建筑材料水泥试验报告
- 格式:docx
- 大小:52.73 KB
- 文档页数:12
水泥实验报告水泥实验报告引言:水泥是建筑行业中不可或缺的材料,其作用是将各种建筑材料粘结在一起,形成坚固的结构。
本次实验旨在探究水泥的物理性质和化学性质,并通过实验结果来判断其适用范围和使用方法。
一、实验目的:1. 了解水泥的组成和制备方法;2. 掌握水泥的物理性质和化学性质;3. 通过实验结果判断水泥适用范围和使用方法。
二、实验器材:1. 水泥;2. 砂子;3. 水;4. 实验室天平;5. 实验室温度计。
三、实验步骤:1. 准备好所需器材和试剂,称取100g砂子放入盆中;2. 在砂子中加入40ml水,搅拌均匀,得到湿沙子;3. 将湿沙子倒入模具中,压实均匀,得到试块;4. 将试块放置在恒温箱内,在20℃下恒温养护24小时后取出测量试块尺寸及重量。
四、实验结果与分析:1. 实验结果:试块尺寸:10cm×10cm×10cm;试块重量:2.5kg。
2. 分析:通过实验结果可以得知,水泥可以将砂子和水混合在一起形成固体结构。
同时,试块的大小和重量可以反映出水泥的强度和稳定性。
根据国家标准,水泥试块应满足一定的尺寸和重量要求,以保证其质量可靠。
五、实验结论:1. 水泥是建筑行业中不可或缺的材料;2. 水泥具有良好的物理性质和化学性质;3. 实验结果表明水泥适用于混凝土、砖墙等建筑材料的制作。
六、实验注意事项:1. 实验操作时要注意安全;2. 实验器材要清洁干净;3. 严格按照实验步骤进行操作;4. 实验结束后要及时清理实验器材。
七、参考文献:1. 《建筑工程材料》(第三版),王志刚主编,中国建筑工业出版社,2018年。
2. GB/T17671-1999《水泥强度检测方法》。
工地材料实验报告范文实验名称:水泥稠度试验一、实验目的:1. 了解水泥的稠度特性;2. 掌握稠度试验的操作方法;3. 分析水泥稠度与施工工艺的关系。
二、实验原理:稠度试验是衡量水泥砂浆的流动性和塑性的实验方法,通过测量水泥砂浆在特定条件下的扩散直径,来确定水泥的稠度。
三、实验仪器和材料:1. 水泥:用于制备水泥砂浆;2. 水:调整水泥砂浆的稠度;3. 方模具:用于测量水泥砂浆的扩散直径;4. 扩散直径测量器:用于测量水泥砂浆的扩散直径。
四、实验步骤:1. 准备工作:将方模具平放在水泥平台上,将其内壁用蜡涂抹均匀;2. 按照一定比例将水泥和水混合,搅拌均匀,制备出一定浓度的水泥砂浆;3. 涂抹蜡液的侧壁将方模具放入试管中,用手轻轻敲击边缘使砂浆排除气泡;4. 倒出方模具中的水泥砂浆,在模具底部用平板修整,使其表面平整;5. 将方模具从砂浆上抬起并且垂直方向快速放下,使其与砂浆表面发生接触,停留15秒;6. 将方模具从砂浆上抬起,并以垂直方向快速放下,测量扩散直径;7. 重复以上步骤2-6,记录每次试验的扩散直径。
五、实验结果:将每次试验的扩散直径记录所得数据如下表所示:实验次数扩散直径(mm)1 322 343 334 355 31六、实验讨论:根据实验结果可知,水泥砂浆的稠度与扩散直径有一定的关系,即稠度越大,扩散直径越小,稠度越小,扩散直径越大。
根据实验数据,计算出平均扩散直径为33mm。
七、实验结论:根据实验结果,可以获得水泥砂浆的稠度信息,通过调整水泥与水的比例,可以控制水泥砂浆的稠度,从而适应不同的施工工艺要求。
八、实验注意事项:1. 水泥砂浆的配合比要严格按照施工要求进行调整;2. 方模具和测量器要保持干净,防止污染实验结果;3. 搅拌水泥砂浆时要均匀,避免出现结块,影响实验结果;4. 操作时要轻拿轻放,避免影响砂浆的扩散性。
以上是水泥稠度试验的实验报告范文,仅供参考。
实际实验中,还需要根据具体的实验要求和方法进行填写。
水泥试验检测报告一、实验目的通过检测水泥的物理性能和化学性能,评估其质量指标,判断水泥的适用性和可靠性,为水泥的应用提供科学依据。
二、实验装置和试验材料装置:压力试验机、粉末比色计、电子天平、恒温水浴槽等。
材料:水泥、砂子、水。
三、实验步骤1. 物理性能测试:(1)首先将水泥样品中的外部杂质去除,取样准备。
(2)根据标准规定,用电子天平称取一定量的水泥样品放入粉末比色计中,测定其初凝时间和终凝时间。
(3)采用压力试验机测试水泥的抗压强度,将标准试样放入机器中进行加载,并记录下抗压强度。
(4)测定水泥的比表面积,使用比表面积仪对水泥样品进行测试。
2. 化学性能测试:(1)取一定量的水泥样品,用电子天平称取固定质量的水泥放入硅酸盐分析瓶中。
(2)将硅酸盐分析瓶放入恒温水浴槽中,加热2小时,使之反应进行完全。
(3)从水浴槽中取出硅酸盐分析瓶,用冷却水冷却,静置一段时间,将上面的液体过滤出来。
(4)将过滤液中的残渣收集起来,用烘炉加热,使其完全干燥后称重,得到净化学成分含量。
四、实验结果和数据分析根据以上步骤,我们进行了水泥样品的物理性能和化学性能的检测。
1.物理性能测试结果:初凝时间:XX分钟终凝时间:XX分钟抗压强度:XXMPa比表面积:XX m^2/kg2.化学性能测试结果:固化后水泥的净化学成分含量:SiO2:XX%Al2O3:XX%Fe2O3:XX%CaO:XX%MgO:XX%SO3:XX%通过以上数据分析,我们可以得出以下结论:1.该水泥的初凝时间为XX分钟,终凝时间为XX分钟,属于标准范围内,符合使用要求。
2.该水泥的抗压强度为XXMPa,达到或超过标准要求,具有较好的强度特性。
3. 该水泥的比表面积为XX m^2/kg,比较合理,有利于提高水泥胶浆的流动性和均匀性。
4.该水泥的化学成分中主要含有SiO2、Al2O3、Fe2O3、CaO、MgO和SO3,均符合标准要求,有助于保证水泥的硬化特性和稳定性。
一、实验目的1. 了解水泥的基本性质和性能;2. 掌握水泥的制备方法及实验步骤;3. 熟悉水泥实验仪器的使用方法;4. 分析水泥的物理性能和化学性能。
二、实验原理水泥是一种重要的建筑材料,主要由石灰石、黏土等原料经高温煅烧制得。
水泥的制备过程主要包括原料的粉碎、配料、煅烧、磨细等步骤。
水泥的主要化学成分有硅酸三钙、硅酸二钙、铝酸三钙等,这些成分决定了水泥的物理性能和化学性能。
三、实验仪器与试剂1. 仪器:水泥试验筛、水泥试验筛架、水泥试验筛底座、水泥试验筛盖、水泥试验筛筛网、天平、量筒、搅拌器、烧杯、水浴锅、滴定管、滴定管架、锥形瓶、移液管、试剂瓶等。
2. 试剂:水泥试样、蒸馏水、氢氧化钠、盐酸、氢氧化钠溶液、盐酸溶液、标准溶液等。
四、实验步骤1. 水泥细度测定(1)将水泥试样过0.9mm方孔筛,筛余量为筛余质量;(2)称取筛余质量,精确到0.01g;(3)将筛余质量放入烧杯中,加入适量蒸馏水,搅拌至完全溶解;(4)将溶液过滤,取滤液测定其细度。
2. 水泥凝结时间测定(1)将水泥试样与标准稠度用水量按比例混合,搅拌均匀;(2)将混合好的水泥试样倒入凝结时间测定仪的模具中,静置30min;(3)将模具翻转,水泥试样表面应无流动现象,否则需重新加水调整;(4)记录水泥试样开始凝结的时间,即为初凝时间;(5)继续观察水泥试样,记录水泥试样完全凝固的时间,即为终凝时间。
3. 水泥强度测定(1)将水泥试样与标准稠度用水量按比例混合,搅拌均匀;(2)将混合好的水泥试样倒入水泥强度测定仪的模具中,静置24h;(3)取出水泥试样,进行养护;(4)在水泥试样养护到规定龄期后,进行强度测定;(5)记录水泥试样的抗压强度和抗折强度。
4. 水泥化学成分测定(1)将水泥试样与盐酸溶液按比例混合,搅拌均匀;(2)将混合好的水泥试样放入锥形瓶中,加热至沸点;(3)记录反应过程中产生气体的体积;(4)根据气体的体积计算水泥中的化学成分含量。
水泥物理性能检验报告一、引言水泥是建筑材料中常用的一种材料,它在工程中承担着重要的作用。
为了确保水泥质量的稳定和优良,需要对其物理性能进行检验和评价。
本报告旨在对批水泥样品进行物理性能检验,并对检验结果进行分析和评价。
二、实验方法1.取样:从供应商提供的水泥中随机取得一定数量的样品,保证样品的代表性。
2.检测项目:对水泥样品进行常规的物理性能检测,包括初凝时间、终凝时间、凝结时间、抗压强度等项目。
3.试验设备:试验设备主要包括细度计、细度筛、试验均匀器、试验机等。
三、实验结果1.初凝时间:本次试验中,水泥样品的平均初凝时间为30分钟。
2.终凝时间:本次试验中,水泥样品的平均终凝时间为240分钟。
3.凝结时间:在本次试验中,水泥样品的平均凝结时间为270分钟。
4.抗压强度:对水泥样品进行7天和28天抗压强度测试,结果如下表所示:抗压强度(MPa)时间(天)728样品13245样品23448样品33144四、分析和评价1.水泥样品的初凝时间和终凝时间符合国家标准要求。
初凝时间通常不应超过45分钟,终凝时间不应低于10小时。
2.水泥样品的凝结时间为270分钟,表明水泥具有较快的凝结速度。
这对于加快工程施工进度是有益的。
3.水泥样品在抗压强度测试中表现出较高的强度值。
根据试验结果,样品在7天和28天的抗压强度都达到了国家标准要求。
五、结论从本次试验结果可以得出以下结论:1.水泥样品的初凝时间和终凝时间符合国家标准要求。
2.水泥样品的凝结时间为270分钟,表明水泥具有较快的凝结速度。
3.水泥样品在抗压强度测试中表现出较高的强度值,符合国家标准要求。
六、建议基于本次试验结果,我们对水泥供应商提出以下建议:1.继续保持水泥样品的物理性能稳定性,确保其初凝时间和终凝时间符合国家标准要求。
2.进一步提高水泥的凝结速度,以满足各类工程施工的时间要求。
3.继续保持水泥样品的抗压强度指标,确保其质量稳定。
4.加强原料质量控制,确保水泥质量的稳定性和可靠性。
水泥性能测试实验报告水泥性能测试实验报告一、引言水泥是建筑材料中不可或缺的一种,广泛应用于房屋建筑、道路修建等领域。
为了确保水泥的质量和性能符合标准要求,进行水泥性能测试实验是非常必要的。
本报告将详细介绍水泥性能测试实验的目的、方法、结果和分析。
二、实验目的本次实验的目的是测试水泥的凝结时间、强度和流动性能。
通过对这些性能的测试,可以评估水泥的质量和适用范围,为工程施工提供参考。
三、实验方法1. 凝结时间测试:将一定量的水泥与适量的水混合,搅拌均匀后,倒入模具中。
在一定时间间隔内,观察水泥的凝结情况,并记录凝结时间。
2. 强度测试:将水泥与适量的砂浆配制成试件,经过一定时间的养护后,使用万能试验机进行强度测试。
通过施加力量,记录水泥试件的抗压强度和抗拉强度。
3. 流动性能测试:使用流动度计测试水泥砂浆的流动性能。
将一定量的水泥砂浆倒入流动度计中,观察其流动性和坍落度。
四、实验结果与分析1. 凝结时间测试结果:根据实验记录,水泥的凝结时间为X分钟。
凝结时间是指水泥砂浆从开始搅拌到完全凝结所需的时间。
凝结时间的长短与水泥的成分和质量有关,一般情况下,凝结时间较短的水泥适用于需要迅速凝结的工程,如地铁隧道施工;凝结时间较长的水泥适用于需要较长养护时间的工程,如高层建筑。
2. 强度测试结果:经过一定时间的养护后,水泥试件的抗压强度为X MPa,抗拉强度为X MPa。
强度是衡量水泥质量的重要指标,直接影响工程的安全性和耐久性。
高强度的水泥适用于需要承受较大压力和拉力的工程,如桥梁建设;低强度的水泥适用于一些轻负荷的工程,如民用建筑。
3. 流动性能测试结果:根据流动度计的测量,水泥砂浆的流动性和坍落度为X mm。
流动性是指水泥砂浆在一定条件下的流动能力,流动性好的水泥适用于需要施工性能好的工程,如地面铺装;流动性差的水泥适用于需要填充性能好的工程,如管道修复。
综合以上测试结果,可以得出水泥的性能评价。
根据工程的实际需求,选择合适的水泥类型和品牌,以确保工程质量。
水泥的检验报告1. 引言水泥是建筑工程中常用的材料之一,它的质量直接影响着混凝土的性能和工程的品质。
为了保证水泥的质量达到标准要求,需要进行一系列的检验。
本报告将详细介绍水泥的检验方法、标准要求以及检验结果的分析。
2. 检验方法2.1 外观检验外观检验是对水泥外观进行检查,包括颜色、形状、气味等方面的观察。
合格的水泥应呈现灰色或灰褐色,无明显变色、结块、异物等现象。
2.2 物理性能检验物理性能检验主要包括外观密度、比表面积、指标试验等。
2.2.1 外观密度检验外观密度可以通过测量水泥的体积和质量来计算得到。
计算公式如下:密度 = 质量 / 体积2.2.2 比表面积检验比表面积是指单位质量水泥的特定表面积。
常用的测量方法有比气法和压汞法。
根据规定操作步骤和仪器设备,可以测得水泥的比表面积值。
2.2.3 指标试验指标试验包括水泥的强度、凝结时间、胶凝体积、烧失量等指标的测定。
这些指标是评价水泥质量优劣的重要依据。
2.3 化学成分检验化学成分检验是对水泥中各种化学成分的含量进行分析,以确定水泥的化学性质是否符合标准要求。
常用的检测方法包括X射线荧光分析、化学分析等。
3. 标准要求根据国家标准《水泥》(GB 175-2007),水泥的品质应符合以下要求:•外观应无夹杂物、色泽一致、无结块•外观密度应不小于1.08 g/cm³•比表面积应不小于300 m²/kg•标准强度应满足相应等级的要求•凝结时间应符合规定范围•胶凝体积应不小于70%•烧失量应不大于4%4. 检验结果经过对水泥样品的检验,得到以下结果:•外观:水泥呈灰色,无明显夹杂物,无结块现象•外观密度:1.12 g/cm³•比表面积:320 m²/kg•标准强度:符合C30等级标准要求•凝结时间:初始凝结时间为25分钟,终止凝结时间为4小时•胶凝体积:75%•烧失量:3.2%综上所述,该批水泥的检验结果符合国家标准要求,可以在建筑工程中使用。
第1篇一、实验目的1. 了解水泥的基本性质和分类。
2. 掌握水泥的化学成分及其对性能的影响。
3. 学习水泥的物理性能检测方法,包括凝结时间、安定性和强度等。
4. 通过实验,加深对水泥工程应用的理解。
二、实验器材1. 水泥:硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥等。
2. 水泥净浆搅拌机、水泥净浆搅拌棒、凝结时间测定仪、安定性测定仪、水泥胶砂强度试验机、天平、量筒、试模等。
三、实验步骤1. 水泥化学成分分析(1)取适量水泥样品,用四分法缩分至所需质量。
(2)将样品放入高温炉中,在1100℃左右煅烧2小时,取出冷却至室温。
(3)将煅烧后的样品磨细,过0.9mm筛,备用。
(4)按照国标GB/T 1345-2011进行化学成分分析。
2. 水泥物理性能检测(1)凝结时间测定①按照国标GB/T 1346-2011进行水泥标准稠度用水量测定。
②将标准稠度水泥浆倒入凝结时间测定仪的试模中,静置30秒。
③启动凝结时间测定仪,观察水泥浆从加水开始至初凝、终凝的时间。
(2)安定性检验①按照国标GB/T 1347-2011进行水泥安定性检验。
②将水泥浆倒入安定性测定仪的试模中,静置24小时。
③观察水泥浆是否发生体积膨胀,如发生膨胀,则判定为不安定。
(3)水泥胶砂强度试验①按照国标GB/T 17671-1999进行水泥胶砂强度试验。
②将水泥、标准砂和规定量的水混合均匀,倒入试模中。
③将试模放在水泥胶砂强度试验机上,按照规定速度加压,使试件成型。
④在标准温度(20±2℃)下养护24小时,取出试件。
⑤将试件放入水泥胶砂强度试验机,按照规定速度进行抗压试验。
⑥记录试件的抗压强度。
四、实验结果与分析1. 水泥化学成分分析(1)硅酸盐水泥:SiO2 20.5%,Al2O3 5.2%,Fe2O3 2.5%,CaO 66.5%,MgO 1.5%。
(2)矿渣硅酸盐水泥:SiO2 28%,Al2O3 7%,Fe2O3 6%,CaO 36%,MgO 3%。
水泥检验报告范文一、引言水泥是建筑材料中常用的一种材料,广泛应用于房屋建筑、道路、桥梁等领域。
为了保证水泥质量,需要进行严格的检验。
本报告对水泥样品进行了检验,并对检验结果进行了分析和评价。
二、检验目的本次检验的目的是检验水泥的理化性质以及其符合相关标准要求的程度,判断水泥的质量是否合格。
三、检验内容1.外观检验:对水泥样品的颜色、形状等进行观察,确定是否存在明显的外观缺陷。
2.水泥标号检验:通过测定水泥的强度指标,判断水泥的标号是否符合要求。
3.试样制备:按照相关标准要求,制备水泥试样。
4.硫酸盐含量检验:通过测定水泥中硫酸盐含量,判断水泥是否符合相关标准要求。
5.水泥挥发物含量检验:测定水泥中挥发物含量,判断水泥的质量是否合格。
6.水泥比表面积检验:通过测定水泥的比表面积,判断水泥的活性是否达到要求。
四、检验方法1.外观检验:人工观察。
2.水泥标号检验:根据相关标准,进行拉伸、压缩等试验。
3.试样制备:按照相关标准要求,制备水泥试样。
4.硫酸盐含量检验:采用氯化钡法进行测定。
5.水泥挥发物含量检验:采用干燥法进行测定。
6.水泥比表面积检验:采用比表面仪进行测定。
五、检验结果与分析1.外观检验:经过观察,水泥样品的颜色均匀,形状规则,无明显的外观缺陷。
2.水泥标号检验:经过拉伸、压缩等试验,水泥样品的强度符合标号要求,判定为x级水泥。
3.硫酸盐含量检验:经过氯化钡法测定,水泥样品的硫酸盐含量为x%,符合标准要求。
4.水泥挥发物含量检验:经过干燥法测定,水泥样品的挥发物含量为x%,符合标准要求。
5. 水泥比表面积检验:经过比表面仪测定,水泥样品的比表面积为x m2/kg,达到标准要求。
六、结论经过对水泥样品的检验,得出以下结论:1.水泥样品的外观无明显缺陷,质量良好。
2.水泥样品的强度符合标号要求,达到x级水泥的标准。
3.水泥样品的硫酸盐含量、挥发物含量以及比表面积均符合标准要求。
综上所述,本次水泥样品检验结果为合格。
欢迎阅读实验项目一、水泥实验实验一、水泥标准稠度用水量测定(一)实验目的:确定水泥标准稠度用水量,作为安定性试验所需标准稠度水泥浆的用水量;(二)实验设备及辅助用具:1、水泥净浆标准稠度与凝结时间测定仪,净浆搅拌机,普通天平,量筒,刮刀;2、课前准备湿抹布。
(用途,实验前用湿抹布擦搅拌锅,试验后清洗搅拌锅)(三)实验方法:检查仪器。
(1)金属棒应能自由滑动,试锥降至锥模顶面位置时,指针应对准标尺零点。
(2)搅拌机应能正常运转。
1、天平称取 400g水泥,用量筒量取114cm32、用湿布擦搅拌锅,浆水泥、水倒入搅拌锅,将搅拌锅放到搅拌机上,放下搅拌翅,开动机器并计时,慢转 120S,快转 120S,停拌。
3、拌和完毕,马上将净浆导入试锥模内,用小刀插捣数次,刮去净浆,抹平。
迅速放到试锥下面固定位置上,将试锥降至净浆表面,拧紧螺丝,指针应对准标尺零点,然后突然放松计时,将试锥自由沉入净浆中, 30S 拧紧螺丝,纪录下沉深度。
取两次实验的标本的平均为最终结果。
4、结果计算用固定用水量测定法时,标准稠度用水量P(%)p=33.4-0.185*SS-测定试锥下沉深度( mm)当下沉深度小于 13mm 时应采用调整用水量法测定。
(四)数据处理固定用水量法用水量 W/ml试锥沉入深度S/mm标准稠度用水量P/%平均值实验二、水泥安定性实验(一)实验目的:检验水泥中游离的钙对安定性的影响;(二)实验设备及辅助用具:1、净浆搅拌机、沸煮箱、普通天平、量筒、直尺、刮刀、2、课前准备湿抹布。
(用途,实验前用湿抹布擦搅拌锅,擦拭小刀试验后清洗搅拌锅)(三)实验方法:检查仪器。
搅拌机应能正常运转。
1、称取水泥式样 400g,量好标准稠度用水量(准确至 0.5ml),按测定标准稠度用水量的方法制成净浆。
2、从伴制好的净浆中取出约 1/3,分成两等分,使呈球形,放在涂油的玻璃板上,轻轻振动玻璃板,使水泥净浆球扩展成试饼。
每组制作两个试饼。
水泥检测报告范文一、引言水泥是建筑材料中不可或缺的基础原料,广泛应用于房屋、桥梁、道路等各类建筑工程中。
为了确保水泥质量的稳定性和可靠性,进行水泥的检测和分析是十分重要的。
本报告将对水泥进行多项检测分析,以评估其质量状况和达到建筑工程的要求。
二、方法1.取样:从不同供应商和生产周期的水泥中随机取样。
2.检测项目:对取样水泥进行以下项目的检测:a.化学成分分析:包括硅酸盐含量、铝酸盐含量、氧化钙含量、矾土含量等。
b.物理性能测试:包括比表面积、初凝时间、终凝时间、抗压强度等。
c.工程性能测试:包括胶凝时间、抗折强度、抗渗性能等。
三、化学成分分析1.硅酸盐含量:通过滴定法测定,结果显示供应商A的水泥硅酸盐含量为XX%,供应商B的水泥硅酸盐含量为XX%。
2.铝酸盐含量:通过化学分析测定,结果显示供应商A的水泥铝酸盐含量为XX%,供应商B的水泥铝酸盐含量为XX%。
3.氧化钙含量:通过加热测定法测定,结果显示供应商A的水泥氧化钙含量为XX%,供应商B的水泥氧化钙含量为XX%。
4.矾土含量:通过化学分析测定,结果显示供应商A的水泥矾土含量为XX%,供应商B的水泥矾土含量为XX%。
四、物理性能测试1.比表面积:采用比表面积仪测定,结果显示供应商A的水泥比表面积为XX平方米/克,供应商B的水泥比表面积为XX平方米/克。
2.初凝时间:采用细孔计测定,结果显示供应商A的水泥初凝时间为XX分钟,供应商B的水泥初凝时间为XX分钟。
3.终凝时间:采用细孔计测定,结果显示供应商A的水泥终凝时间为XX分钟,供应商B的水泥终凝时间为XX分钟。
4.抗压强度:采用万能试验机测定,结果显示供应商A的水泥抗压强度为XX兆帕,供应商B的水泥抗压强度为XX兆帕。
五、工程性能测试1.胶凝时间:通过观察水泥浆液胶凝的时间,结果显示供应商A的水泥胶凝时间为XX分钟,供应商B的水泥胶凝时间为XX分钟。
2.抗折强度:采用三点弯曲试验测定,结果显示供应商A的水泥抗折强度为XX兆帕,供应商B的水泥抗折强度为XX兆帕。
水泥检测报告范文一、检测目的和背景水泥是建筑材料中的一种重要组成部分,主要用于制作混凝土和砂浆等建筑结构材料。
为了确保建筑物的质量和安全,对水泥进行检测是非常必要的。
本次检测旨在对品牌的水泥进行检验,以确定其是否符合相关标准和要求。
二、检测方法和原理本次检测使用了以下方法进行水泥样品的检验:1.外观检查:通过目测方法来观察水泥的外观,如颜色、质地和块状度等。
2.物理性能测试:包括水泥的颗粒度、比表面积和胶结时间等指标的测试。
3.化学成分分析:通过化学分析方法,对水泥样品的主要成分进行分析和检测,如氧化物含量、硅酸盐含量和硫酸盐含量等。
4.强度测试:通过压缩试验、抗拉试验和抗折试验等方法来评估水泥的强度性能。
三、检测结果和讨论1.外观检查结果显示,所检测的水泥样品为灰白色,质地坚实,无明显颗粒状物质,符合标准要求。
2.物理性能测试结果如下表所示:指标测试值标准要求颗粒度0.08mm ≤20%比表面积320m²/kg ≥250m²/kg胶结时间30分钟≥10分钟通过对比测试值和标准要求可以发现,水泥样品的颗粒度、比表面积和胶结时间都符合相关标准和要求。
3.化学成分分析结果如下表所示:成分测试值标准要求水泥矿物相硅酸盐≥60%水合硅酸盐≤25%无定形物质≤7%水合硅酸钙40%≥25%水合硅酸铝15%≥6%通过对比测试值和标准要求可以发现,水泥样品的主要成分符合相关标准和要求。
4.强度测试结果如下表所示:试验项目测试值标准要求压缩强度40MPa≥32.5MPa抗拉强度6MPa≥3.5MPa抗折强度8MPa≥6.0MPa通过对比测试值和标准要求可以发现,水泥样品的强度性能符合相关标准和要求。
四、结论根据上述水泥样品的检测结果分析,可以得出以下结论:1.水泥样品的外观符合标准要求,质地坚实,没有明显的颗粒状物质。
2.水泥样品的物理性能指标,如颗粒度、比表面积和胶结时间等,都满足相关标准和要求。
第1篇一、实验目的1. 了解水泥强度的基本概念和影响因素。
2. 掌握水泥强度试验的方法和步骤。
3. 学会使用实验仪器和数据处理方法。
4. 评估水泥的质量和性能。
二、实验原理水泥强度是指水泥在硬化过程中对周围材料的粘结力,是衡量水泥性能的重要指标。
本实验采用水泥胶砂强度试验方法,通过测定水泥胶砂在特定条件下的抗压强度和抗折强度,评估水泥的质量。
三、实验仪器与材料1. 实验仪器:- 水泥胶砂搅拌机- 水泥胶砂试验机- 水泥胶砂试模- 量筒- 秒表- 标准筛2. 实验材料:- 水泥:按实验要求选择不同品种和强度等级的水泥- 标准砂:符合国家标准GB/T 1347-2001的要求- 水:符合国家标准GB/T 6752-2007的要求四、实验步骤1. 水泥胶砂制备:- 按照水泥胶砂配合比,准确称取水泥、标准砂和水的质量。
- 将水泥和标准砂混合均匀,加入水后用搅拌机搅拌3分钟。
2. 水泥胶砂试件制作:- 将搅拌好的水泥胶砂倒入试模中,振动1分钟,使水泥胶砂密实。
- 将试模置于标准养护箱中,养护24小时。
3. 水泥胶砂试件养护:- 将养护好的试件取出,放入试验机上进行抗压强度试验。
4. 抗压强度试验:- 将试件置于试验机夹具中,以50N/s的速率进行加载。
- 当试件破坏时,记录破坏时的荷载和破坏时间。
5. 抗折强度试验:- 将试件放置在试验机夹具中,以10mm/min的速率进行加载。
- 当试件破坏时,记录破坏时的荷载和破坏时间。
五、实验数据记录与处理1. 记录水泥品种、强度等级、胶砂配合比、试件养护条件、抗压强度、抗折强度等数据。
2. 计算水泥胶砂的抗压强度和抗折强度,以MPa为单位。
3. 对实验数据进行统计分析,评估水泥的质量和性能。
六、实验结果与分析1. 实验结果:| 水泥品种 | 强度等级 | 抗压强度(MPa) | 抗折强度(MPa) || :-------: | :-------: | :------------: | :------------: || P.O 32.5 | 32.5 | 35.2 | 7.6 || P.O 42.5 | 42.5 | 45.8 | 8.9 || P.O 52.5 | 52.5 | 55.2 | 10.1 |2. 结果分析:通过对比不同品种和强度等级的水泥的抗压强度和抗折强度,可以看出P.O 52.5强度等级的水泥具有较高的强度。
水泥试验报告范文一、实验目的1.主要了解水泥的物理性能和力学性能;2.通过对水泥试验的全面了解,掌握水泥在不同条件下的使用性能;3.通过试验,掌握水泥的质量控制方法。
二、实验原理1.水泥的成分分析:通过对水泥样品进行化学分析,确定其化学组成,包括氧化物的含量和化学反应的类型等。
2.水泥的物理测试:对水泥样品进行比重测定、烧失率测定和颗粒度分析等物理性能测试。
3.水泥的力学测试:对水泥样品进行强度测试,包括早期强度和长期强度。
三、实验步骤1.水泥样品的准备:将水泥样品颗粒研磨至细粉末状,确保测试结果的准确性。
2.水泥成分分析:通过化学分析方法,确定水泥样品中各种氧化物的含量,并计算出水泥中主要组分的百分比。
3.水泥的物理测试:a)比重测定:使用比重测定仪,将水泥样品浸泡在水中,测量样品的体积和质量,计算出水泥的比重。
b)烧失率测定:使用烧失率测定仪,将水泥样品加热至高温,检测样品中可燃物质的含量,计算出水泥的烧失率。
c)颗粒度分析:使用颗粒度分析仪,对水泥样品进行颗粒分析,确定水泥的颗粒大小分布情况。
4.水泥的力学测试:a)早期强度测试:使用早期强度试验机,对水泥样品进行快速压缩试验,计算出水泥的早期强度指标。
b)长期强度测试:使用长期强度试验机,对水泥样品进行慢速压缩试验,计算出水泥的长期强度指标。
四、实验结果与分析1.水泥成分分析:根据化学分析结果,确定水泥中主要氧化物含量,如SiO2、Al2O3、Fe2O3等。
2.水泥的物理测试:a)比重测定结果表明,水泥的比重为x。
b)烧失率测定结果表明,水泥的烧失率为x%。
c)颗粒度分析结果显示,水泥颗粒的大小分布范围为x。
3.水泥的力学测试:a)早期强度测试结果显示,水泥的28天强度为xMPa。
b)长期强度测试结果显示,水泥的90天强度为xMPa。
五、错误分析与改进措施1.实验中可能存在的误差:对水泥样品的样本处理过程中,研磨不均匀会导致成分分析结果出现误差;对水泥的物理测试中,操作不规范可能导致测量结果不准确。
第1篇一、实验目的本实验旨在通过对水泥样品的见证取样,检测水泥的技术性能,确保水泥质量符合国家标准,为工程提供合格的水泥材料。
二、实验依据1. 《水泥标准稠度用水量、凝结时间、安定性检验方法》(GB/T 1346-2011)2. 《水泥物理检验方法》(GB/T 1345-2011)3. 《水泥化学分析方法》(GB/T 176-2008)三、实验仪器与材料1. 实验仪器:- 水泥净浆搅拌机- 标准稠度用水量测定仪- 水泥安定性试验仪- 水泥强度试验机- 水泥化学分析仪器2. 实验材料:- 水泥样品(袋装或散装)- 清洁水- 砂浆四、实验步骤1. 样品准备:从不同部位随机抽取水泥样品,混合均匀后按批量要求分装。
2. 标准稠度用水量测定:- 将水泥样品按照规定比例与水混合,搅拌至规定稠度。
- 测量所需水量,计算标准稠度用水量。
3. 凝结时间测定:- 将水泥样品按照规定比例与水混合,搅拌至规定稠度。
- 测定初凝时间和终凝时间。
4. 安定性检验:- 将水泥样品按照规定比例与水混合,搅拌至规定稠度。
- 进行沸煮试验,观察是否有体积膨胀或裂纹。
5. 强度检验:- 将水泥样品按照规定比例与水混合,搅拌至规定稠度。
- 制备水泥胶砂试件,进行抗压强度和抗折强度试验。
6. 化学分析:- 对水泥样品进行化学成分分析,包括氧化钙、硅酸盐、铝酸盐等。
五、实验结果与分析1. 标准稠度用水量:根据实验结果,水泥样品的标准稠度用水量为XX%,符合国家标准要求。
2. 凝结时间:根据实验结果,水泥样品的初凝时间为XX分钟,终凝时间为XX分钟,符合国家标准要求。
3. 安定性检验:根据实验结果,水泥样品在沸煮试验中未出现体积膨胀或裂纹,符合国家标准要求。
4. 强度检验:根据实验结果,水泥样品的抗压强度为XXMPa,抗折强度为XXMPa,符合国家标准要求。
5. 化学分析:根据实验结果,水泥样品的化学成分符合国家标准要求。
六、结论通过本次见证取样水泥实验,检测结果显示该批水泥样品的技术性能符合国家标准要求,可以用于工程中。
建筑材料水泥试验报告1.实验目的1.1.掌握水泥各种技术性质定义 .通过试验进一理解水灰比、掺和料对水泥强度的影响;1.2.学会操作水泥强度和与外加剂相容性的实验方法;1.3.了解水泥安定性、凝结时间的测试方法;2.实验内容2.1.水泥与外加剂相容性实验1.实验原理相容性的概念:对于混凝土外加剂与水泥适应性的定义,普遍认为:依据混凝土外加剂应用技术规范,将经过检验符合标准的某种外加剂掺入按规定可以使用该品种外加剂的水泥中,用该水泥所配制的混凝土或砂浆若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂不适应;选用水泥300g,水87g水灰比相同,减水剂掺量不同,分别测定水泥净浆流动度mm;画出减水剂掺量与净浆流动度之间的关系曲线并进行分析;2.主要设备水泥净浆搅拌机、水平玻璃板、湿布、截锥圆模、电子称、钢尺等;3.实验步骤我们组负责的是减水剂掺量%的水泥的净浆流动度:1将截锥圆模置于水平玻璃板上,先用湿布擦拭截锥圆模内壁和玻璃板,然后将湿布覆盖它们的上方;2称量300g水泥,倒入用湿布擦拭过的搅拌锅内;3 称量减水剂,加入搅拌锅;然后称量87g水,加入搅拌锅,搅拌3min;4将拌好的净浆迅速诸如截锥圆模内,刮平,将截锥圆模按垂直方向迅速提起,30s以后量取相互垂直的两直径,并去它们的平均值作为次胶凝材料净浆的流动度;其它减水剂掺量的实验步骤类似;2.2.水泥胶砂强度实验1.实验原理选用水泥,改变水灰比和粉煤灰的掺量;测定不同龄期的抗压、抗折强度,并对其结果进行分析;其重量比为:水泥:标准砂=1:3;水灰比分别为:、、;粉煤灰掺量内掺:10%、20%;水泥用量450g,标准砂用量1350g;2.实验仪器电子称、搅拌机、伸臂式胶砂振动台、可拆卸的三联模、水泥电动抗折实验机、压力实验机和抗压夹具等;3.实验步骤我们组负责的是10%、28天水泥胶砂强度的测量;胶砂的制备:1分别称量粉煤灰45g,水泥405g,标准砂1350g,水225g;2把水加入搅拌锅,加入水泥与粉煤灰,把锅放在固定架上,上升至固定位置;然后立即开动机器,低速搅拌30s后,在第二个30s开始的同时均匀的将砂子加入;随后等待搅拌机搅拌完毕;3胶砂制备后应立即成型;将试模擦拭干净,模板四周与底座的接触面上涂上黄油,并紧密装配防止漏浆;试模的内壁要均匀地涂刷一薄层机油,以方便后期的拆模;然后将试模级模套固定在振实台上,用一个适当的勺子从搅拌锅内去胶砂,并分两层装入试模;装第一层时,每个槽里约放300g胶砂,用大播料器垂直架在模套顶部,沿每个牧草来回一次将料层播平,振实60次;再装入第二层胶砂,用小播料器播平,再振实60次;振实完毕后取下试模,用一直尺以近似90°的角度架在试模的一端,沿试模长度方向以横向锯割动作向另一端移动,将超过试模部分的胶砂刮去,并用同一直尺以近乎水平的角度将试体表面抹平;在试模上用纸条标明试件编号;试件养护:4将成型好的试件连模放入标准养护箱内养护,在温度为20±1 ℃,相对湿度大于90%的条件下养护24h;5将试件从养护箱内取出,用防水墨汁编号;拆模时注意不要损伤试件;6作好标记的试件应立即水平或竖直放入水槽中养护,保持水温为20±1 ℃,试件之间要留有间隙,以让水与试件的六个面接触;养护期间试件之间间隔或试件上表面的水深不得小于5mm,养护至规定龄期我们组为28d;水泥胶砂抗折强度的测定:7到达龄期后,从水中取出一组三条试件,擦去试件表面沉积物,用湿布覆盖至实验时为止;8清洁抗折实验夹具的支撑圆柱表面粘着的杂物;将试件放入抗折夹具内,使试件侧面与圆柱接触,试件长轴垂直于支撑圆柱;9调节抗折实验机零点与平衡,开动机器进行加荷,知道试件折断,记录破坏荷载F f N;保持两个半截棱柱处于潮湿状态直至对它们进行抗压实验;10按下式计算抗折强度R f精确至R R=32R R RR3式中,F f为折断时施加于棱柱体中部的荷载,单位为N,L为支撑圆柱中心距,L=100mm;b为棱柱正方形截面的边长,b=400mm;抗折强度的结果取三块试件的平均值,当三个强度值中有超出平均值±10%时,应剔除后取平均值作为抗折强度实验结果;水泥胶砂抗压强度的测定:11抗折实验后的六个半棱柱体应立即进行抗压强度实验;实验在压力实验机上用抗压夹具进行;清除试件受压面与加压板间的碎渣,以试件的侧面作受压面,并将夹具置于压力机压板中央;棱柱体露在压板外的部分约10mm;12开动实验机均匀施加荷载直至破坏,记录破坏荷载F c N与抗压强度R c精确至;以一组三个棱柱体上得到的六个抗压强度值的算术平均值作为抗压强度的实验结果;如果六个测定值中有一个超过六个平均值的±10%时,应剔除这个结果,而以剩下的五个测量值的平均值作为抗压强度实验结果;如果五个测定值中再有超过它们的平均值的±10%时,此组结果作废;各组水泥胶砂强度配比:2.3.水泥标准稠度用水量、水泥安定性、凝结时间实验演示国家标准GB/T1346-2001eqv ISO9597:1989中,对这三种测量都有明确而又详细的规定;测量水泥标准稠度用水量时,应先拌制水泥净浆;用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,先将拌和水倒入搅拌锅内,然后在5s~10s内小心将称好的500g 水泥加入水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s停机;拌和结束后,立即将拌制好的水泥净浆装入已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,使试杆垂直自由地沉入水泥净浆中;在试杆停止沉入或释放试杆30s时记录试杆距底板之间的距离,升起试杆后,立即擦净;整个操作应在搅拌后内完成;以试杆沉入净浆并距底板6mm±1mm 的水泥净浆为标准稠度净浆;其拌和水量为该水泥的标准稠度用水量P,按水泥质量的百分比计;安定性是水泥硬化后体积变化的均匀性,体积的不均匀变化引起膨胀、裂缝或翘曲等现象;安定性实验可采用试饼法或雷氏法,当实验结果有争议时以雷氏法为准;用雷氏夹法检验时,以测量沸煮后的雷氏夹试模的二指针尖端间的距离的增加值来判断安定性是否合格,如果增加值不大于,则称为水泥体积安定性合格;测量水泥凝结时间时,要先进行试件的制备:以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,立即放入湿气养护箱中;记录水泥全部加入水中的时间作为凝结时间的起始时间;初凝时间的测定:试件在湿气养护箱中养护至加水后30min时进行第一次测定;测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触 ;拧紧螺丝1s~2s后,突然放松,试针垂直自由地沉入水泥净浆;观察试针停止下沉或释放试针30s时指针的读数;当试针沉至距底板4mm±1mm时,为水泥达到初凝状态;由水泥全部加入水中至初凝状态的时间为水泥的初凝时间,用“min”表示;终凝时间的测定:为了准确观测试针沉入的状况,在终凝针上安装了一个环形附件;在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转180°,直径大端向上,小端向下放在玻璃板上,再放入湿气养护箱中继续养护,临近终凝时间时每隔15min测定一次,当试针沉入试体时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用“min”表示;测定时应注意,在最初测定的操作时应轻轻扶持金属柱,使其徐徐下降,以防试针撞弯,但结果以自由下落为准;在整个测试过程中试针沉入的位置至少要距试模内壁10mm;临近初凝时,每隔5min测定一次,临近终凝时每隔15min测定一次,到达初凝或终凝时应立即重复测一次,当两次结论相同时才能定为到达初凝或终凝状态;每次测定不能让试针落入原针孔,每次测试完毕须将试针擦净并将试模放回湿气养护箱内,整个测试过程要防止试模受振;3.实验结果及分析3.1.水泥与外加剂相容性实验测量的数据处理如下:水泥减水剂掺量与净浆流动度之间的关系曲线从图线中可知,减水剂测掺量对水泥净浆流动度的影响十分显着,而且在减水剂掺量较小时,随着减水剂掺量百分比的增加,水泥净浆流动度呈现增大的趋势;达到某值后,净浆流动度随减水剂掺量增大而变化的趋势将会减小很多,呈现稳定在一定范围内的趋势;此时,称达到减水剂的饱和点;结合图线来说,在减水剂掺量小于%时,增大速率很快,当达到%时净浆流动度的增大趋势开始变的不是那么明显,呈现起伏状;在减水剂掺量达到%时,净浆流动度达到最大,此后减小;因此,该减水剂的饱和点在%附近的位置;而从理论上分析,达到减水剂饱和点之后,水泥净浆扩展度将会基本不变;而当减水剂掺量达到%时,水泥净浆扩展度反而有了一定的减小;这应该是实验误差造成的;造成误差的可能有如下几点:玻璃板未用湿布擦拭、提起截锥圆模时速度不够快或者未沿着竖直方向提起;3.2.水泥胶砂强度实验经全班同学共同测量、分享,得到如下测量数据:注:网络学堂上所传的数据中,有些数据有两组,但选择数据时只选择了其中一组;7d、28d时水灰比与强度关系曲线:由图线可知,未掺入粉煤灰的水泥胶砂,随着水灰比的增大,其强度抗折强度、抗压强度呈现减小的趋势;硬化水泥浆体的强度主要来源于水化物间的范德华引力——两固体表面之间的粘附力都可以归因为这类物理键;粘附作用大小取决其表面积大小及性质;由于水泥水化生成物中,主要是CSH、水化硫铝酸钙的微小结晶拥有巨大的表面积,因此范德华力虽然量级很小,但巨大的表面积上产生的粘附力作用之和就很可观了,它们彼此粘结牢固;多孔材料通常孔隙率越大强度就越低;水灰比增大时,孔隙率随之增大,因此水泥胶砂强度会降低;另外,可以从1918年Abrams总结的混凝土与水灰比间的反比关系式:看出,水灰比增大时,混凝土的强度降低;而混凝土的强度与水泥胶砂强度有很大程度的相关性,也可由此得出图线所表示的规律;总的来说,水泥胶砂的强度由其孔隙率所控制,水灰比的改变会影响其孔隙率,因此水灰比是决定水泥胶砂强度的很重要的因素;然而,实验中水灰比为的水泥胶砂28d时抗压强度最低,不符合分析所得规律;可能是由振捣、试块养护等过程中操作不符合规定等原因造成的;7d、28d时粉煤灰掺量与强度关系曲线:由曲线可知,在水灰比相同时,粉煤灰掺量从0增大到20%的过程中,水泥胶凝强度呈现减小的趋势;7d的时候这样的趋势更明显,28d时差别比7d时要小;粉煤灰是煤粉在电厂锅炉中燃烧后剩余的灰分,从烟道排出时经收集所得,是具有火山灰性质的材料;粉煤灰通常含有大量的球形颗粒;粉煤灰本身没有胶凝性,但是以细粉末状态存在时,能够与氢氧化钙和水在常温状态下起化学反应,生成有胶凝性质的产物;这种二次反应生成的产物,与水泥水化时的产物没有什么区别;在相同水胶比水/胶凝材料的条件下,掺有矿物掺和料并减少了水泥用量的混凝土,通常早期强度发展要受影响;而且粉煤灰与水泥很合使用时,是与水泥水化时放出的氢氧化钙反应,是二次反应,故7d时粉煤灰掺量对强度的影响要比28d时更大些;4.实验小结:水泥是混凝土中最重要的材料;因此,学好水泥相关的知识对我们的专业学习是有很大帮助的;这次的水泥试验,给了我一个这样的机会;这次实验中,我对水泥的各种性质,如凝结时间、安定性有了更深的理解,而且通过亲自进行的实验,了解了更多外加剂、掺和料对水泥和混凝土的各种影响的知识;我了解到,在混凝土的配制过程中,并不是外加剂或者掺和料加的越多、加的质量越好,混凝土性质就会更好,而是要根据实际的需要,经过严密的设计过程,才能得到满足使用需求的混凝土;另外,由于这次是班级同学分工合作做出的实验,对于培养我们的协作的能力和团队精神都有很大的帮助;。
水泥物理性能检测报告水泥是一种常见的建筑材料,用于混凝土、砂浆、地面和墙面的施工。
水泥物理性能的检测是确保其质量和可靠性的重要步骤。
本文将介绍水泥物理性能的检测方法和结果。
一、水泥外观检测水泥外观应呈灰色或深灰色,均匀细腻。
使用目视检查,外观应无凝块、结块、霉斑等缺陷。
二、水泥初凝时间检测水泥的初凝时间是指在加水后,水泥浆体变得稠度明显增大的时间。
试验中,取适量水泥与适量水混合,观察水泥浆体的稠度变化,用塞贝浆度计检测。
测试结果显示,水泥的初凝时间为2小时。
三、水泥质量检测1.比表面积测试水泥的比表面积是指单位质量水泥的表面积。
采用比表面积仪进行测试,结果显示水泥的比表面积为350 m2/kg。
2.初凝时间测试初凝时间是水泥与水混合后开始凝固的时间。
初凝时间的测试使用标准振动台进行,测试结果显示初凝时间为30分钟。
3.终凝时间测试终凝时间是水泥与水混合后完全凝固的时间。
终凝时间的测试使用标准振动台进行,测试结果显示终凝时间为5小时。
4.标准稠度测试标准稠度是指水泥浆体在一定条件下具有的稠度。
使用标准稠度器进行测试,结果显示水泥的标准稠度为30 mm。
5.凝结时间测试凝结时间是水泥浆体由流动状态变为不再流动的时间。
使用流动塔进行测试,结果显示水泥的凝结时间为1小时。
6.内部冲击测试内部冲击性能是指水泥在受到冲击时的强度和稳定性。
使用冲击试验机进行测试,结果显示水泥的内部冲击强度为1200J。
7.抗压强度测试抗压强度是指水泥在受到压力时的抵抗能力。
使用压力试验机进行测试,结果显示水泥的抗压强度为60MPa。
总结起来,根据以上的检测,该水泥的物理性能符合标准要求。
初凝时间和终凝时间在合理范围内,标准稠度和凝结时间也满足相关标准。
比表面积合适,说明水泥颗粒细腻。
内部冲击强度和抗压强度也达到了要求,表明水泥具有较好的强度和稳定性。
综上所述,该水泥在物理性能方面可以满足施工的需求,具有良好的质量和可靠性。
建筑材料水泥试验报告 This model paper was revised by the Standardization Office on December 10, 2020建筑材料水泥试验报告1.实验目的1.1.掌握水泥各种技术性质定义 .通过试验进一理解水灰比、掺和料对水泥强度的影响。
1.2.学会操作水泥强度和与外加剂相容性的实验方法。
1.3.了解水泥安定性、凝结时间的测试方法。
2.实验内容2.1.水泥与外加剂相容性实验1.实验原理相容性的概念:对于混凝土外加剂与水泥适应性的定义,普遍认为:依据混凝土外加剂应用技术规范,将经过检验符合标准的某种外加剂掺入按规定可以使用该品种外加剂的水泥中,用该水泥所配制的混凝土或砂浆若能够产生应有的效果,就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂不适应。
选用水泥300g,水87g(水灰比相同),减水剂掺量不同,分别测定水泥净浆流动度(mm)。
画出减水剂掺量与净浆流动度之间的关系曲线并进行分析。
2.主要设备水泥净浆搅拌机、水平玻璃板、湿布、截锥圆模、电子称、钢尺等。
3.实验步骤我们组负责的是减水剂掺量%的水泥的净浆流动度:(1)将截锥圆模置于水平玻璃板上,先用湿布擦拭截锥圆模内壁和玻璃板,然后将湿布覆盖它们的上方。
(2)称量300g水泥,倒入用湿布擦拭过的搅拌锅内。
(3) 称量减水剂,加入搅拌锅。
然后称量87g水,加入搅拌锅,搅拌3min。
(4)将拌好的净浆迅速诸如截锥圆模内,刮平,将截锥圆模按垂直方向迅速提起,30s以后量取相互垂直的两直径,并去它们的平均值作为次胶凝材料净浆的流动度。
其它减水剂掺量的实验步骤类似。
2.2.水泥胶砂强度实验1.实验原理选用水泥,改变水灰比和粉煤灰的掺量。
测定不同龄期的抗压、抗折强度,并对其结果进行分析。
其重量比为:水泥:标准砂=1:3。
水灰比分别为:、、。
粉煤灰掺量(内掺):10%、20%。
水泥用量450g,标准砂用量1350g。
2.实验仪器电子称、搅拌机、伸臂式胶砂振动台、可拆卸的三联模、水泥电动抗折实验机、压力实验机和抗压夹具等。
3.实验步骤我们组负责的是10%、28天水泥胶砂强度的测量。
胶砂的制备:(1)分别称量粉煤灰45g,水泥405g,标准砂1350g,水225g。
(2)把水加入搅拌锅,加入水泥与粉煤灰,把锅放在固定架上,上升至固定位置。
然后立即开动机器,低速搅拌30s后,在第二个30s开始的同时均匀的将砂子加入。
随后等待搅拌机搅拌完毕。
(3)胶砂制备后应立即成型。
将试模擦拭干净,模板四周与底座的接触面上涂上黄油,并紧密装配防止漏浆。
试模的内壁要均匀地涂刷一薄层机油,以方便后期的拆模。
然后将试模级模套固定在振实台上,用一个适当的勺子从搅拌锅内去胶砂,并分两层装入试模。
装第一层时,每个槽里约放300g胶砂,用大播料器垂直架在模套顶部,沿每个牧草来回一次将料层播平,振实60次。
再装入第二层胶砂,用小播料器播平,再振实60次。
振实完毕后取下试模,用一直尺以近似90°的角度架在试模的一端,沿试模长度方向以横向锯割动作向另一端移动,将超过试模部分的胶砂刮去,并用同一直尺以近乎水平的角度将试体表面抹平。
在试模上用纸条标明试件编号。
试件养护:(4)将成型好的试件连模放入标准养护箱内养护,在温度为20±1 ℃,相对湿度大于90%的条件下养护24h。
(5)将试件从养护箱内取出,用防水墨汁编号。
拆模时注意不要损伤试件。
(6)作好标记的试件应立即水平或竖直放入水槽中养护,保持水温为20±1 ℃,试件之间要留有间隙,以让水与试件的六个面接触。
养护期间试件之间间隔或试件上表面的水深不得小于5mm,养护至规定龄期(我们组为28d)。
水泥胶砂抗折强度的测定:(7)到达龄期后,从水中取出一组三条试件,擦去试件表面沉积物,用湿布覆盖至实验时为止。
(8)清洁抗折实验夹具的支撑圆柱表面粘着的杂物。
将试件放入抗折夹具内,使试件侧面与圆柱接触,试件长轴垂直于支撑圆柱。
(9)调节抗折实验机零点与平衡,开动机器进行加荷,知道试件折断,记录破坏荷载F f(N)。
保持两个半截棱柱处于潮湿状态直至对它们进行抗压实验。
(10)按下式计算抗折强度R f(精确至)R R=32R R RR3式中,F f为折断时施加于棱柱体中部的荷载,单位为N,L为支撑圆柱中心距,L=100mm;b为棱柱正方形截面的边长,b=400mm。
抗折强度的结果取三块试件的平均值,当三个强度值中有超出平均值±10%时,应剔除后取平均值作为抗折强度实验结果。
水泥胶砂抗压强度的测定:(11)抗折实验后的六个半棱柱体应立即进行抗压强度实验。
实验在压力实验机上用抗压夹具进行。
清除试件受压面与加压板间的碎渣,以试件的侧面作受压面,并将夹具置于压力机压板中央。
棱柱体露在压板外的部分约10mm。
(12)开动实验机均匀施加荷载直至破坏,记录破坏荷载F c(N)与抗压强度R c(精确至。
以一组三个棱柱体上得到的六个抗压强度值的算术平均值作为抗压强度的实验结果。
如果六个测定值中有一个超过六个平均值的±10%时,应剔除这个结果,而以剩下的五个测量值的平均值作为抗压强度实验结果。
如果五个测定值中再有超过它们的平均值的±10%时,此组结果作废。
各组水泥胶砂强度配比:2.3.水泥标准稠度用水量、水泥安定性、凝结时间实验(演示)国家标准GB/T1346-2001eqv ISO9597:1989中,对这三种测量都有明确而又详细的规定。
测量水泥标准稠度用水量时,应先拌制水泥净浆。
用水泥净浆搅拌机搅拌,搅拌锅和搅拌叶片先用湿布擦过,先将拌和水倒入搅拌锅内,然后在5s~10s内小心将称好的500g水泥加入水中,防止水和水泥溅出;拌和时,先将锅放在搅拌机的锅座上,升至搅拌位置,启动搅拌机,低速搅拌120s,停15s,同时将叶片和锅壁上的水泥浆刮入锅中间,接着高速搅拌120s停机。
拌和结束后,立即将拌制好的水泥净浆装入已置于玻璃底板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆;抹平后迅速将试模和底板移到维卡仪上,并将其中心定在试杆下,降低试杆直至与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,使试杆垂直自由地沉入水泥净浆中。
在试杆停止沉入或释放试杆30s时记录试杆距底板之间的距离,升起试杆后,立即擦净;整个操作应在搅拌后内完成。
以试杆沉入净浆并距底板6mm±1mm的水泥净浆为标准稠度净浆。
其拌和水量为该水泥的标准稠度用水量(P),按水泥质量的百分比计。
安定性是水泥硬化后体积变化的均匀性,体积的不均匀变化引起膨胀、裂缝或翘曲等现象。
安定性实验可采用试饼法或雷氏法,当实验结果有争议时以雷氏法为准。
用雷氏夹法检验时,以测量沸煮后的雷氏夹试模的二指针尖端间的距离的增加值来判断安定性是否合格,如果增加值不大于,则称为水泥体积安定性合格。
测量水泥凝结时间时,要先进行试件的制备:以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,立即放入湿气养护箱中。
记录水泥全部加入水中的时间作为凝结时间的起始时间。
初凝时间的测定:试件在湿气养护箱中养护至加水后30min时进行第一次测定。
测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触。
拧紧螺丝1s~2s后,突然放松,试针垂直自由地沉入水泥净浆。
观察试针停止下沉或释放试针30s时指针的读数。
当试针沉至距底板4mm±1mm时,为水泥达到初凝状态;由水泥全部加入水中至初凝状态的时间为水泥的初凝时间,用“min”表示。
终凝时间的测定:为了准确观测试针沉入的状况,在终凝针上安装了一个环形附件。
在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转180°,直径大端向上,小端向下放在玻璃板上,再放入湿气养护箱中继续养护,临近终凝时间时每隔15min测定一次,当试针沉入试体时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用“min”表示。
测定时应注意,在最初测定的操作时应轻轻扶持金属柱,使其徐徐下降,以防试针撞弯,但结果以自由下落为准;在整个测试过程中试针沉入的位置至少要距试模内壁10mm。
临近初凝时,每隔5min测定一次,临近终凝时每隔15min测定一次,到达初凝或终凝时应立即重复测一次,当两次结论相同时才能定为到达初凝或终凝状态。
每次测定不能让试针落入原针孔,每次测试完毕须将试针擦净并将试模放回湿气养护箱内,整个测试过程要防止试模受振。
3.实验结果及分析3.1.水泥与外加剂相容性实验测量的数据处理如下:水泥减水剂掺量与净浆流动度之间的关系曲线从图线中可知,减水剂测掺量对水泥净浆流动度的影响十分显着,而且在减水剂掺量较小时,随着减水剂掺量百分比的增加,水泥净浆流动度呈现增大的趋势。
达到某值后,净浆流动度随减水剂掺量增大而变化的趋势将会减小很多,呈现稳定在一定范围内的趋势。
此时,称达到减水剂的饱和点。
结合图线来说,在减水剂掺量小于%时,增大速率很快,当达到%时净浆流动度的增大趋势开始变的不是那么明显,呈现起伏状。
在减水剂掺量达到%时,净浆流动度达到最大,此后减小。
因此,该减水剂的饱和点在%附近的位置。
而从理论上分析,达到减水剂饱和点之后,水泥净浆扩展度将会基本不变。
而当减水剂掺量达到%时,水泥净浆扩展度反而有了一定的减小。
这应该是实验误差造成的。
造成误差的可能有如下几点:玻璃板未用湿布擦拭、提起截锥圆模时速度不够快或者未沿着竖直方向提起。
3.2.水泥胶砂强度实验经全班同学共同测量、分享,得到如下测量数据:(注:网络学堂上所传的数据中,有些数据有两组,但选择数据时只选择了其中一组。
)7d、28d时水灰比与强度关系曲线:由图线可知,未掺入粉煤灰的水泥胶砂,随着水灰比的增大,其强度(抗折强度、抗压强度)呈现减小的趋势。
硬化水泥浆体的强度主要来源于水化物间的范德华引力——两固体表面之间的粘附力都可以归因为这类物理键。
粘附作用大小取决其表面积大小及性质。
由于水泥水化生成物中,主要是CSH、水化硫铝酸钙的微小结晶拥有巨大的表面积,因此范德华力虽然量级很小,但巨大的表面积上产生的粘附力作用之和就很可观了,它们彼此粘结牢固。
多孔材料通常孔隙率越大强度就越低。
水灰比增大时,孔隙率随之增大,因此水泥胶砂强度会降低。
另外,可以从1918年Abrams总结的混凝土与水灰比间的反比关系式:看出,水灰比增大时,混凝土的强度降低。
而混凝土的强度与水泥胶砂强度有很大程度的相关性,也可由此得出图线所表示的规律。
总的来说,水泥胶砂的强度由其孔隙率所控制,水灰比的改变会影响其孔隙率,因此水灰比是决定水泥胶砂强度的很重要的因素。