CDADB EDCAD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=12AD•AB=15.故答案为15.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.三、解答题21.(1)DE,AE;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =, ∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM ,在△OBN 与△BAM 中,M ONB OBN BAM OB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBN ≌△BAM (AAS ),∴AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B 的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.22.(1)254t = ;(2)323t =.【解析】 【分析】(1)根据中垂线性质可知,作AB 的垂直平分线,与AC 交于点P ,则满足PA=PB ,在Rt △ABC 中,用勾股定理计算出AC=8cm ,再用t 表示出PA=t cm ,则PC=()8t -cm ,在Rt △PBC 中,利用勾股定理建立方程求t ;(2)过P 作PD ⊥AB 于D 点,由角平分线性质可得PC=PD ,由题意PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,利用勾股定理建立方程求t.【详解】(1)作AB 的垂直平分线交AB 于D ,交AC 于P ,连接PB ,如图所示,由垂直平分线的性质可知PA=PB ,此时P 点满足题意,在Rt △ABC 中,2222AC=AB BC =106=8--cm ,由题意PA= t cm ,PC=()8t -cm ,在Rt △PBC 中,222PC +BC =PB ,即()2228t +6=t -,解得25t=4(2)作∠CAB 的平分线AP ,过P 作PD ⊥AB 于D 点,如图所示∵AP 平分∠CAB ,PC ⊥AC ,PD ⊥AB ,∴PC=PD在Rt △ACP 和Rt △ADP 中,AP=AP PC=PD ⎧⎨⎩∴()Rt ACP Rt ADP HL ≅∴AD=AC=8cm∴BD=AB-AD=10-8=2cm由题意PD=PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,222PD +BD =PB即()()222t 8+2=14t -- 解得32t=3【点睛】 本题考查了勾股定理的动点问题,熟练运用中垂线性质和角平分线性质,找出线段长度,利用勾股定理建立方程是关键.23.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.【解析】【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则安排乙队工作12006040m -天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为32x 米, 根据题意得:360360332x x -=, 解得:x=40,经检验,x=40是原分式方程的解,且符合题意, ∴32x=32×40=60, 答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米; (2)设安排甲队工作m 天,则安排乙队工作12006040m -天, 根据题意得:7m+5×12006040m -≤145, 解得:m≥10,答:至少安排甲队工作10天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.24.(1) )- (2) x=5或x=-1 【解析】【分析】(1) 按顺序分别进行0指数幂运算,负指数幂运算,化简绝对值,然后再按运算顺序进行计算即可;(2) 利用直接开平方法进行求解即可.【详解】(1)原式=1-3-)=)-(2) ()23227x -=(x-2)2=9x-2=±3x=5或x=-1.【点睛】此题主要考查了实数的综合运算能力及解一元二次方程的方法,熟记概念是解题的关键.25.(1)y =﹣200x +25000;(2)该厂生产的两种产品全部售出后最多能获利23000元.【解析】【分析】(1)根据题意,可以写出y 与x 的函数关系式;(2)根据该厂每天最多投入成本140000元,可以列出相应的不等式,求出x 的取值范围,再根据(1)中的函数关系式,即可求得该厂生产的两种产品全部售出后最多能获利多少元.【详解】(1)由题意可得:y =(2300﹣2000)x +(3500﹣3000)(50﹣x )=﹣200x +25000,即y 与x 的函数表达式为y =﹣200x +25000;(2)∵该厂每天最多投入成本140000元,∴2000x +3000(50﹣x )≤140000,解得:x ≥10.∵y =﹣200x +25000,∴当x =10时,y 取得最大值,此时y =23000,答:该厂生产的两种产品全部售出后最多能获利23000元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为210【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】 (1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为10【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠,1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQC A , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:115829 22R Q;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.28.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=22260BH DH+==265;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.29.(1)(1,0);(2)362y x -=;(3)92;(4)(6,3). 【解析】【分析】(1)由题意已知l 1的解析式,令y=0求出x 的值即可;(2)根据题意设l 2的解析式为y=kx+b ,并由题意联立方程组求出k ,b 的值;(3)由题意联立方程组,求出交点C 的坐标,继而即可求出S △ADC ;(4)由题意根据△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到AD 的距离进行分析计算.【详解】解:(1)由y=-3x+3,令y=0,得-3x+3=0,∴x=1,∴D (1,0);(2)设直线l 2的解析表达式为y=kx+b ,由图象知:x=4,y=0;x=3,y =32-,代入表达式y=kx+b , ∴40332k b k b +⎧⎪⎨+-⎪⎩==, ∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为362y x -=; (3)由33362y x y x ⎪-+-⎧⎪⎨⎩==,解得23x y ⎧⎨⎩-==, ∴C (2,-3),∵AD=3, ∴331922ADC S =⨯⨯-=; (4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|-3|=3,则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C ,∴点P 纵坐标是3,∵y=1.5x-6,y=3,∴1.5x-6=3,解得x=6,所以P (6,3).【点睛】本题考查的是一次函数图象的性质以及三角形面积的计算等有关知识,熟练掌握求一次函数解析式的方法以及一次函数图象的性质和三角形面积的计算公式是解题的关键.30.(1)①见解析;②DE =297;(2)DE 的值为 【解析】【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。
2014-2015学年八年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是( ) A. a3•a2=a6 B. y3÷y=y3 C.(m2n)3=m6n3 D.(x2)3=x5 2.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是( ) A.B.C.D.3.下列式子的变形,不是因式分解的有( )①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y. A. 1个 B. 2个 C. 3个 D. 4个4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为( ) A. 3×1012千米 B. 9×1015千米 C. 9×1035千米 D. 9×1012千米 5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( ) A. 85° B. 80° C. 75° D. 70°6.如果单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,那么它们的乘积为( ) A.﹣x6y4 B.﹣x3y2 C.﹣x6y4 D.x6y47.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为( ) A. a B.﹣3 C. 9a3b2 D. 3a8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能( ) A.被20整除 B.被7整除 C.被21整除 D.被n+4整除9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是( ) A.(6xy﹣6xa﹣4by+4ab)cm2 B.(6xy+6xa+4by﹣4ab)cm2 C.(6xy﹣6xb﹣4ay+4ab)cm2 D.(6xy+6xb+4ay﹣4ab10.计算(2+1)(22+1)(24+1)…(232+1)的结果为( ) A. 235+2 B. 264+1 C. 264﹣1 D. 232﹣1二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是 .12.计算(15y3﹣9y2﹣3y)÷(﹣3y)= .13.已知2a+3b+4=0,则﹣4a﹣6b的值为 .14.若4x2+mx+9是一个完全平方式,则实数m的值是 . 15.如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则m的值是 .16.一个等腰三角形的周长为16,一边长是6,则它的腰长为 .17.若3x=m,9y=n,x,y为正整数,则32x+6y等于 . 18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是: (写出一个即可). 三、解答题(共5小题,计46分.解答应写出过程)19.把下列各式分解因式:(1)x2﹣(y+2)2;(2)﹣20x3y+x4+100x2y2.20.如图,在Rt△ABC中,∠ABC=90°,在边AB上取一点D,使得DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F,求证:FC=AB+DB.21.先化简,再求值:(1)b(a+b)+(a+2b)(2a﹣b)﹣4ab,其中a=﹣3,b=4;(2)[(x+3y)(x﹣3y)+(x+3y)2]÷(﹣4x),其中x=1,y=.22.已知“两点之间,线段最短”,我们经常利用它来解决两线段和的最小值问题.(1)实践运用唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由.(2)拓展延伸如图2,点P,Q是△ABC的边AB、AC上的两个定点,请同学们在BC上找一点R,使得△PQR的周长最短(要求:尺规作图,不写作图过程保留作图痕迹).23.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)直接写出图2中所表示的数学等式 ;(2)写出图3中所表示的数学等式,并利用所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图4中给出了若干个边长为a和边长为b的小正方形纸片,若干个长为a、宽为b的长方形纸片,请先写出数学等式:(2a+b)(a+2b)= ,再利用所给的纸片拼出一个几何图形,验证该公式.2014-2015学年陕西省安康市旬阳县桐木中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是( ) A. a3•a2=a6 B. y3÷y=y3 C.(m2n)3=m6n3 D.(x2)3=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据幂的乘方,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、底数不变指数相减,故B错误;C、积的乘方等每个因式分别乘方,再把所得的幂相乘,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.点评:本题考查了同底数幂的除法,利用法则计算是解题关键.2.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是( ) A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义直接判断得出即可.解答:解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了轴对称图形的性质,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.下列式子的变形,不是因式分解的有( )①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y. A. 1个 B. 2个 C. 3个 D. 4个考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.解答:解:①右边不是整式积的形式,不是因式分解;②右边不是整式积的形式,不是因式分解;③是因式分解;④右边的式子还有可以分解的多项式,不是因式分解;综上可得不是因式分解的是:①②④,共3个.故选C.点评:本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为( ) A. 3×1012千米 B. 9×1015千米 C. 9×1035千米 D. 9×1012千米考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3×105×3×107用科学记数法表示为:9×1012.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( ) A. 85° B. 80° C. 75° D. 70°考点:三角形内角和定理.分析:先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.解答:解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.点评:本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如果单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,那么它们的乘积为( ) A.﹣x6y4 B.﹣x3y2 C.﹣x6y4 D.x6y4考点:单项式乘单项式;合并同类项.分析:根据合并同类项法则得出a,b的值,进而利用单项式乘以单项式运算法则求出即可.解答:解:∵单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,∴,解得:,故单项式﹣x3y2与x3y2的乘积为:﹣x6y4.故选:C.点评:此题主要考查了单项式乘以单项式以及合并同类项法则,得出a,b的值是解题关键.7.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为( ) A. a B.﹣3 C. 9a3b2 D. 3a考点:公因式;整式的加减.分析:根据合并同类项,可化简整式,根据公因式是每項都含有的因式,可得答案.解答:解:A﹣B=9a2+3a,A﹣B的值与﹣9a3b2的公因式为3a,故选:D.点评:本题考查了公因式,先合并同类项,再判断公因式.8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能( ) A.被20整除 B.被7整除 C.被21整除 D.被n+4整除考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:(n+7)2﹣(n﹣3)2=[(n+7)﹣(n﹣3)][(n+7)+(n﹣3)]=10(2n+4)=20(n+2),故多项式(n+7)2﹣(n﹣3)2的值都能被20整除.故选:A.点评:此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是( ) A.(6xy﹣6xa﹣4by+4ab)cm2 B.(6xy+6xa+4by﹣4ab)cm2 C.(6xy﹣6xb﹣4ay+4ab)cm2 D.(6xy+6xb+4ay﹣4ab考点:整式的混合运算.专题:应用题.分析::由长方形面积减去阴影部分面积求出空白区域面积即可.解答:解:根据题意得:3x•2y﹣(3x﹣2a)(2y﹣2a)=(6xy﹣6xa﹣4by+4ab)cm2.故选A点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.计算(2+1)(22+1)(24+1)…(232+1)的结果为( ) A. 235+2 B. 264+1 C. 264﹣1 D. 232﹣1考点:平方差公式.分析:把前面的1变为(2﹣1),再依次运用平方差公式进行计算即可.解答:解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1),=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1),=(24﹣1)(24+1)(28+1)(216+1)(232+1),=(28﹣1)(28+1)(216+1)(232+1),=(216﹣1)(216+1)(232+1),=(232﹣1)(232+1),=264﹣1故选:C.点评:本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是 x2y .考点:单项式乘单项式.分析:利用单项式的乘除运算法则,进而求出即可.解答:解:∵□×6xy=3x3y2,∴□=3x3y2÷6xy=x2y.故答案为:x2y.点评:此题主要考查了单项式的乘除运算,正确掌握运算法则是解题关键.12.计算(15y3﹣9y2﹣3y)÷(﹣3y)= ﹣5y2+3y+1 .考点:整式的除法.专题:计算题.分析:原式利用多项式除以单项式法则计算即可得到结果.解答:解:(15y3﹣9y2﹣3y)÷(﹣3y)=﹣5y2+3y+1,故答案为:﹣5y2+3y+1点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键. 13.已知2a+3b+4=0,则﹣4a﹣6b的值为 8 .考点:代数式求值.专题:计算题.分析:由已知等式变形求出2a+3b的值,原式变形后代入计算即可求出值.解答:解:由题意得:2a+3b=﹣4,则原式=﹣2(2a+3b)=8,故答案为:8点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 14.若4x2+mx+9是一个完全平方式,则实数m的值是 ±12 .考点:完全平方式.专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.解答:解:∵4x2+mx+9=(2x)2+mx+32,∴mx=±2×2x×3,解得m=±12.故答案为:±12.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则m的值是 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(x2﹣mx+3)(3x﹣2)=3x3﹣(3m+2)x2+(2m+9)x﹣6,再令 x2项系数为0,计算即可.解答:解:(x2﹣mx+3)(3x﹣2)=3x3﹣(3m+2)x2+(2m+9)x﹣6,如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则有,3m+2=0解得,m=﹣.故答案为:﹣.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.16.一个等腰三角形的周长为16,一边长是6,则它的腰长为 6或5 .考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有一边长为6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵等腰三角形的周长为16,∴当6为腰时,它的底长=16﹣6﹣6=3,3+6>6能构成等腰三角形,即它的腰长为6;当6为底时,它的腰长=(16﹣6)÷2=5,5+5>6能构成等腰三角形,即它的腰长也可以为5.故它的腰长为6或5.故填6或5.点评:本题考查了等腰三角形的性质和三角形的三边关系;本题从边的方面考查三角形,涉及分类讨论的思想方法.注意养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.17.若3x=m,9y=n,x,y为正整数,则32x+6y等于 m2n3 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先求出32y=n,先根据同底数幂的乘法进行计算,再根据幂的乘方变形,最后整体代入求出即可.解答:解:∵3x=m,9y=n,∴32y=n,∴32x+6y=32x•36y=(3x)2•(32y)3=m2n3,故答案为:m2n3.点评:本题考查了同底数幂的乘法,幂的乘方的应用,能灵活运用法则进行变形是解此题的关键,用了整体代入思想.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是: 101030或103010或301010 (写出一个即可).考点:因式分解的应用.专题:开放型.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三、解答题(共5小题,计46分.解答应写出过程)19.把下列各式分解因式:(1)x2﹣(y+2)2;(2)﹣20x3y+x4+100x2y2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.解答:解:(1)原式=(x+y+2)(x﹣y﹣2);(2)原式=x2(﹣20xy+x2+100y2)=x2(x﹣10y)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,在Rt△ABC中,∠ABC=90°,在边AB上取一点D,使得DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F,求证:FC=AB+DB.考点:全等三角形的判定与性质.专题:证明题.分析:先根据角的互余关系求出∠A=∠F,再根据AAS证明△ABC≌△FBD,得出对应边相等,即可得出结论.解答:解:∵∠ABC=90°,EF⊥AC,∴∠A=∠C=90°,∠F+∠C=90°,∴∠A=∠F,在△ABC和△FBD中,,∴△ABC≌△FBD(AAS),∴BF=AB,∴FC=BF+BC=AB+BD.点评:本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法证明三角形全等是解决问题的关键.21.先化简,再求值:(1)b(a+b)+(a+2b)(2a﹣b)﹣4ab,其中a=﹣3,b=4;(2)[(x+3y)(x﹣3y)+(x+3y)2]÷(﹣4x),其中x=1,y=.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)原式利用单项式乘以多项式,平方差公式计算,合并得到最简结果,把a与b的值代入计算即可求出值;(2)原式利用平方差公式及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值解答:解:(1)原式=ab+b2+2a2﹣ab+4ab﹣2b2﹣4ab=2a2﹣b2,当a=﹣3,b=4时,原式=18﹣16=2;(2)原式=(x2﹣9y2+x2+6xy+9y2)÷(﹣4x)=(2x2+6xy)÷(﹣4x)=﹣,当x=1,y=时,原式=﹣.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知“两点之间,线段最短”,我们经常利用它来解决两线段和的最小值问题.(1)实践运用唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由.(2)拓展延伸如图2,点P,Q是△ABC的边AB、AC上的两个定点,请同学们在BC上找一点R,使得△PQR的周长最短(要求:尺规作图,不写作图过程保留作图痕迹).考点:轴对称-最短路线问题;作图—应用与设计作图.分析:(1)从点A出发向河岸引垂线,垂足为D,在AD的延长线上,取A′使得A′D=AD,连接A′B,与河岸相交y于C,则C点就是饮马的地方,此时AC+BC的值最小.(2)作P点关于BC的对称点P′,连接P′Q,交BC于R,此时△PQR的周长最短.解答:解:(1)如图1,从点A出发向河岸引垂线,垂足为D,在AD的延长线上,取A′使得A′D=AD,连接A′B,与河岸相交y于C,则C点就是饮马的地方;证明:如图1,如果将军在河边的另外任意点C′饮马,所走的路程就是AC′+C′B,因为AC′+C′B>A′B=AC+BC,所以在C点外任意一点饮马,所走的路程都要远些;(2)尺规作图,如图2:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.23.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)直接写出图2中所表示的数学等式 (a+2b)(a+b)=a2+3ab+2b2 ;(2)写出图3中所表示的数学等式,并利用所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图4中给出了若干个边长为a和边长为b的小正方形纸片,若干个长为a、宽为b的长方形纸片,请先写出数学等式:(2a+b)(a+2b)= 2a2+5ab+2b2 ,再利用所给的纸片拼出一个几何图形,验证该公式.考点:多项式乘多项式.分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件解答:解:(1)根据题意,大矩形的面积为:(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b)=a2+3ab+2b2.(2)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故a2+b2+c2 =(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45;(3)(2a+b)(a+2b)=2a2+5ab+2b2;如图所示:(答案不唯一).点评:本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.。
第一学期八年级数学第二次月考试卷(含解析)一、选择题1.若a满足3a a =,则a 的值为( )A .1B .0C .0或1D .0或1或1-2.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,3.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++4.下列各式从左到右变形正确的是( ) A .0.220.22a b a ba b a b++=++B .231843214332x yx y x y x y ++=-- C .n n a m m a-=-D .221a b a b a b+=++5.下列图案中,不是轴对称图形的是( ) A .B .C .D .6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 8.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤9.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>010.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )二、填空题11.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 12.49的平方根为_______ 13.某厂现在的年产值是15万元,计划今后每年增加2万元,年产值y 与年数x 之间的函数关系为________.14.写出一个比4大且比5小的无理数:__________.15.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 16.若关于x 的多项式322ax bx +-的一个因式是231+-x x ,则+a b 的值为__________.17. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.18.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.19.已知直角三角形的两边长分别为3、4.则第三边长为________.20.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.三、解答题21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的A 、B 两种水果进行销售,分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱.(1)求y 关于x 的函数表达式;(2)若要求购进A 水果的数量不少于B 水果的数量,则应该如何分配购进A 、B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表: x/元 … 15 20 25 … y/件…252015…已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.小明在学习等边三角形时发现了直角三角形的一个性质:直角三角形中,30角所对的直角边等于斜边的一半。
安徽省阜阳市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2013八下·茂名竞赛) 如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为()A . (0,0)B . (,)C . (,)D . (,)2. (2分)如图所示,CE平分∠ACD,∠B=45°,∠ACE=50°,则∠A等于()A . 45°B . 50°C . 55°D . 95°3. (2分)如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A . 110°B . 100°C . 90°D . 80°4. (2分)(2018·遵义模拟) 如图,A,B,C,D是⊙O上的四个点,B是弧AC的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A . 45°B . 60°C . 75°D . 85°5. (2分)如图,点D,E,F分别是△ABC(AB>AC)各边中点,下列说法不正确的是()A . AD平分∠BACB . EF与AD相互平分C . 2EF=BCD . △DEF是△ABC的位似图形6. (2分) (2020八上·港南期末) 如图,是中的平分线,是的外角的平分线,如果,,则()A .B .C .D .7. (2分)下列说法中,不正确的是()A . 三个角的度数之比为1∶3∶4的三角形是直角三角形B . 三个角的度数之比为3∶4∶5的三角形是直角三角形C . 三边长度之比为3∶4∶5的三角形是直角三角形D . 三边长度之比为9∶40∶41的三角形是直角三角形8. (2分) (2016九上·淅川期末) 如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O 相切,切点为B.已知∠A=30°,则∠C的大小是()A . 30°B . 45°C . 60°D . 40°9. (2分)如图,在△ABC中,M是BC边的中点,AP是∠BAC的平分线,BP⊥AP于点P. 若AB=12,AC=22,则MP的长为()A . 3B . 4C . 5D . 610. (2分) (2018八上·阜宁期末) 下列条件中,不能判定两个三角形全等的是()A . 两边一角对应相等B . 两角一边对应相等C . 直角边和一个锐角对应相等D . 三边对应相等二、填空题 (共6题;共6分)11. (1分) (2018八上·大同月考) 如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=________cm12. (1分) (2016八上·南开期中) 点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC=________.13. (1分) (2015八上·哈尔滨期中) 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为________度.14. (1分)如图,△ABC中,∠BAC、∠ABC、∠ACB的外角分别记为∠α,∠β,∠γ,若∠α:∠β:∠γ=3:4:5,则∠BAC:∠ABC:∠ACB等于________.15. (1分)正多边形的一个内角为135°,则该正多边形的边数为________16. (1分)如图,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角________.三、解答题 (共8题;共80分)17. (5分) (2018八上·甘肃期中) 一个多边形的内角和比它的外角的和的2倍还大180°,求这个多边形的边数.18. (10分)(2018·高安模拟) 如图,△AOB,△COD是等腰直角三角形,点D在AB上,(1)求证:△AOC≌△BOD;(2)若AD=3,BD=1,求CD.19. (10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.20. (10分) (2019七下·简阳期中) 如图,直线l1∥l2 ,直线l与l1、l2分别交于A、B两点,点M、N 分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠Pn﹣1AM的平分线与∠Pn﹣1BN的平分线交于点Pn,则∠AP1B=________,∠APnB=________.(用含α、β的代数式表示,其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠Pn﹣1AM 的平分线与∠Pn﹣1BN的平分线交于点Pn,请直接写出∠APnB的大小.(用含α、β的代数式表示,其中n为正整数)21. (10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD 的垂线,交BD于点E,连接AE.(1)如图1,说明线段EH、CH、AE之间的数量关系;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,说明线段EH、CH、AE之间的数量关系.22. (10分) (2019七下·厦门期中) 如图,已知AC⊥BC,∠DAB=70°,AC平分∠DAB,∠DCA=35°.(1)直线AB与DC平行吗?请说明理由.(2)求∠B的度数.23. (10分) (2019九上·洛阳期中) 综合与实践已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.(1)【问题发现】如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),①证明:△ADE≌△BDF;________②猜想:S△DEF+S△CEF=________S△ABC.(2)【类比探究】如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.(3)【拓展延伸】如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)24. (15分) (2020八上·江汉期末) 已知△ABC是等边三角形,点D在BC边上,点E在AB的延长线上,将DE绕D点顺时针旋转120°得到DF.(1)如图1,若点F恰好落在AC边上,求证:点D是BC的中点;(2)如图2,在(1)的条件下,若=45°,连接AD,求证:;(3)如图3,若,连CF,当CF取最小值时,直接写出的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、。
安徽初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.如果P (m+3,2m+4)在y 轴上,那么点P 的坐标是( ) A .(-2,0) B .(0,-2) C .(1,0)D .(0,1)2.坐标半面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为何? A .(-5,4) B .(-4,5) C .(4,5) D .(5,-4)3.如图,A 、B 的坐标分别为(2,0)(0,1),若将线段AB 平移至,则的值为()A. 2B. 3C. 4D. 54.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )5.一次函数y=ax-b,若a+b= -1,则它的图像必经过点( ) A .(1,1) B .(-1,1) C .(1,-1)D .(-1,-1)6.下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx (m ,n 为常数,且mn≠0)的图象的是()A .B .C .D .7.已知正比例函数的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1< x 2,则下列不等式中恒成立的是( ). A .y 1+ y 2>0B .y 1+ y 2<0C .y 1- y 2>0D .y 1- y 2<08.当kb <0时,一次函数y=kx+b 的图象一定经过() A .第一、三象限 B .第一、四象限 C .第二、三象限D .第二、四象限9.如图,直线y 1=x+b 与y 2=kx-1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b >kx-1的解集在数轴上表示正确的是()10.如图,某电信公司提供了两种方案的移动通讯费用(元)与通话时间(元)之间的关系,则以下说法错误的是( )A .若通话时间少于120分,则方案比方案便宜20元B .若通话时间超过200分,则方案比方案便宜12元C .若通讯费用为60元,则方案比方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分二、填空题1.在函数中,自变量x 的取值范围是 .2.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线平行.则在线段AB 上,横、纵坐标都是整数的点有______个.3.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为____________.x-214.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米; ③乌龟在途中休息了10分钟; ④兔子在途中750米处追上乌龟.其中正确的说法是__________________.(把你认为正确说法的序号都填上)5.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图所示,则这次越野跑的全程为 米三、解答题1.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数表达式.2.如图,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点P 2恰好在直线l 上.(1)求直线l 所表示的一次函数的表达式;(2)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.3.如图,直线与x 轴相交于点A ,与y 轴相交于点B.⑴求A 、B 两点的坐标;⑵过B 点作直线BP 与x 轴相交于P ,且使AP=2OA ,求ΔBOP 的面积.4.如图,在平面直角坐标系xOy 中,过点A(-6,0)的直线与直线:y =2x 相交于点B(m,4).(1)求直线的表达式;(2)过动点P(n,0)且垂直于x 轴的直线与,的交点分别为C ,D ,当点C 位于点D 上方时,求出n 的取值范围.5.(2014•陕西)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg 收费22元,超过1kg ,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y (元),所寄樱桃为x (kg ). (1)求y 与x 之间的函数关系式;(2)已知小李给外婆快寄了2.5kg 樱桃,请你求出这次快寄的费用是多少元?6.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.7.如图,在平面直角坐标系xOy中,已知正比例函数与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=7,求△OBC的面积.8.下图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120)。
安徽省2103-2014学年第一学期八年级月考试卷(二)数学(人教版)
一、选择题.
题目:1.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )
A.17
B.13
C.17或22
D.22
题型:选择题
分值:4
题目:2.直角三角形两锐角的角平分线相交所成的角的度数是( )
A.45°
B.135°
C.45°或135°
D.不能确定
题型:选择题
分值:4
题目:3.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )
A.5
B.6
C.7
D.8
题型:选择题
分值:4
题目:4.如图,D在AB上,E在AC上,则∠B=∠C,则在下列条件中,无法判定△ABE≌△ACD的是( )
A.AD=AE
B.AB=AC
C.BE=CD
D.∠AEB=∠ADC
题型:选择题
分值:4
题目:5.如图,△ABC中,∠C=90°,点D在AB上,DE⊥AB交AC于点E,△ABC的周长为12,△ADE的周长为6.则BC的长为( )
A.3
B.4
C.5
D.6
题型:选择题
分值:4
题目:6.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.
A.16
B.18
C.26
D.28
题型:选择题
分值:4
题目:7.如图,已知AB=AC,BD=DC,那么结论中不正确的是( )
A.△ABD≌△ACD
B.∠ADB=90°
C.∠BAD是∠B的一半
D.AD平分∠BAC
题型:选择题
分值:4
题目:8.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( )
A.75°或15°
B.75°
C.15°
D.75°或30°
题型:选择题
分值:4
题目:9.下列图形中,不是轴对称图形的是( )
A.角
B.等边三角形
C.线段
D.直角三角形
题型:选择题
分值:4
题目:10.把一个图形先沿着一条直角进行轴对称变换,再沿着这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换,在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的特质是( )
A.对应点连线与对称轴垂直
B.对应点连线被对称轴平分
C.对应点连线被对称轴垂直平分
D.对应点连线互相平行
题型:选择题
分值:4
二、填空题.
题目:11.十五边共有____对角线.
题型:填空题
分值:5
题目:12.如图,已知∠1=∠2,AB⊥AC,BD⊥CD,则图中全等三角形有____对.
题型:填空题
分值:5
题目:13.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是____.
题型:填空题
分值:5
题目:14.点P(2,-3)关于直线y轴的对称点的坐标是____.
题型:填空题
分值:5
题目:15.如图所示,三角形纸片ABC,AB=10厘米,BC=7厘米,AC=6厘米,沿过点B 的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为____厘米.
题型:填空题
分值:5
题目:16.在直角坐标系XOY中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有____个,写出其中一个点P的坐标是____.
题型:填空题
分值:5
三、解答题.
题目:17.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.
题型:解答题
分值:10
题目:18.已知:如图,在Rt△ABC中,∠C=90°,AB=10 cm,BE平分∠ABC,DE恰好是AB边的垂直平分线,求BC的长度是多少?
分值:10
题目:19.如图所示,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A
1B
1
C
1
,
写出△ABC关于x轴对称的△A
2B
2
C
2
的各顶点坐标.
题型:解答题
分值:10
四、解答题.
题目:20.已知:如图,A、F、C、D四点在同一直线上,AF=CD,AB∥DE,且AB=DE.
求证:(1)△ABC≌△DEF.
(2)∠CBF=∠FEC.
题型:解答题
分值:12
题目:21.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE.
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.
分值:12
题目:22.如图:在等边△ABC中,BD平分∠ABC,延长BC到F,使CD=CF,连接DF.
(1)小刚书:BD=DF,他说得对吗?为什么?
(2)小红说:把“BD平分∠ABC”的条件改一改,也能得到同样的结论,你认为可以如何改呢?请说明你的理由.
题型:解答题
分值:12
题目:23.小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条所成的角度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.
(1)请写出这种做法的理由.
(2)小明在此基础上又进行了如下操作和他那就(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连接AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由.
(3)请在图3画板内作出“直线a,b所成的跑到画板外面去掉角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.
题型:解答题
分值:14。