高考-数学-第4章第一讲三角函数的基本概念同角的基本关系与诱导公式84
- 格式:pptx
- 大小:8.92 MB
- 文档页数:35
专题四三角函数与解三角形4.1三角函数的概念、同角三角函数的基本关系和诱导公式基础篇考点三角函数的概念、同角三角函数的基本关系和诱导公式考向一任意角与弧度制1.(2022豫北名校大联考,6)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为() A.10π3 B.2πC.5π3D.5π6答案A2.(2021广西桂林十八中3月模拟,6)在平面直角坐标系中,动点M在单位圆上按逆时针方向做匀速圆周运动,第12分钟末刚好转动一周,若点M则运动到第3分钟末时,动点M所在位置的坐标为()B.−12C.−D.−−答案C3.(2023届四川蓉城名校联盟入学联考,8)折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1),图2为其结构简化图,设扇面A,B间的圆弧长为l,AB间的弦长为d,圆弧所对的圆心角为θ(θ为弧度角),则l、d和θ所满足的恒等关系为()图1图2A.2sin2=B.sin2=C.cos2=D.2cos2=答案A考向二任意角的三角函数1.(2020课标Ⅱ,2,5分)若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0答案D2.(2021陕西榆林一模,3)如图,角α,β的顶点与原点O重合,始边与x轴的非负半轴重合,终边与单位圆O分别交于A,B两点,则O ·O =()A.cos(α-β)B.cos(α+β)C.sin(α-β)D.sin(α+β)答案A3.(2022河南洛阳统考(二),6)已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点P(cos15°+sin15°,cos15°-sin15°),则tanα=()A.2-3B.2+3D.3答案C4.(2022山西吕梁模拟,4)若点M sin2021π3,α的终边上,则cos2α=()A.2B.-2C.12D.−12答案C5.(2023届黑龙江省实验中学月考,13)已知点P(-2,y)是角θ终边上一点,且sinθ则y=.答案-4考向三同角三角函数的基本关系和诱导公式1.(2023届黑龙江牡丹江绥芬河高级中学月考,4)已知tanα=cos2−sin,则sinα=()B.12 D.14答案B2.(2022山西二模,3)若sin10°=a sin100°,则sin20°=()A.2+1 B.−2+1C.22+1D.−22+1答案C3.(2023届西南“三省三校”联考一,7)已知cos−=απ,则cos+() A.-13 B.13答案A4.(2022安徽芜湖3月模拟,6)已知函数f(n)+(n∈N*),则f(1)+f(2)+f(3)+…+f(2 021)=()A.2021B.2021+2C.2022+2D.20222答案B5.(2020浙江,13,6分)已知tanθ=2,则cos2θ=,tan−=.答案-35;13综合篇考法同角三角函数基本关系式的应用1.(2022陕西安康高新中学三模,7)已知tanθ=12,则sin3rsincos3rsinvos2=() A.6 B.16 C.12 D.2答案C2.(2022安徽安庆二模,5)已知cosθ-sinθ=2sin2θ,θ∈π,则sin−()A.-12B.−C.12D.−1答案A3.(2023届黑龙江齐齐哈尔八校联合体期中,6)已知角α满足2sin−=tanπ12cosα,则sin2α+2cos2α的值为() A.45 B.65 C.75 D.85答案B4.(2022兰州、张掖重点中学联考,8)已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(3-1)x+m=0(m∈R)的两根,则sinθ-cosθ的值为()22C.3D.−3答案B5.(2022宁夏长庆高级中学月考一,17)已知函数y=sinθ+cosθ+2sinθcosθ.(1)设变量t=sinθ+cosθ,试用t表示y=f(t),并写出t的取值范围;(2)求函数y=f(t)的值域.解析(1)因为t=sinθ+cosθ(θ∈R),sin2θ+cos2θ=1,所以2sinθcosθ=t2-1,故f(t)=t2+t-1,t=sinθ+cosθ=2sin+[-2,2],故t的取值范围为[-2,2].(2)由(1)知y=f(t)=t2+t-1=2−54(t∈[-2,2]),由二次函数的性质可知,y=f(t)的最小值为f−=−54,又f(-2)=1-2,f(2)=1+2,所以y=f(t)的值域为−54,1+2.。
第二节同角三角函数的基本关系与诱导公式[基本知识] 1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α()α≠kπ+π2,k∈Z.2.同角三角函数基本关系式的应用技巧一、判断题(对的打“√”,错的打“×”)(1)若α,β为锐角,则sin2α+cos2β=1.()(2)若α∈R,则tan α=sin αcos α恒成立.()答案:(1)×(2)×二、填空题1.已知α∈()π2,π,sin α=35,则tan α=________.解析:∵α∈()π2,π,sin α=35,∴cos α=-45,于是tan α=-34.答案:-342.已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3[全析考法]考法一知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] (1)(2019·成都龙泉中学月考)设cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B .-1-k 2k C.k 1-k 2D .-k1-k 2 (2)(2019·甘肃诊断)已知tan x =43,且角x 的终边落在第三象限,则cos x =( )A.45 B .-45C.35D .-35[解析] (1)∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2, ∴tan 100°=-tan 80°=-1-k 2k.故选B. (2)因为角x 的终边落在第三象限,所以cos x <0,因为tan x =43,所以⎩⎪⎨⎪⎧sin 2x +cos 2x =1,sin x cos x =43,cos x <0,解得cos x =-35,故选D.[答案] (1)B (2)D [易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号. 考法二 知切求f (sin α、cos α)的值[例2] (2019·保定三校联考)已知tan(3π+α)=3,则3sin α-cos α2sin α+3cos α=( )A.13B.89C.23D .2[解析] ∵tan(3π+α)=3,∴tan α=3,∴3sin α-cos α2sin α+3cos α=3tan α-12tan α+3=3×3-12×3+3=89.故选B.[答案] B [方法技巧]利用“切弦互化”的技巧(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有: ①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切”代换法求解; ②sin α,cos α的齐次分式()如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin αcos α,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧. 考法三 sin α±cos α与sin αcos α关系的应用[例3] (1)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12B .±12C .-14D .-12(2)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α=( )A.75 B.257 C.725D.2425[解析] (1)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α =1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.(2)∵sin α+cos α=15,∴1+2sin αcos α=125, ∴2sin αcos α=-2425,(cos α-sin α)2=1+2425=4925. 又∵-π2<α<0,∴cos α>0>sin α,∴cos α-sin α=75,∴1cos 2α-sin 2α=1(cos α+sin α)(cos α-sin α)=115×75=257. [答案] (1)D (2)B [方法技巧]正弦、余弦“sin α±cos α,sin α·cos α”的应用sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题中已知1个可求另外2个.[集训冲关]1.[考法一]已知α∈(0,π),cos α=-35,则tan α=( )A.34 B .-34C.43D .-43解析:选D ∵cos α=-35且α∈(0,π),∴sin α=1-cos 2α=45,∴tan α=sin αcos α=-43.故选D.2.[考法三]已知sin α+cos α=13,则sin αcos α的值为________.解析:∵sin α+cos α=13,∴(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+2sin αcos α=19,解得sin αcos α=-49.答案:-493.[考法二]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×()-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=()-432+11-()-432=-257. (3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825. 突破点二 三角函数的诱导公式[基本知识]一、判断题(对的打“√”,错的打“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍、偶数倍,变与不变指函数名称是否变化.( )答案:(1)× (2)√ 二、填空题1.已知cos(π+α)=-35,则sin ()3π2+α等于________.解析:cos(π+α)=-cos α=-35,则cos α=35,sin ()3π2+α=-sin ()π2+α=-cos α= -35.答案:-352.已知sin ()α+π6=45,则sin ()α+7π6等于________.解析:sin ()α+7π6=sin []()α+π6+π=-sin ()α+π6=-45.答案:-453.已知tan ()π6-α=33,则tan ()5π6+α=________.解析:tan ()5π6+α=tan ()π-π6+α=tan [ π-( π6-α ) ] =-tan ()π6-α=-33.答案:-331.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.[典例感悟](2019·武威六中第一次阶段性检测)已知f (α)=[]sin ()π2-αtan (π+α)-cos (π-α)2-14sin ()3π2+α+cos (π-α)+cos (2π-α).(1)化简f (α);(2)若-π3<α<π3,且f (α)<14,求α的取值范围.解:(1)f (α)=(cos αtan α+cos α)2-1-4cos α-cos α+cos α=(sin α+cos α)2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由已知得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z.∵-π3<α<π3,∴-π6<α<π3.故α的取值范围为()-π6,π3.[方法技巧]应用诱导公式化简求值的常见问题及注意事项(1)已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.[针对训练]1.(2018·玉林陆川中学期中)sin 570°的值是( ) A .-12B.12C.32D .-32解析:选A sin 570°=sin(720°-150°)=-sin 150°=-12.故选A.2.(2019·湖北八校联考)已知sin(π+α)=-13,则tan ()π2-α=( )A .2 2B .-22 C.24D .±22解析:选D ∵sin(π+α)=-13,∴sin α=13,∴tan ()π2-α=cos αsin α=±22,故选D.3.(2019·南充模拟)设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1,则f (2 020)=( )A .1B .2C .0D .-1解析:选A ∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,∴a sin α+b cos β=1,∴f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.故选A.4.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3()π2+α·sin (-α-2π)=________.解析:原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案:1[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·新疆普通高中学业水平考试)已知x ∈()-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43D .-43解析:选B 因为x ∈()-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B. 2.(2019·淮南十校联考)已知sin ()α-π3=13,则cos ()α+π6的值是( )A .-13B.13C.223D .-223解析:选A ∵sin ()α-π3=13,∴cos ()α+π6=cos []π2+()α-π3=-sin ()α-π3=-13,故选A.3.(2019·重庆一模)log 2()cos 7π4的值为( )A .-1B .-12C.12D.22解析:选B log 2()cos 7π4=log 2()cos π4=log 222=-12.故选B.4.(2019·遵义模拟)若sin ()π2+α=-35,且α∈( π2,π ),则sin(π-2α)=( )A .-2425B .-1225解析:选A ∵sin ()π2+α=cos α=-35,α∈()π2,π,∴sin α=45,∴sin(π-2α)=sin 2α=2sin αcos α=2×45×()-35=-2425.故选A.5.(2019·沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( ) A .-3 B .3 C .-95D.95解析:选C ∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C.6.(2019·庄河高中期中)已知sin ()α-π12=13,则cos ()α+17π12等于( )A.13B.223C .-13D .-223解析:选A cos ()α+17π12=cos []3π2+()α-π12=sin ()α-π12=13.故选A. [B 级 保分题——准做快做达标]1.(2019·宝鸡金台区质检)已知sin 2α=23,则tan α+1tan α=( )A. 3B.2 C .3D .2解析:选C tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=2sin 2α=223=3.故选C.2.(2019·常德一中月考)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:选C 因为sin α+2cos α=102,sin 2α+cos 2α=1,解得⎩⎪⎨⎪⎧sin α=31010,cos α=1010或⎩⎪⎨⎪⎧sin α=-1010,cos α=31010.所以tan α=3或-13.所以tan 2α=2tan α1-tan 2α=2×31-32=-34或tan 2α=2tan α1-tan 2α=2×()-131-()-132=-34.故选C.3.(2019·株洲醴陵二中、四中期中联考)已知2sin α-cos α=0,则sin 2α-2sin αcos α的值为( ) A .-35B .-125解析:选A 由已知2sin α-cos α=0得tan α=12,所以sin 2α-2sin αcos α=sin 2α-2sin αcos αsin 2α+cos 2α=tan 2α-2tan αtan 2α+1=-35.故选A. 4.(2019·大庆四地六校调研)若α是三角形的一个内角,且sin ()π2+α+cos ()3π2+α=15,则tan α的值是( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ()π2+α+cos ()3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴α∈()π2,π,∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43,故选A.5.(2019·平顶山、许昌联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B .-35C .-3D .3解析:选A 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,解得tan α=2,∴cos 2α+12sin 2α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35. 6.(2019·河南中原名校联考)已知θ为第二象限角,sin θ,cos θ是关于x 的方程2x 2+(3-1)x +m =0(m ∈R)的两根,则sin θ-cos θ=( )A.1-32B.1+32C. 3D .-3解析:选B ∵sin θ,cos θ是方程2x 2+(3-1)x +m =0(m ∈R)的两根,∴sin θ+ cos θ=1-32,sin θ·cos θ=m2,可得(sin θ+cos θ)2=1+2sin θ·cos θ=1+m =2-32,解得m =-32.∵θ为第二象限角,∴sin θ>0,cos θ<0,即sin θ-cos θ>0,∵(sin θ-cos θ)2=1-2sin θ·cos θ=1-m =1+32,∴sin θ-cos θ= 1+32=1+32,故选B. 7.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D .1解析:选B 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23,∴tan α=±55, 即b -a 2-1=±55,∴|a -b |=55.故选B.8.(2019·武邑中学调研)已知sin α=13,0<α<π,则sin α2+cos α2=________.解析:()sin α2+cos α22=1+sin α=43,又0<α<π,∴sin α2+cos α2>0,∴sin α2+cos α2=233. 答案:2339.(2019·广西桂林等五市联考)已知sin θ+cos θ=15,θ∈()π2,π,则tan θ=________.解析:∵sin θ+cos θ=15,∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θcos θ=1+2sin θcos θ=125,∴sin θcos θ=-1225,又π2<θ<π,∴sin θ-cos θ>0,∴(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcos θ=4925,∴sin θ-cos θ=75, 由⎩⎪⎨⎪⎧sin θ+cos θ=15,sin θ-cos θ=75,解得⎩⎪⎨⎪⎧sin θ=45,cos θ=-35.∴tan θ=sin θcos θ=-43.答案:-4310.(2019·浙江名校协作体检测)已知sin ()-π2-α·cos ()-7π2+α=1225,且0<α<π4,则 sin α=________,cos α=________.解析:sin ()-π2-αcos ()-7π2+α=-cos α(-sin α)=sin αcos α=1225.又∵0<α<π4,∴0<sin α<cos α.解⎩⎨⎧sin αcos α=1225,sin 2α+cos 2α=1,得sin α=35,cos α=45.答案:35 4511.(2019·惠安惠南中学月考)已知cos α-sin α=5213,α∈()0,π4. (1)求sin αcos α的值;(2)求sin ()π2-2αcos ()π4+α的值. 解:(1)∵cos α-sin α=5213,α∈()0,π4, 平方可得1-2sin αcos α=50169,∴sin αcos α=119338.(2)sin α+cos α=(sin α+cos α)2=1+2sin αcos α=12213, ∴原式=cos 2αcos ()π4+α=(cos α-sin α)·(cos α+sin α)22(cos α-sin α)=2(cos α+sin α)=2413.12.在△ABC 中,(1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ()π2+A sin ()3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C2, 所以cos A +B 2=cos ()π2-C 2=sin C2,所以cos 2A +B 2+cos 2C2=1.(2)因为cos ()π2+A sin ()3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧ cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.。