三个数的算术---几何平均不等式
- 格式:pptx
- 大小:168.28 KB
- 文档页数:7
三元均值不等式公式四个
三元均值不等式是指对于三个非负实数a、b、c,有以下四种均值不等式:
1.算术平均数大于等于几何平均数:
(a+b+c)/3≥(abc)^(1/3)
解释:算术平均数是三个数的和除以3,几何平均数是三个数的乘积的1/3次方根。
这个不等式表明,算术平均数大于等于几何平均数。
2.几何平均数大于等于调和平均数:
(abc)^(1/3)≥3/(1/a+1/b+1/c)
解释:调和平均数是三个数的倒数的平均数,这个不等式表明,几何平均数大于等于调和平均数。
3.平方平均数大于等于算数平均数:
[(a^2+b^2+c^2)/3]^(1/2)≥(a+b+c)/3
解释:平方平均数是三个数的平方和的平均数的1/2次方根,这个不等式表明,平方平均数大于等于算数平均数。
4.立方平均数大于等于平方平均数:
[(a^3+b^3+c^3)/3]^(1/3)≥[(a^2+b^2+c^2)/3]^(1/2)
解释:立方平均数是三个数的立方和的平均数的1/3次方根,这个不等式表明,立方平均数大于等于平方平均数。
这些不等式在数学证明和应用中都有广泛的应用,比如在概率论、统计学和自然科学中都有应用。
三个正数的算术-几何平均不等式求证:如果),0(,,+∞∈c b a ,那么abc c b a 3333≥++,当且仅当c b a ==时,等号成立。
证明:因为abc c ab b a b a abc c b a 333)(33223333-+--+=-++ ①abc ab b a c b a 333)(2233---++= ②)(3])())[((22c b a ab c c b a b a c b a ++-++-+++= )32)((222ab c bc ac b ab a c b a -+--++++=))((222ac bc ab c b a c b a ---++++= ])()())[((21222c a c b b a c b a +++++++=0≥ 所以abc c b a 3333≥++,当且仅当c b a ==时,等号成立。
注意:(1)三个整数的积为定值,则和有最小值;三个正数的和为定值,则积有最大值。
与常用的基本不等式类似,求解过程中要注意“一正、二定、三相等”。
(2)几个简单的变形:33abc c b a ⋅≥++;27)(3c b a abc ++≤;3311133333c b a c b a abc cb a ++≤++≤≤++。
以上三个式子都是当且仅当c b a ==时,等号成立。
(3)公式的证明过程中,①式应用了公式3223333)(y xy y x x y x +++=+。
②式应用了公式))((2233y xy x y x y x +-+=+。
对上述结果做简单的恒等变形,就可以得到定理:如果),0(,,+∞∈c b a ,那么33abc c b a ≥++,当且仅当c b a ==时,等号成立。
这个不等式可以表述为:三个正数的算术平均不小于它们的几何平均。
1,已知),0(,,+∞∈z y x ,求证xyz z y x 27)(3≥++。
证明:因为033>≥++xyz z y x ,所以xyz z y x ≥++27)(3,即xyz z y x 27)(3≥++。