中牟县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案
- 格式:doc
- 大小:831.50 KB
- 文档页数:16
第1页 共6页 第2页 共6页绝密★启用前河南省郑州市中牟县二中2018届高三第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .42、下列命题中的假命题是 ( ) A . B .C .D .3、已知,则a,b,c 三者的大小关系是 ()A .a>b>cB .b>a>cC .b>c>aD .c>b>a4、函数的一个零点所在的区间是()A .(0,1)B .(1,2) C .(2,3) D .(3,4)5、函数的图象必经过定点P 的坐标为 ( )A .B .C .D .6、已知命题存在;命题中,是的充分不必要条件;则下列命题是真命题的是 ( )且或且或7、已知函数 则的值是 ( )A .B .C .24D .128、若函数在上是增函数,那么的大致图象是 ( )A .B .C .D .9、函数是定义在上的奇函数,当时,则的值为 ( )A .B .C .D .10、设函数f(x)=x|x|+bx+c,给出下列四个命题:①c=0时,y=f(x)是奇函数.②b=0,c>0时,方程f(x)=0只有一个实数根;③y=f(x)的图象关于点(0,c)对称;④方程f(x)=0最多有两个实根.其中正确的命题是()A.①② B.②④ C.①②③ D.①②④11、已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是()A .B .C .D .第3页共6页◎第4页共6页第5页 共6页 第6页 共6页第II 卷(非选择题)二、填空题(题型注释)12、已知幂函数的图像关于y 轴对称且与y 轴有公共点,则m 的值为______________.13、指数函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值的差为,则a =________.14、若log a (a 2+1)<log a 2a<0,则实数a 的取值范围是______________.15、设函数在R 内有定义,对于给定的正数K ,若定义函数,取函数当时,函数的单调递增区间为________.三、解答题(题型注释)16、函数,则函数的递减区间是( )A .B .C .D .17、函数的定义域为集合A ,函数的值域为集合B .(Ⅰ)求集合A ,B ; (Ⅱ)若集合A ,B 满足,求实数a 的取值范围.18、(本题满分12分)已知不等式ax 2-3x +6>4的解集为{x|x<1或x>b}, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc<0.19、已知命题p :关于x 的不等式a x >1(a >0,a≠1)的解集是{x|x <0},命题q :函数y =lg(ax 2-x +a)的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.20、二次函数 ,满足为偶函数,且方程有相等实根。
中牟县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}2. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π3. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A .(11,12)B .(12,13)C .(13,14)D .(13,12)4. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦, B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞,5. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个6.在10201511xx⎛⎫++⎪⎝⎭的展开式中,含2x项的系数为()(A)10(B )30(C)45(D)1207.已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是()①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④;⑤.A.①③B.①③④ C.②④D.②⑤8.数列中,若,,则这个数列的第10项()A.19B.21C.D.9.已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为()A.3 B.C.D.10.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.11.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A .B .C .D .12.已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④二、填空题13.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= .14.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .15.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .16.已知tan()3αβ+=,tan()24πα+=,那么tan β= .17.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤18.在△ABC 中,a=4,b=5,c=6,则= .三、解答题19.已知数列{a n }满足a 1=﹣1,a n+1=(n ∈N *).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)20.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.21.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.22.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若,求f(x)的单调区间;(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.中牟县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:要使函数有意义,只须,即,解得1<x ≤4且x ≠2,∴函数f (x )的定义域为{x|1<x ≤4且x ≠2}. 故选B2. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A.3. 【答案】 A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2, 当n=2时,满足进行循环的条件,故x=9,y=10,n=3, 当n=3时,满足进行循环的条件,故x=11,y=12,n=4, 当n=4时,不满足进行循环的条件, 故输出的数对为(11,12), 故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4. 【答案】D 【解析】考点:1、导数;2、单调性;3、函数与不等式.5. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]6. 【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 7. 【答案】 D【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.8.【答案】C【解析】因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C9.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.10.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C11.【答案】C【解析】考点:三视图.12.【答案】D【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,命题q:存在x∈R,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D.二、填空题13.【答案】1.【解析】解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.15.【答案】 0.3 .【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键. 16.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++134313133-==+⨯. 考点:两角和与差的正切公式. 17.【答案】①②③④ 【解析】 因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④18.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.20.【答案】【解析】解:(1)∵f(x)为奇函数,∴f(﹣x)=﹣f(x),即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c,∴c=0.∵f′(x)=3ax2+b的最小值为﹣12,∴b=﹣12.又直线x﹣6y﹣7=0的斜率为,则f′(1)=3a+b=﹣6,得a=2,∴a=2,b=﹣12,c=0;(2)由(1)知f(x)=2x3﹣12x,∴f′(x)=6x2﹣12=6(x+)(x﹣),,)∵f(﹣1)=10,f()=﹣8,f(3)=18,∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是f()=﹣8.21.【答案】【解析】解:(Ⅰ)证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,∴PA=PC,BA=BC,∴PO⊥AC,BO⊥AC,又PO∩BO=O,∴AC⊥平面POB,又PB⊂平面POB,∴AC⊥PB.(Ⅱ)∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,PO⊥AC,∴PO⊥面ABC,∴OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD 的边长为2,∴,,设平面PBC的法向量,直线AB与平面PBC成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.22.【答案】【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.又∵f(1)=0,∴所求切线方程为y=e(x﹣1),即.ex﹣y﹣4=0(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),②若a<﹣,当x<﹣或x>0时,f′(x)<0;当﹣<x<0时,f′(x)>0.∴f(x)的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f(x)=(﹣x2+x﹣1)e x在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f(x)在x=﹣1处取得极小值f(﹣1)=﹣,在x=0处取得极大值f(0)=﹣1,由,得g′(x)=2x2+2x.当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g(x)在x=﹣1处取得极大值,在x=0处取得极小值g(0)=m,∵数f(x)与函数g(x)的图象仅有1个公共点,∴g(﹣1)<f(﹣1)或g(0)>f(0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.23.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.24.【答案】【解析】(本题满分为12分)解:(1)在△ABC中,AD=5,AB=7,BD=8,由余弦定理得…=…∴∠BDA=60°…(2)∵AD⊥CD,∴∠BDC=30°…在△ABC中,由正弦定理得,…∴.…。
中牟县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α2. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示3. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2 C .3 D .44. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b5. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A. B. C. D.6. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3B .2C .3D .47. 已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( )A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭C 、16t t ⎧⎫>-⎨⎬⎩⎭D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 不等式的解集是( )A .{x|≤x ≤2}B .{x|≤x <2}C .{x|x >2或x ≤}D .{x|x ≥}9. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 11.已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)12.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题13.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .14.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .15.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为16.不等式的解集为R ,则实数m 的范围是.17.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .18.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.三、解答题19.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.20.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.21.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?22.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.23.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足,且△EF1F2的周长为.(1)求椭圆C的方程;(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.24.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.中牟县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.2.【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 3.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.4.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.5.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.6.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.7.【答案】A【解析】考点:函数的性质。
2018-2019学年高三年级第三次双周考数学(文科)试题一、选择题1.已知集合{}{}2,3,60A B x mx ==-=,若B A ⊆,则实数m = ( )A.3B.2C.2或3D.0或2或32.若函数()f x =的定义域为实数集R ,则函数a 的取值范围为( )A. ()2,2-B. ()(),22,-∞⋃+∞C. (][),22,-∞⋃+∞D. []2,2- 3.已知函数()()()2240,{40.x x x f x x x x +≥=-<,若()22()f a f a ->,则实数a 的取值范围是( )A. ()(),12,-∞-⋃+∞B. ()1,2-C. ()2,1-D.()(),21,-∞-⋃+∞4.已知函数()()3261f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( )A. 12a -<<B. 36a -<<C. 3a <-或6a >D. 1a <-或2a > 5.设奇函数()f x 在()0,+∞上为增函数,且()10f =,则不等式()()0f x f x x--<的解集为( )A. ()()1,00,1-⋃B. ()(),10,1-∞-⋃C. ()(),11,-∞-⋃+∞D. ()()1,01,-⋃+∞ 6.已知定义在实数集R 上的函数() f x 满足()13f =,且() f x 的导数()'f x 在R 上恒有()()2f x x R '<∈,则不等式()21f x x <+的解集为( )A. ()1,+∞B. (),1-∞-C. ()1,1-D. ()(),11,-∞-⋃+∞ 7.将函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位长度后,所得图象关于原点对称,则函数()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的最小值为( )A. 12- C. 128.函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象可由函数()sin 23g x x π⎛⎫=+⎪⎝⎭的图象如何变换得到( )A.向左平移2π个单位长度得到 B.向右平移2π个单位长度得到 C.向左平移4π个单位长度得到 D.向右平移4π个单位长度得到9.函数12log sin 2coscos 2sin44y x x ππ⎛⎫=- ⎪⎝⎭的单调递减区间为( ) A. 5,,88k k k Z ππππ⎛⎫++∈ ⎪⎝⎭ B. 3,,88k k k Z ππππ⎛⎫++∈⎪⎝⎭ C. 3,,88k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ D. 35,,88k k k Z ππππ⎛⎫++∈⎪⎝⎭10.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且1tan 2B BC CA =⋅=,则tanB 等于( )221 11.已知向量,a b 满足(1,2,3,2a b a b ==-=,则2a b -= ( )C. 12.设D 为ABC ∆所在平面内一点, 1322AD AB AC =-+,若()BC CD R λλ=∈,则λ等于( )A.-2B.-3C.2D.3 二、填空题13.已知G 是ABC ∆的重心,则GA GB GC ++=__________14.已知函数22,(0)()3,(0)x a x f x x ax a x ⎧-≤⎪=⎨-+>⎪⎩,有三个不同的零点,则实数a 的取值范围是__________15.函数()ln f x x x =的单调减区间是__________16.在ABC ∆中,内角,,A B C 所对应的边分别为,,a b c ,若22()+6c a b =-,=3C π,则ABC∆的面积为__________.三、解答题17.已知全集U R =,2{|320}A x x x =-+-≥,2|1|1|B x x ⎧⎫=≥⎨⎬-⎩⎭.(1)求集合A B ⋂; (4分)(2)函数()ln ,f x x x ax =-()g x x =对一切x A ∈,()()f x g x ≥恒成立,求实数a 的取值范围 (6分) 18.已知命题p :函数() f x 为定义在()0,?+∞上的单调递减函数,实数 m 满足不等式()()132?f m f m +<-.命题q :当0,2x π⎡⎤∈⎢⎥⎣⎦时,方程2cos 2sin m x x =-有解.求使“p 且q ”为真命题的实数 m 的取值范围 (12分)19.已知函数()ln ()f x x a x a R =-∈(1)当2?a =时,求曲线(x)y f =在点(1,(1))A f 处的切线方程; (5分) (2)求函数(x)y f =的极值 (7分)20.已知向量(cos ,1)a x =-,13sin ,2b x ⎛⎫=- ⎪⎭,函数()()2f x a b a =+⋅-(1)求函数f ()x 的最小正周期及单调递增区间 (6分)(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求f ()x 的值域 (6分) 21.如图,在四边形ABCD 中, 4,2AD AB ==(1)若ABC ∆为等边三角形,且AD BC ,E 是CD 的中点,求AE BD ⋅; (6分) (2)若AC AB =,3cos 5CAB ∠=,45AC BD ⋅=,求DC (6分)22.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,若c =,2sinB sinA = (1)若3C π=,求,a b 的值 (6分)(2)若14cos C =,求ABC ∆的面积 (6分)一、选择题 1.答案:D解析:当0m =时,集合,B =∅满足B A ⊆;当0m ≠时,集合66{}B x x m m ⎧⎫==⎨⎩=⎬⎭由B A ⊆得62m =或63m=,即3m =或2m =。
中牟县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.2. 双曲线的焦点与椭圆的焦点重合,则m 的值等于()A .12B .20C .D .3. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为()A .120B .210C .252D .454. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为()A .1B .2C .3D .45. 复数z=在复平面上对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限6. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .13 7. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .8. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .9. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=()A .B .C .D .±10.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是()A .5B .3C .2D .11.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:212.设函数f (x )=则不等式f (x )>f (1)的解集是()A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)二、填空题13.函数y=lgx 的定义域为 . 14.不等式恒成立,则实数的值是__________.()2110ax a x +++≥15.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .16.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.17.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 . 18有两个不等实根,则的取值范围是.()23k x =-+三、解答题19.(本小题满分10分)已知函数f (x )=|x -a |+|x +b |,(a ≥0,b ≥0).(1)求f (x )的最小值,并求取最小值时x 的范围;(2)若f (x )的最小值为2,求证:f (x )≥+.a b 20.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.SAC SEQ 21.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A 81240328元件B71840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.22.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.23.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.24.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=(a 1x xe -.∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间;(Ⅱ)若函数f (x )在上无零点,求a 的最小值;10,2⎛⎫⎪⎝⎭(Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.中牟县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则3x =y 23x =y 3(*)nx n N =∈y 由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D .31000nx =≥7n ≥x 2. 【答案】A 【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A . 3. 【答案】 B 【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.【解答】解:由已知(+)2n (n ∈N *)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项.4. 【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A .【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.5.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.6.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 7.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.8.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.9.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目. 10.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义. 11.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V 圆锥=故圆柱、圆锥、球的体积的比为2πR 3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键. 12.【答案】A【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.如果 x ≥0 有x 2﹣4x+6>3可得x >3或 0≤x <1综上不等式的解集:(﹣3,1)∪(3,+∞)故选A . 二、填空题13.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法. 14.【答案】1a =【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;()2110ax a x +++≥0a =10x +≥当时,应满足,即,解得.10a ≠2(1)40a a a >⎧⎨∆=+-≤⎩20(1)0a a >⎧⎨-≤⎩1a =考点:不等式的恒成立问题.15.【答案】 2i .【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为(+i )(cos60°+isin60°)=(+i )()=2i,故答案为 2i .【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )(cos60°+isin60°),是解题的关键. 16.【答案】 0.9 【解析】解:由题意, =0.9,故答案为:0.9 17.【答案】 [﹣,] .【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),即,即,得﹣≤m ≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制. 18.【答案】53,124⎛⎤⎥⎝⎦【解析】试题分析:作出函数和的图象,如图所示,函数的图象是一个半圆,y =()23y k x =-+y =直线的图象恒过定点,结合图象,可知,当过点时,,当直线()23y k x =-+()2,3()2,0-303224k -==+,解得,所以实数的取值范围是.111]()23y k x =-+2512k =53,124⎛⎤⎥⎝⎦考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19.【答案】【解析】解:(1)由|x -a |+|x +b |≥|(x -a )-(x +b )|=|a +b |得,当且仅当(x -a )(x +b )≤0,即-b ≤x ≤a 时,f (x )取得最小值,∴当x ∈[-b ,a ]时,f (x )min =|a +b |=a +b . (2)证明:由(1)知a +b =2,(+)2=a +b +2≤2(a +b )=4,a b ab ∴+≤2,a b ∴f (x )≥a +b =2≥+,a b 即f (x )≥+.a b 20.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取中SD 点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先F PF AF ,AF PQ //证明线面垂直,根据所给的条件证明平面,即平面平面.⊥AC SEQ ⊥SAC SEQ 试题解析:证明:(1)取中点,连结.SD F PF AF ,∵分别是棱的中点,∴,且.F P 、SD SC 、CD FP //CD FP 21=∵在菱形中,是的中点,ABCD Q AB ∴,且,即且.CD AQ //CD AQ 21=AQ FP //AQ FP =∴为平行四边形,则.AQPF AF PQ //∵平面,平面,∴平面.⊄PQ SAD ⊂AF SAD //PQ SAD考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直, 需熟练掌握判定定理以及性质定理.21.【答案】【解析】解:(Ⅰ)元件A 为正品的概率约为.元件B 为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A次B 次.∴随机变量X 的所有取值为90,45,30,﹣15.∵P (X=90)==;P (X=45)==;P (X=30)==;P (X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.22.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD =|AC||BD|==8(2+k 2+)≥32.当k=1时,等号成立.所以,四边形ABCD 面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题. 23.【答案】【解析】解:(1)∵函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数∴x=≤1∴m ≤2∴实数m 的取值范围为(﹣∞,2];(2)由(1)知,函数f (x )=x 2﹣mx 在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式. 24.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在 10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是.3,21e ⎛⎤-∞-⎥-⎝⎦【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间;(Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,)上无零点,只需要对x ∈(0,)时f (x )>12120恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2;由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在 上无零点,则a 的最小值为2﹣4ln2;10,2⎛⎫⎪⎝⎭(3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增;当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减.又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0,所以,函数g (x )在(0,e]上的值域为(0,1].当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①此时,当x 变化时,f ′(x ),f (x )的变化情况如下:x (0,)(,e]f ′(x )﹣0+f (x )↘最小值↗又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0,即②对任意恒成立.由③式解得:.④综合①④可知,当a 的范围是 时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的3,21e ⎛⎤-∞-⎥-⎝⎦x i(i=1,2),使f(x i)=g(x0)成立.。
中牟县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)2. sin (﹣510°)=( )A .B .C .﹣D .﹣3. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .4. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1, =﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .315. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±6. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.157.设b,c表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A.若b⊂α,c∥α,则b∥cB.若c∥α,α⊥β,则c⊥βC.若b⊂α,b∥c,则c∥αD.若c∥α,c⊥β,则α⊥β8.设复数z满足z(1+i)=2(i为虚数单位),则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i9.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=()A.B.﹣C.4 D.10.487被7除的余数为a(0≤a<7),则展开式中x﹣3的系数为()A.4320 B.﹣4320 C.20 D.﹣2011.已知函数f(x)满足f(x)=f(π﹣x),且当x∈(﹣,)时,f(x)=e x+sinx,则()A.B.C.D.12.函数y=的图象大致为()A.B.C.D.二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.14.设椭圆E:+=1(a>b>0)的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.15.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为.16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.若C=,则=.18.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.三、解答题19.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.20.已知数列{a n}是等比数列,首项a1=1,公比q>0,且2a1,a1+a2+2a3,a1+2a2成等差数列.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足a n+1=(),T n为数列{b n}的前n项和,求T n.21.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.22.已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).(1)求f(x)的解析式;(2)求f(x)的值域.23.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.24.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.中牟县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.2.【答案】C【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C.3.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.4.【答案】D【解析】解:由=﹣(2x n+1),得+(2x n+1)=,设,以线段P n A、P n D作出图形如图,则,∴,∴,∵,∴,则,即x n+1=2x n+1,∴x n+1+1=2(x n+1),则{x n+1}构成以2为首项,以2为公比的等比数列,∴x5+1=2•24=32,则x5=31.故选:D.【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.5.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.6.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.7.【答案】D【解析】解:对于A,设正方体的上底面为α,下底面为β,直线c是平面β内一条直线因为α∥β,c⊂β,可得c∥α,而正方体上底面为α内的任意直线b不一定与直线c平行故b⊂α,c∥α,不能推出b∥c.得A项不正确;对于B,因为α⊥β,设α∩β=b,若直线c∥b,则满足c∥α,α⊥β,但此时直线c⊂β或c∥β,推不出c⊥β,故B项不正确;对于C,当b⊂α,c⊄α且b∥c时,可推出c∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.8.【答案】A【解析】解:∵z(1+i)=2,∴z===1﹣i.故选:A.【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.9.【答案】B【解析】解:∵f(x)是定义在R上周期为2的奇函数,∴f(log35)=f(log35﹣2)=f(log3),∵x∈(0,1)时,f(x)=3x﹣1∴f(log3)═﹣10.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..11.【答案】D【解析】解:由f(x)=f(π﹣x)知,∴f()=f(π﹣)=f(),∵当x∈(﹣,)时,f(x)=e x+sinx为增函数∵<<<,∴f()<f()<f(),∴f()<f()<f(),故选:D12.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.二、填空题13.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.14.【答案】.【解析】解:如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.15.【答案】(﹣1,﹣).【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.16.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.17.【答案】=.【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.18.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S 1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.三、解答题19.【答案】【解析】证明:(Ⅰ)由b n =,且a n+1=a n +,得,∴,下面用数学归纳法证明:0<b n <1.①由a 1=∈(0,1),知0<b 1<1,②假设0<b k <1,则,∵0<b k <1,∴,则0<b k+1<1.综上,当n ∈N *时,b n ∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.20.【答案】【解析】解:(I)∵2a1,a1+a2+2a3,a1+2a2成等差数列.∴2(a1+a2+2a3)=2a1+a1+2a2.∴2(1+q+2q2)=3+2q,化为4q2=1,公比q>0,解得q=.∴a n=.(II)∵数列{b n}满足a n+1=(),∴=,∴b n=n,∴b n=n•2n﹣1.∴数列{b n}的前n项和T n=1+2×2+3×22+…+n•2n﹣1.2T n=2+2×22+…+(n﹣1)•2n﹣1+n•2n,∴﹣T n=1+2+22+…+2n﹣1﹣n•2n=﹣n•2n,∴T n=(n﹣1)•2n+1.21.【答案】①②③【解析】解:①当a=7时,|PM|+|PN|≥|MN|=14>10,因此坐标平面内不存在黄金直线;②当a=5时,|PM|+|PN|=10=|MN|,因此线段MN上的点都满足上式,因此坐标平面内有无数条黄金直线,正确;③当a=3时,|PM|+|PN|=10>6=|MN|,黄金点的轨迹是个椭圆,正确;④当a=0时,点M与N重合为(0,0),|PM|+|PN|=10=2|PM|,点P在以原点为圆心、5为半径的圆上,因此坐标平面内有且无数条黄金直线.故答案为:①②③.【点评】本题考查了新定义“黄金直线”、“黄金点”、椭圆的定义、圆的定义等基础知识,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(1)当x∈[1,2]时f(x)的图象为线段,设f(x)=ax+b,又有f(1)=2,f(2)=3∵a+b=2,2a+b=3,解得a=1,b=1,f(x)=x+1,当x∈[2,4]时,f(x)的图象为二次函数的一部分,且顶点为(3,1),设f(x)=a(x﹣3)2+1,又f(2)=3,所以代入得a+1=3,a=2,f(x)=2(x﹣3)2+1.(2)当x∈[1,2],2≤f(x)≤3,当x∈[2,4],1≤f(x)≤3,所以1≤f(x)≤3.故f(x)的值域为[1,3].23.【答案】【解析】(本小题满分12分)解:(Ⅰ)由1)cos2cosa Bb A c-=及正弦定理得1)sin cos2sin cos sin sin cos+cos sinA B B A C A B A B-==,(3分)cos3sin cosA B B A=,∴tantanAB=6分)(Ⅱ)tan A B==3Aπ=,sin42sin sin3a BbAππ===,(8分)sin sin()C A B=+=,(10分)∴ABC∆的面积为111sin2(3222ab C==(12分)24.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)。
中牟县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.与椭圆有公共焦点,且离心率的双曲线方程为( )A.B. C.D.2. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)3. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种4. 下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°5. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014C .2015 D .20161111] 6. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 7. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A.B.C .24D .488. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( )A .14B .18C .21D .279. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 10.=( )A .﹣iB .iC .1+iD .1﹣i 11.命题“若α=,则tan α=1”的逆否命题是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .若α≠,则tan α≠1B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=12.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 二、填空题13.已知是圆为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 .14.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .15.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .17.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .18.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.三、解答题19.已知椭圆E : +=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为,点(,)在椭圆E 上.(1)求椭圆E 的方程;(2)设过点P (2,1)的直线l 与椭圆相交于A 、B 两点,若AB 的中点恰好为点P ,求直线l 的方程.20.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.21.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.22.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.23.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;(2)求体积V A′﹣ABCD与V E﹣ABD的比值.24.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求;(Ⅱ)若c2=b2+a2,求B.中牟县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13..14..15.(0,2)16..17.[0,2].18.三、解答题19.20.21.22.23.24.。
中牟县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设i是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i2. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.3. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .34. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π5. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .36. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]7. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.8. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=9. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4510.已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.11.已知角的终边经过点()3P x ,()0x <且cos θ=,则等于( )A .1-B .13- C .3- D .12.已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2-二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.14.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________. 15.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.18.证明:f (x )是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.19.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.20.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M 时几何体σ的表面上的动点,当四面体MABD 的体积为,试判断M 点的轨迹是否为2个菱形.21.如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=,M 为BC 的中点.(Ⅰ)证明:AM ⊥PM ; (Ⅱ)求点D 到平面AMP 的距离.22.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知1cos )sin 3(cos 2cos 22=-+C B B A. (I )求角C 的值;(II )若2b =,且ABC 的面积取值范围为[2,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.中牟县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案)一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.2.【答案】B3.【答案】D【解析】考点:简单线性规划.4.【答案】D【解析】考点:几何概型.5.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.6.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.7.【答案】D第Ⅱ卷(共90分)8.【答案】D【解析】解:抛物线x=﹣4y2即为y2=﹣x,可得准线方程为x=.故选:D.9.【答案】B【解析】试题分析:因为截面PQMN是正方形,所以//,//PQ MN QM PN,则//PQ平面,//ACD QM平面BDA,所以//,//PQ AC QM BD,由PQ QM⊥可得AC BD⊥,所以A正确;由于//PQ AC可得//AC截面PQMN,所以C正确;因为PN PQ⊥,所以AC BD⊥,由//BD PN,所以MPN∠是异面直线PM与BD 所成的角,且为045,所以D正确;由上面可知//,//BD PN PQ AC,所以,PN AN MN DNBD AD AC AD==,而,AN DN PN MN≠=,所以BD AC≠,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.10.【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .11.【答案】A 【解析】考点:三角函数的定义. 12.【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质. 14.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键.15.【答案】3-,π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 333f ππ==-,又∵221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:3-,π.16.【答案】48 【解析】三、解答题(本大共6小题,共70分。