数值分析习题
- 格式:doc
- 大小:584.50 KB
- 文档页数:13
第 1 页/共 22 页1. 正方形的边长大约为100cm ,应怎样测量才干使面积误差不超过1cm 22. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m,1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.3.为使π的相对误差小于0.001%,至少应取几位有效数字?4.设x的相对误差界为δ,求n x的相对误差界.5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?第 3 页/共 22 页6. 已知333487.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并预计截断误差.7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并预计误差.8. 已知16243sin ,sin πππ===请用抛物插值求sin50的值,并预计误差9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x第 5 页/共 22 页10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式.11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,试用二次牛顿插值多项式计算(2.15)f 的近似值,并研究其误差12. 设],[)(b a x f 在上有四阶延续导数,试求满意条件)2,1,0()()(==i x f x P i i 及)()(11x f x P '='的插值多项式及其余项表达式.13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944⎡⎤⎢⎥⎣⎦,上的三次埃尔米特插值多项式()P x ,使它满意11()()(0,1,2),()(),i i P x f x i P x f x ''===并写出余项第 7 页/共 22 页表达式.14. 设],1,0[,23)(2∈++=x x x x f 试求)(x f 在]1,0[上关于,,1{,1)(x span x =Φ=ρ}2x 的最佳平方逼近多项式15.已知实验数据如下:用最小二乘法求形如y=a+bx2的拟合曲线,并计算均方误差.16.已知数据表如下第 9 页/共 22 页x i 1 2 3 4 5 y iωi4 4.56 8 8.5 2 1 3 1 1试用最小二乘法求多项式曲线与此数据组拟合17. .1)(},1{span ,1]41[)(的最佳平方逼近多项式中的关于上的在在求==Φ=x x x x f ρ18. 决定求积公式⎰++≈10110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A , 使其代数精度尽量高,并指出所决定的求积公式的代数精度.19. 用复化辛普森公式计算积分⎰=10dx e I x , 问区间[0,1]应分多少等分才干使截断误差不超过?10215-⨯第 11 页/共 22 页20. 利用下表中给出的数据,分离用复化梯形公式和复化辛甫生公式计算定积分dx x I ln 21⎰=的近似值(要求结果保留到小数点后六位)21. 用复化梯形公式和复化辛甫生公式计算积分⎰=6.28.1)(dx x f I ,函数)(x f 在某些节点上的值如下图:(本题共14分)22. 决定公式⎰+≈101100)()()(x f A x f A dx x f x 的系数1010,,,x x A A ,使其具有最高代数精度23. 决定求积公式⎰++≈1110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A ,使其代数精度尽量高,并指出所决定的求积公式的代数精度第 13 页/共 22 页24.用LU 分解法求解以下方程组 (10分)123123142521831520x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭25.用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛8892121514131615141321x x x26. 用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛542631531321321x x x27. 设方程组b Ax =,其中⎪⎪⎪⎭⎫⎝⎛-=220122101A ,Tb ⎪⎭⎫ ⎝⎛-=32,31,21, 已知它有解Tx ⎪⎭⎫⎝⎛-=0,31,21,若右端有小扰动61021-∞⨯=bδ,试预计由此引起的解的相对误差.第 15 页/共 22 页28. 设方程组b Ax =,其中212 1.0001A -⎛⎫= ⎪-⎝⎭,11.0001b -⎛⎫= ⎪⎝⎭,当右端向量b 有误差00.0001δ⎛⎫= ⎪⎝⎭b 时,试预计由此引起的解的相对误差(用∞范数计算)29. 给定b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111a a a a a a A 证实:(1) 当121<<-a 时,A 对称正定,从而GS 法收敛. (2) 惟独当2121<<-a 时,J 法收敛.30. 对于线性方程组⎪⎩⎪⎨⎧-=+-=-+=+1242043 16343232121x x x x x x x ,列出求解此方程组的Jacobi 迭代格式,并判断是否收敛。
数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
习题11. 填空题(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 _________ 的 _______ 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 _________ 数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值 ______________ 分子的绝对值;(3) 误差有四大来源,数值分析主要处理其中的 __________ 和 ___________ ; (4) 有效数字越多•相对误差越_________ ;2. 用例1.4的算法计算価•迭代3次•计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.斗=0.3040, x 2 =5.1x10% 兀=400,些=°・°°3346, x 5 = 0.875x 1Q-55. 证明1.2.3之定理1. 1.6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积卩的相对误差将为多少。
(假定钢珠为 标准的球形)7. 若跑道长的测量有0.欣的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.8. 为使J 亦的近似数相对误差小于0. 05%,试问该保留几位有效数字.9. 一个园柱体的工件•直径d 为10・25±0・25mm.高力为40. 00± 1.00mm •则它的体枳卩的近 似值、误差和相对误差为多少.10证明对一元函数运算有并求出/(x) = tanx,x = 1.57时的k 值,从而说明/(x) = tanx 在人任彳时是病态问题.11. 定义多元函数运算s =》g,其中工q =1,£(舌)“,r-l求出w(S)的表达式,并说明q 全为正数时,计算是稳定的,q 有正有负时,误差难以控制.12. 下列各式应如何改进•使计算更准确:其中"(4) y = ^p'+q 2 - P, (p>O,q>O,p»q)习题21. 填空题(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 _______________ 主元素的绝对值太小会发生 ___________ ;(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 ___________ .平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 __________ ;(3) 直接£〃分解法解线性方程组时的计算量以乘除法计为 __________ ,追赶法解对角占优的三对角方程组肘的计算量以乘除法计为 _____________ ;⑷ ;)阀二——•114= ------- ・——;t 0(5) A =yt > 1 p{A) _________ , cond 2(A) = _________I"丿(6) A = b 9c > b > a > 0 p{A) _______________ , cond ?(A) = ________4. 用Gauss —Jordan 消元法求:(卜l 《l)f 1 1 -1)T(1)八1 2 -2 ,b =1一2 1 1 丿丄2 6、3(1)心10 -7 0 ,b = 7< 5 -1 5丿r4 3 2 r3 4 3 21(2) A =•—2 3 4 3 -1<1 2 3 4;r0 2 0 1、2 232-2 (2) A =b =4-3 01-76 1 -6-56 ,(i) y =⑵y =1l — x(心1)2・用Gauss 消元法求解下列方程组Ax = b3.用列主元消元法解下列方程组Ax = b.2 1 0 J -1 o>5. 用直接厶U 分解方法求1题中两个矩阵的厶(/分解,并求解此二方程组.6. 用平方根法解方程组Ax = b<3 2 1、‘4、2 2 1 ,b = 3J 1 1丿O7.用追赶法解三对角方程组Ax = b2 -1一1 2 0-I0 0 0T0 A = 0 一1 2 -1 0 ,b = 00 0 -1 2 -1<0 0 0 -1 2丿©8. 证明:(1) 单位下三角阵的逆仍是单位下三角阵. (2) 两个单位下三角阵的乘积仍是单位下三角阵. 9. 由厶=却冴・・£[「(见(2. 18)式),证明:10 •证明向量范数有下列等价性质: (1)14^14^14⑶|HL<H 2<^Kii. 求下列矩阵的||州删2,lkt“(q ).81 3、(2) A= 1 10 2、3 26,12. 求 cond 2 (A)1 A = 1-13)2丿'13. 证明:⑴若A 是正交矩阵,即A rA = /f 则cond 2(A) = l ; (2)若A 是对称正定阵,心是A 的最大特征值,人是最小特征值,则cond 2(A )=习题31. 填空题:(1) 当A 具有严格对角线优势或具有对角优势且 ____________ 时,线性方程组Ax=b 用Jacobi 迭代法和Gauss —Seidel 迭代法均收敛; (2) 当线性方程组的系数矩阵力对称正定时, ___________ 迭代法收敛. (3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 _________ 小于1; S0R 法收敛的必要条件是 ______________ ;(4) 用迭代法求解线性方程组,若⑷,q _______________ 时不收敛,g 接近 _______ 时收 敛较快,g 接近 _______ 时收敛较慢;(5)(1 \\A= ?,$= _________ : Bs = _______ ; Q(坊)= _______ ; °(块)= ___ ・2. 用Jacobi 迭代法和Gauss —Seidel 迭代法求解方程组V 1 0、'3 ''-81 1 丫和‘1、 (1)1 2 1= -5 ; (2)1-5 1 x 2 = 16W 1 2,宀< 1 1 -仏丿6各分量第三位稳定即可停止.3•庄SOR 法解方程组,取60 = 0.9 ,与取CO = 1 (即Gauss-Seidel 法)作比较.(32 1]/ \<-5> -5 7 3 £ = 13 2 \ -5 7 /<X 3>4・下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收 敛性"5 2 1(\ 2) 1 3 2 ; ⑵…13 21 1 2\ / (1)flOO 99、99 9J(2) COS0A --sin& COS0 y6•设‘1 a 宀A= a 1 a ,d 为实数;⑴a 1;(1) 若q 正定,a 的取值范围;(2) 若Jacobi 迭代法收敛,a 的取值范围.习题41. 填空题:(1) 毎法主要用于求一般矩阵的 __________________ 特征值,Jacobi 旅转法用于求对称矩阵的 ______ 待征值;(2) 古典的Jacobi 法是选择 ______________ 的一对 _____________ 元素将其消为零; (3) Q?方法用于求 ___________ 矩阵的全部特征值,庾黑法加上原点平移用于一个近似特征值的 _________ 和求出对应的 ______________ ■2. 用嫁法求矩阵•〔6 2 1'-4 14 0、⑴ 2 3 1, (2)-5 13 0,1 1 1、-1 0 2 丿按模最大的特征值和对应的特征向量,精确到小数三位.-11 11 1 '3.已知: A= 11 9 -2< 1—2 13>"-2 1 0 0'21 2、1 -2 10 1 2 1 ;(4)1 -2 1-2 1 2\、01 -2;10 -1 I —1 -1 _i -r -1 -15 -1 -1 10;5.方程组a\\ 如、 / 、 丙=*<U2\ “22丿 1兀丿如证明用Jacobi 迭代法收敛的充要条件是:5 -1取t =15,作原点平移的幕法,求按模最大特征值.‘4 1 4、4.A= I 10 1、4 1 10,用反無法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.5.若A的特征值为人,易,…,九,r是一实数,证明:人―『是〃的特征值,且特征向量不变.6.已知x =(3,2,l)7求平面反射阵H使y = Hx=(0,*,0)‘,即使x的1, 3两个分量化零.5 3 2、7.A= 3 3 1<2 1 6丿试用Jacobi 转法求作一次症转,消去最大的非对角元,写出旋转矩阵,求出〃角和结果./ r 0(3x2)、8.设已知2是人的特征值,相应的特征向量为(4卫2,6)丁,证明几也是丁的特征值,相应的特征向量为(坷,《2,偽,0,0『.9.证明定理4. 5.10.证明(4. 21)中的A,.和£+1相似.习题51.填空題(1)用二分法求方程x3+x-l = 0在[0,1]内的根,迭代一次后,根的存在区间为___________ ,迭代两次后根的存在区间为_____________ ;(2)设/(x)可微,则求方程x = /(%)根的Newton迭代格式为______________________ ;(3)(p(x) = x + C(x2-5),若要使迭代格式x k+} =(p(x k)局部收敛到a = >/5 ,则C取值范围为_____________ ;(4)用迭代格式x k+l=x k-AJ\x k )求解方程f(x) = x3-x2-x-\ = 0的根,要使迭代序列{忑}是二阶收敛,则心二;2 1(5)迭代格式兀+|=二忑+斗收敛于根a二_______________ ,此迭代格式是__________ 阶收3 x k敛的.2.证明Newton迭代格式(5. 10)满足3.方程/一9十+ 18尢一6 = 0, xe[0,+oo)的根全正实根,试用逐次扫描法(出1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.4.用二分法求下列方程的根,精度£ = 0・001・仃)x-x+4=0(2) b+10x — 2 = 0 xe[0J]5.用迭代法求X3-2X-5= 0的正根,简略判断以下三种迭代格式:在x() = 2附近的收敛情况,并选择收敛的方法求此根.精度£ = 10_.6.方程= e~x(1)证明它在(0,1)区间有且只有一个实根;(2)证明x k+i = e~Xt,k = 0,1,---,在(0,1)区间内收敛;(3)用Newton迭代法求出此根,精确到5位有效数字.7.对方程X3-3X-1=0,分别用(1)Newton法(州=2); (2)割线法(观=2,召=1.9)求其根.精度f = 10~4.8.用迭代法求下列方程的最小正根(1) x5 -4x-2 = 0: (2) 2tanx—x = 0 ;(3) x = 2sinx9.设有方程3x2-e x=0(1)以力=1,找出根的全部存在区间;(2)验证在区间[0,1]上Newton法的区间收敛定理条件不成立;⑶ 验证取x() = 0.21 ,用Newton法不收敛;(4)用Newton下山法,取x()=0.21求出根的近似值,精度£ = 10_・10.分别用Jacobi法,Gauss—Seidel法求解非线性方程组\+2y-3=0<2x2 + y2-5 = 0在(1.5,0. 7)附近的根,精确到IO-4.11.分别用Newton法,简化Newton法求解非线性方程组sin x + cos y = 0<x+y = l在(0,1)附近的根,精确到10*.习题61.填空題(1)设J\x) = x5+x3+x + \ ,则 /[0,1]______________ , /[0,1,2]= _________________ /[0,1,2,3,4,习= ___________ : /[0,1,2,3,4,5,6] = ________________ .(2)设?o(x),/i(x),…,/”(%)是以节点0,1,2, •••,/?的Lagrange 插值基函数,则£儿(羽= _______________;£旳伙)= _______________ •;-() J-0(3)设/(0) = 0,/⑴=16,/(2) = 46,则/[0,1]= ____________ , /[0,1,2]= ____________ ,/(X)的二次Newton插值多项式为________________________ ・2.3-利用心在“畤能及壬处的值,求S哙的近似值,并估计误差.4.利用数据计算积分[千,当二时的兀的取值.5.试用Newton插值求经过点(一3,-1), (0,2), (3,-2), (6,10)的三次插值多项式.6.求满足Pg) = f(Xo),P(xJ = f(xJ及Pg = f(XQ)的次数不超过2次的插值多项式Pg,并给出其误差表达式.7.设比是互异节点,3 是Lagrange插值基函数(j =0,1,2,,证明(1)£<,(%)三1;(2)$>乂(力三十伙=0,1,2,…丿);(3)£(◎一x)k/丿(x)三0 仏=0,1,2,•••/).8 •设有如下数据试计算此表中函数的差分表,并分别利用Newton向前,向后插值公式求出它的插值多项式. 9.试构造一个三次Hermite插值多项式使其满足/(0) = 1,广(0) = 0.5, /(1) = 2,广⑴=0.510・已知函数/(X)的数据表分别用Newton向前插值公式和向后插值公式求x=0. 05, x二0. 42, X二0. 75的近似值.11.对函数f(x) = sinx进行分段线性插值,要求误差不超过0.5x10",问步长力应如何选取.12.设有数据用三转角插值法求满足下述条件的三次样条插值函数(1)570.25) = 1.0000 , 570.53) = 0.6868(2)S"(0.25) = —2 , S"(0.53) = 0.647913.证明定理6.6.习题81 •填空題⑴ “+1个点的插值型数值积分公式f 的代数精度至少是_____ ,最高不超过__________ .(2)梯形公式有______ 次代数精度,Simpson公式有______ 次代数精度.(3)求积公式打⑴川細(0)+ /(/?)]+ 加[八0)_/伽中的参数& =时,才能保证该求积公式的代数精度达到最高,最高代数精度为__________ •2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度.(1)『/(X)厶a A)/(0) + AJ(//) + A2f(2h)f(f(x)dx q+ 2/(“) + 3/(x2)]⑶£ f(x)dx = A/(-D + AJ (-# + A J(4) jj Mdx a AJ(x{) + A2/(0) + AJ(l)⑸[/⑴厶« f(xj + f(x2)3.分别利用复化梯形公式,复化Simpson公式,复化Cotes公式计算下列积分(1)「一3 二8)Jo4 + x2(2)^yfxdx (n =10)(3)("=io)(4)(弘—抽讼・5二6)(5)P —Jx (/? =8)J() x4.用Romberg公式计算枳分(1) 丄(精度要求£ = 10一‘)⑵佃 + cos4xdx(精度要求£ = 10-5)5.分别取节点数为2, 3, 4利用Gauss—Legendre求积公式计算积分(1) 「一厶,(2) 「八心,(3) f-dxJ T I+ Q血Ji X6.利用Gauss型求积公式,分别取节点数2, 3, 4计算积分(1) £e~x yfxdx , (2) J e~x <1 + x2 dx7.用节点数为4的Gauss —Laguerre求积公式和Gauss—Hermite求积公式计算积分的近似值,并与准确值/=—作比较・28.分别用两点公式与三点公式求f(x)=一在x=l・0,x二1.2的导数值,并估计误差, (l + x)・其中/(x)的数据由下表给出习题91.填空題(1)解初值问题的Euler法是________ 阶方法,梯形方法是 _____ 阶方法,标准R-K方法是_____ 阶方法.(2)解初值问题#(x) = 20(x—y),y(O) = 1时,为保证计算的稳定性,若用经典的四阶R-K方法,步长0V/Y ________ ・采用Euler方法,步长力的取值范围为______ ,若采用Euler 梯形方法,步长力的取值范围为_______ 若采用Adams外推法,步长力的范围为________ ,若采用Adams内插法,步长方的取值范围为__________ .(3) __________________________________________ 求解初值问题Euler方法的局部截断误差为_____________________________________________ Euler梯形方法的局部截断误差为_____________ , Adams外推法的局部截断误差为_______________ Adams内插法的局部截断误差为_____________ .2.对初值问题1 ?/ = ----- -2y~0<x<l1 + JC.y(o)= oX试用Euler法取步长〃二0. 1和“二0.2计算其近似解,并与准确解y =—匚进行比较.1 + JC3.利用Euler预测一校正法和四阶经典R-K方法,取步长h=Q. 1,求解方程y f = x+y 0<x<\y(O) = 1并与准确解y(x) = -x-\ + 2e x进行比较.4.用待定系数法推导二步法公式>\+1 = y> + ~ (5齐+1 + 一Z-i)并证明它是三阶公式,求出它的局部截断误差.5.用Adams预测一校正法求解y = -y20 < X < 1.y(o)= 1并与准确解y(x)=—进行比较.1 + x6.用Euler中点公式计算y f = -y O< x< 2.5y(O) = 1取步长/?=0. 25,与准确解>'=比较,并说明中点公式是不稳定的.7.写出用经典的R-K方法及Adams预测一校正法解初值问题)/ = _8y + 7z< z,=兀2 + yzy(O) = l,z(O) = O的计算公式.8.写出用Euler方法及Euler预测一校正法解二阶常微分方程初值问題),/r + siny = 0y(O) = 1, V(O) = 0的计算公式.9.证明用单步法y1+i = X+呵兀+£, x+,x)解方程= -2ax的初值问题,可以给出准确解.。
数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。
A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。
A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。
A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。
A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。
A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。
A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。
A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。
A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。
A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。
A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。
答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。
答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。
答案:二4. 牛顿迭代法中,每次迭代需要计算______。
答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
习题11. 填空题(1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字.3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差.4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限.95123450304051104000003346087510., ., , ., .x x x x x -==⨯===⨯5. 证明1.2.3之定理1.1.6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。
(假定钢珠为标准的球形)7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差.8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字.9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有r r xf x f x k x k f x εε'≈=()(())(),()其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2x π≈时是病态问题.11. 定义多元函数运算111,,(),n ni i i i i i S c x c x εε====≤∑∑其中求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:111 11212 11-cos23 14 00xy x x xy x xy x x y p p q p q -=-++===>>(),()()()(),()(),(,,)习题21. 填空题(1) Gauss 消元法求解线性方程组的的过程中若主元素为零会发生 ;. 主元素的绝对值太小会发生 ;(2) Gauss 消元法求解线性方程组的计算工作量以乘除法次数计大约为 . 平方根法求解对称正定线性方程组的计算工作量以乘除法次数计大约为 ;(3) 直接LU 分解法解线性方程组时的计算量以乘除法计为 , 追赶法解对角占优的三对角方程组时的计算量以乘除法计为 ; (4) ,⎪⎪⎭⎫⎝⎛=2011A =1A , =2A , =)(A ρ ; (5) 1100>⎪⎪⎭⎫⎝⎛=t t t A , )(A ρ , 2cond ()A = ; (6) 0>>>⎪⎪⎪⎭⎫⎝⎛=a b c c b a A , )(A ρ , 2cond ()A = ; 2.用Gauss 消元法求解下列方程组b Ax =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=101,112221111)1(b A , ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111,4321343223431234)2(b A 3.用列主元消元法解下列方程组b Ax =.⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛---=674,5150710623)1(b A ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=6720,5616103423221020)2(b A 4. 用Gauss -Jordan 消元法求:1011012111-⎪⎪⎪⎭⎫ ⎝⎛-- 5.用直接LU 分解方法求1题中两个矩阵的LU 分解,并求解此二方程组. 6.用平方根法解方程组b Ax =321422131116,A b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭7. 用追赶法解三对角方程组b Ax =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00001,2100012100012100012100012b A8.证明:(1)单位下三角阵的逆仍是单位下三角阵.(2)两个单位下三角阵的乘积仍是单位下三角阵. 9.由111211----=n L L L L ,(见(2.18)式),证明:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-111111,321323121n n n n n l l l ll l l L10.证明向量范数有下列等价性质:∞∞∞∞≤≤≤≤≤≤xn x xxn x x x n x x 21212)3()2()1(11.求下列矩阵的()12,,,A A AA ρ∞.()()5131312110212326;.A A ⎛⎫⎛⎫⎪== ⎪ ⎪-⎝⎭⎪⎝⎭12.求()2cond A()()10099129998cos sin ;.sin cos A A θθθθ-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭13.证明:(1)若A 是正交矩阵,即T A A I =, 则()2cond 1A =;(2)若A 是对称正定阵, 1λ是A 的最大特征值, n λ是最小特征值,则()12cond nA λλ=. 习题31. 填空题:(1) 当A 具有严格对角线优势或具有对角优势且 时,线性方程组Ax =b 用Jacobi 迭代法和Gauss -Seidel 迭代法均收敛;(2) 当线性方程组的系数矩阵A 对称正定时, 迭代法收敛.(3) 线性方程组迭代法收敛的充分必要条件是迭代矩阵的 小于1; SOR 法收敛的必要条件是 ;(4) 用迭代法求解线性方程组,若q = ρ (B ), q 时不收敛, q 接近 时收敛较快, q 接近 时收敛较慢; (5)1112,A ⎛⎫= ⎪⎝⎭J B = ;S B = ; ()J B ρ= ; ()S B ρ= .2.用Jacobi 迭代法和Gauss -Seidel 迭代法求解方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛453210*********x x x ; (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---7161411151118321x x x 各分量第三位稳定即可停止.3.用SOR 法解方程组,取0.9ω=,与取1ω= (即Gauss-Seidel 法)作比较.1233215573132573x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭. 4.下面是一些方程组的系数阵,试判断它们对Jacobi 迭代法,Gauss-Seidel 迭代法的收敛性(1)⎪⎪⎪⎭⎫ ⎝⎛211231125; (2)⎪⎪⎭⎫ ⎝⎛2321;(3)212121212⎛⎫⎪⎪ ⎪-⎝⎭; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----210012*********2; (5)⎪⎪⎪⎪⎪⎭⎫⎝⎛------------101111511111011115 ; (6)112211221122111⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.方程组0,0,2211212122211211≠≠⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛a a b b x x a a a a证明用Jacobi 迭代法收敛的充要条件是:122112112<=a a a a r . 6.设为实数;a a a a a a a A ,111⎪⎪⎪⎭⎫ ⎝⎛=(1)若A 正定,a 的取值范围;(2)若Jacobi 迭代法收敛,a 的取值范围.习题41. 填空题:(1) 幂法主要用于求一般矩阵的 特征值,Jacobi 旋转法用于求对称矩阵的 特征值;(2) 古典的Jacobi 法是选择 的一对 元素将其消为零;(3) QR 方法用于求 矩阵的全部特征值,反幂法加上原点平移用于一个近似特征值的 和求出对应的 . 2.用幂法求矩阵.⑴⎪⎪⎪⎭⎫ ⎝⎛111132126, ⑵⎪⎪⎪⎭⎫ ⎝⎛---20101350144按模最大的特征值和对应的特征向量,精确到小数三位.3.已知: ⎪⎪⎪⎭⎫⎝⎛---=1321291111111A取t =15,作原点平移的幂法,求按模最大特征值.4. ⎪⎪⎪⎭⎫ ⎝⎛=10141101414A用反幂法加原点平移求最接近12的特征值与相应的特征向量,迭代三次.5.若A 的特征值为t n ,,,,21λλλ 是一实数,证明:t i -λ是tI A -的特征值,且特征向量不变.6.已知()321,,Tx =求平面反射阵H 使()00,*,Ty Hx ==,即使x 的1,3两个分量化零.7. ⎪⎪⎪⎭⎫ ⎝⎛=612133231A试用Jacobi 旋转法求作一次旋转,消去最大的非对角元,写出旋转矩阵,求出θ角和结果.8.设 ()()()()⎪⎪⎭⎫⎝⎛=⨯⨯⨯⨯222322333100T T T 已知λ是1T 的特征值,相应的特征向量为()Ta a a 321,,,证明λ也是T 的特征值,相应的特征向量为()Ta a a 0,0,,,321.9. 证明定理4.5.10. 证明(4.21)中的s A 和1+s A 相似.习题51.填空题(1) 用二分法求方程310x x +-=在[0,1]内的根,迭代一次后,根的存在区间为 ,迭代两次后根的存在区间为 ;(2) 设()f x 可微,则求方程()x f x =根的Newton 迭代格式为 ;(3) 2()(5)x x C x ϕ=+-,若要使迭代格式1()k k x x ϕ+=局部收敛到α=C 取值范围为 ;(4) 用迭代格式1()k k k k x x f x λ+=-求解方程32()10f x x x x =---=的根,要使迭代序列{}k x 是二阶收敛,则k λ= ;(5) 迭代格式12213k k kx x x +=+收敛于根α= ,此迭代格式是 阶收敛的.2.证明Newton 迭代格式(5.10)满足12()lim2()k k kf f εαεα+→∞''=-' 3. 方程3291860, [0,)x x x x -+-=∈+∞的根全正实根,试用逐次扫描法(h =1),找出它的全部实根的存在区间,并用二分法求出最大实根,精确到0.01.4.用二分法求下列方程的根,精度0.001ε=.(1) 340 [2,1]x x x -+=∈-- (2) 1020 [0,1]x e x x +-=∈5.用迭代法求3250x x --=的正根,简略判断以下三种迭代格式:(1) 3152k k x x +-=; (2) 1252k k x x +=- ; (3)1k x +=在02x =附近的收敛情况,并选择收敛的方法求此根.精度410ε-=. 6. 方程x e x-=(1) 证明它在(0,1)区间有且只有一个实根; (2) 证明 ,,,101==-+k ex kx k ,在(0,1)区间内收敛;(3) 用Newton 迭代法求出此根,精确到5位有效数字. 7.对方程3310x x --=,分别用(1) Newton 法0(2)x =;(2) 割线法01(2, 1.9)x x ==求其根.精度410ε-=. 8.用迭代法求下列方程的最小正根(1) 5420x x --=; (2) 2tan 0x x -=; (3) 2sin x x = 9.设有方程 230xx e -=(1) 以1h =,找出根的全部存在区间;(2) 验证在区间[0,1]上Newton 法的区间收敛定理条件不成立; (3) 验证取00.21x =, 用Newton 法不收敛;(4) 用Newton 下山法,取00.21x =求出根的近似值,精度410ε-=.10.分别用Jacobi 法,Gauss —Seidel 法求解非线性方程组22230250x y x y +-=⎧⎨+-=⎩在(1.5,0.7)附近的根,精确到410-.11.分别用Newton 法,简化Newton 法求解非线性方程组s i nc o s 01x y x y +=⎧⎨+=⎩在(0,1)附近的根,精确到410-.习题61.填空题(1) 设53()1f x x x x =+++,则[0,1]f ,[0,1,2]f = ,[0,1,2,3,4,5]f = ;[0,1,2,3,4,5,6]f = .(2) 设01(),(),,()n l x l x l x 是以节点0,1,2,…,n 的Lagrange 插值基函数,则()n jj jl x ==∑ ;0()njj jl k ==∑ .(3) 设(0)0,(1)16,(2)46,[0,1]f f f f ====则 ,[0,1,2]f = ,()f x 的二次Newton 插值多项式为 .2.已知函数2)(x ex f -=的数据如下试用二次,三次插值计算=0.35,=0.55的近似函数值,使其精度尽量地高. 3.利用x sin 在3,4,6,0πππ=x 及2π处的值,求5sin π的近似值,并估计误差.4计算积分⎰=xdt ttx f 0sin )(, 当)(x f =0.45时的x 的取值. 5.试用Newton 插值求经过点(-3,-1),(0,2),(3,-2),(6,10)的三次插值多项式.6.求满足)()(),()(1100x f x P x f x P ==及)()(00x f x P '='的次数不超过2次的插值多项式)(x P ,并给出其误差表达式.7.设i x 是互异节点,)(x l j 是Lagrange 插值基函数(n j ,,2,1,0 =),证明(1)1)(0≡∑=nj jx l;(2)k nj jk j x x l x≡∑=0)( (n k ,,2,1,0 =);(3)0)()(0≡-∑=nj j k jx l x x(n k ,,2,1,0 =).8.设有如下数据试计算此表中函数的差分表,并分别利用Newton 向前,向后插值公式求出它的插值多项式. 9.试构造一个三次Hermite 插值多项式使其满足5.0)1( ,2)1( ,5.0)0( ,1)0(='=='=f f f f10.已知函数)(x f 的数据表分别用x =0.75的近似值. 11.对函数()sin f x x =进行分段线性插值,要求误差不超过5105.0-⨯,问步长h 应如何选取.12用三转角插值法求满足下述条件的三次样条插值函数(1) 0000.1)25.0(='S ,6868.0)53.0(='S (2) 2)25.0(-=''S , 6479.0)53.0(=''S 13. 证明定理6.6.习题81.填空题(1) 1n +个点的插值型数值积分公式()()nbj j aj f x dx A f x =≈∑⎰的代数精度至少是 ,最高不超过 .(2) 梯形公式有 次代数精度,Simpson 公式有 次代数精度. (3) 求积公式20()[(0)()][(0)()]2hhf x d xf f h h f f h α''≈++-⎰中的参数α=时,才能保证该求积公式的代数精度达到最高,最高代数精度为 .2.确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度. (1) )2()()0()(21020h f A h f A f A dx x f h++≈⎰ (2))](3)(2)1([)(2111x f x f f A dx x f ++-≈⎰-(3)1123111()(1)33f x dx A f A f A f -⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭⎰ (4) )1()0()()(321111f A f A x f A dx x f ++≈⎰- (5))()()(212x f x f dx x f +≈⎰3.分别利用复化梯形公式,复化Simpson 公式,复化Cotes 公式计算下列积分 (1) ⎰+1024dx x x(n =8)(2) ⎰10dx x (n =10)(3) ⎰-12dx ex (n =10)(4) (n =6) (5)⎰20sin πdx xx(n =8) 4.用Romberg 公式计算积分(1) ⎰-1022dx e x π (精度要求510-=ε) (2) ⎰+404cos 1dx x (精度要求510ε-=)5.分别取节点数为2,3,4利用Gauss -Legendre 求积公式计算积分 (1) ⎰-+44211dx x , (2) ⎰-10dx e x , (3) 311dx x ⎰ 6.利用Gauss 型求积公式,分别取节点数2,3,4计算积分 (1) ⎰+∞-0dx x e x , (2) ⎰+∞∞--+dx x e x 2127.用节点数为4的Gauss -Laguerre 求积公式和Gauss -Hermite 求积公式计算积分⎰+∞-=02dx e I x 的近似值,并与准确值2π=I 作比较.8.分别用两点公式与三点公式求2)1(1)(x x f +=在x =1.0,x =1.2的导数值,并估计误差,其中)(x f 的数据由下表给出9.已知)(x f x e -=的数据如下取=0.1,=0.2,分别用二点、三点公式计算=2.7处的一阶和二阶导数值.习题91.填空题(1) 解初值问题的Euler 法是 阶方法,梯形方法是 阶方法,标准R -K 方法是 阶方法.(2) 解初值问题()20(),(0)1y x x y y '=-=时,为保证计算的稳定性,若用经典的四阶R -K 方法,步长0h << .采用Euler 方法,步长h 的取值范围为 ,若采用Euler 梯形方法,步长h 的取值范围为 若采用Adams 外推法,步长h 的范围为 ,若采用Adams 内插法,步长h 的取值范围为 .(3) 求解初值问题Euler 方法的局部截断误差为 Euler 梯形方法的局部截断误差为 , Adams 外推法的局部截断误差为 Adams 内插法的局部截断误差为 .2.对初值问题⎪⎩⎪⎨⎧=≤≤-+='0)0(1021122y x y x y试用Euler 法取步长h =0.1和h =0.2计算其近似解,并与准确解21x y x=+进行比较. 3.利用Euler 预测-校正法和四阶经典R -K 方法,取步长h =0.1,求解方程⎪⎩⎪⎨⎧=≤≤+='1)0(10y x y x y 并与准确解x e x x y 21)(+--=进行比较.4.用待定系数法推导二步法公式)85(12111-++-++=i i i i i f f f h y y 并证明它是三阶公式,求出它的局部截断误差.5.用Adams 预测-校正法求解⎪⎩⎪⎨⎧=≤≤-='1)0(102y x y y 并与准确解1()1y x x=+进行比较. 6.用Euler 中点公式计算 0 2.5(0)1y yx y '⎧=-≤≤⎨=⎩ 取步长h =0.25,与准确解x e y -=比较,并说明中点公式是不稳定的.7.写出用经典的R -K 方法及Adams 预测-校正法解初值问题⎪⎩⎪⎨⎧==+='+-='0)0(,1)0(782z y yz x z z y y的计算公式.8.写出用Euler 方法及Euler 预测-校正法解二阶常微分方程初值问题⎩⎨⎧='==+''0)0(,1)0(0sin y y y y的计算公式.9.证明用单步法1,(,)22i i i i i i h h y y hf x y f x y +⎛⎫=+++ ⎪⎝⎭ 解方程ax y 2-='的初值问题,可以给出准确解.。