超声波液位测量计设计20页PPT
- 格式:ppt
- 大小:3.22 MB
- 文档页数:20
推出:故被测量液体的液位:H=Ho-h-d上式中:H是被测量液体的液位;Ho是超声波传感器到容器底部的距离;h是超声波传感器到浮子顶部的距离,通过测量的时间计算其值;ho是超声波传感器到校准环的距离,可根据最高液面调整校准环的高度;d是浮子顶面到液面的距离。
由此可见,测量时与超声波的速度无关,不存在因温度,湿度,气压影响超声波的速度给系统带来的误差。
该系统要实现其功能和减少系统误差,装置必须满足以下要求:其一,测量管的底部与被测液体连通,便于被测液体进入测量管;其二,浮子的密度必须小于被测液体的密度,且浮子具备抗腐蚀性;其三,校准环和浮子应选有利于超声波反射的材料;其四,测量管采用抗腐蚀性强的不锈钢材料。
超声波液位测量系统设计阳华忠 孙传友 长江大学电信学院 4340231 引言目前,超声波技术发展迅速,不断渗透到各个领域,如在军事、医疗、测绘等方面都有广泛的应用。
液位的测量和控制也是日常生活中一个重要的领域,液位的测量方法有很多。
例如:差压法测量液位,电容法测量液位,温度补偿超声波法测量液位等等。
但采用这些方法会因恶劣的环境和液体密度的变化给测量带来较大的误差,因某些液体具有腐蚀性而腐蚀测量装置。
针对上述问题,本设计提出了基于浮子的参比法,由SPCE061A凌阳单片机,LM1812超声波专用集成芯片相结合的方法,解决上述问题。
本系统可靠性高,适用性强,精度高。
2 参比法液位测量原理参比法其原理是利用超声波换能器发出的超声波脉冲,通过气介质传播,在密度变化较大的界面处形成反射回波传到换能器并将其接收。
若测出超声波从发射到接收的时间,就可以精确地计算出被测液体的液位。
其原理如图1,当超声波发射后,接收超声波的传感器就会依次接收到两束回波信号,一束回波是在校准环处产生的,测量的时间为To。
另一束回波是在浮子处产生的,测量的时间为T。
浮子随被测液体的液位变化而变化,超声波在浮子以上的气介质中传播。
由于在相同的环境中工作,超声波到校准环和到浮子顶面的速度相等。
手持式超声波液位测试仪的设计摘要:文章利用超声波测距原理,利用ATmega8单片机设计一种手持式液位测试仪,给出了系统构成和软件流程,并利用DS18B20进行温度补偿修正,该电路具有体积小,携带方便,精度高,易于控制等优点。
关键词:单片机液位测试仪 ATmega80 引言在工业生产中经常需要对液体原料的液位进行测量,特别是面对腐蚀性或高爆性原料时,测试环境比较恶劣。
传统测量方式是采用差位分布电极方式,利用电信号来检测液位,但电极会长期浸没于液体中,容易被腐蚀造成系统失效。
1 超声波测距原理超声波测距是一种非接触式测量方式,主要原理是:发射器定期发射超声波,遇到障碍物产生反射,由接收器接收回波信号,采用单片机进行监控,记录发射与接收的时间差Δt,然后可用以下公式得到准确的液位高度:L1 = L-Δt*C/2其中L是预先输入的罐体高度,C是超声波传播速度。
不过超声波在空气中的传播速度受温度影响较大,与温度的关系大致可用下式来表示:C=331.45+0.61φ(米/秒)φ为当地气温。
2 硬件电路液位测试仪的结构框,主要由控制电路(ATmega8)、键盘电路、显示电路、温度补偿电路、超声波发射驱动电路、发射换能器(T)、超声波接收检测电路和接收换能器(R)组成。
超声波的发射频率有25KHz,40KHz,75KHz等多种,一般说来,频率越高,精度越好,但在空气中衰减较大,频率低的,衰减较慢,但精度较差,综合考虑后决定采用谐振频率为40KHz超声波换能器TCT40-10F1(发射)和TCT40-10S1(接收),该器件工作距离约10m,盲区约30cm。
显示电路采用PCD8544液晶显示器,单片机通过PB口与液晶显示器相连,PD2、PD3、PC0、PC1为键盘接口,用于预置罐体高度数据,PD2控制单片机进入预置模式,PC0,PC1为增减控制,PD3为确认,控制单片机退出预置模式并启动。
PC6为复位电路。
超声波发射驱动电路采用以74HC04为核心的推挽式驱动电路,单片机PC3口输出40KHz的方波一路通过一级反向后加入换能器的一端,另一路通过两级反向后加入换能器的另一端,这样可以提高超声波的发射功率,继而增加最大测量距离。