数值分析复习题要答案
- 格式:doc
- 大小:509.50 KB
- 文档页数:14
数值分析期末考试复习题及其答案1.已知都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=62分2分2.已知求(6分)解:1分1分1分= 2分1分3.设(6分)①写出f(x)=0解的Newton迭代格式②当a为何值时,(k=0,1……)产生的序列收敛于解:①Newton迭代格式为: 3分② 3分4.给定线性方程组Ax=b,其中:,用迭代公式(k=0,1……)求解Ax=b,问取什么实数,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为2分其特征方程为2分即,解得2分要使其满足题意,须使,当且仅当2分5.设方程Ax=b,其中,试讨论解此方程的Jacobi迭代法的收敛性,并建立Gauss—Seidel迭代格式(9分)解:3分2分即,由此可知Jacobi迭代收敛1分Gauss-Seidel迭代格式:(k=0,1,2,3 (3)6.用Doolittle分解计算下列3个线性代数方程组:(i=1,2,3)其中,(12分)解:①A= =LU 3分由Ly=b1,即y= 得y= 1分由Ux1=y,即x1= 得x1= 2分②x2=由Ly=b2=x1,即y= 得y= 1分由Ux2=y,即x2= 得x2= 2分③x3=由Ly=b3=x2,即y= 得y= 1分由Ux3=y,即x3= 得x3= 2分7.已知函数y=f(x)有关数据如下:要求一次数不超过3的H插值多项式,使(6分)解:作重点的差分表,如下:3分=-1+(x+1)-x(x+1)+2x。
x(x+1)= 3分8.有如下函数表:试计算此列表函数的差分表,并利用Newton前插公式给出它的插值多项式(7分)解:由已知条件可作差分表,3分(i=0,1,2,3)为等距插值节点,则Newton向前插值公式为:=4+5x+x(x—1)= 4分9.求f(x)=x在[—1,1]上的二次最佳平方逼近多项式,并求出平方误差(8分)解:令2分取m=1,n=x,k=,计算得:(m,m)==0 (m,n)= =1 (m,k)= =0(n,k)= =0。
1、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x 的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε()07057.00005.0115.80005.01025.621=⨯+⨯≈x x ε2、设430.56,1021.12≈≈x x均具有5位有效数字,试估计由这些数据计算21x x +的绝对误差限。
解:由有效数字的定义得,()104121-⨯=x ε,()103221-⨯=x ε0055.0)()()(2121=+=+x x x x εεε3、简答题 (1)已知12622)(256+-+-=x xxxx f ,求]1,0[f 及]6,5,4,3,2,1,0[f 。
解:由f(0)=1,f(1)=5得 []()()41011,0=-=f f f因为最高阶差商只出现在最高次,所以[]26,5,4,3,2,1,0=f(2)求积公式[])1()0(121)]1()0([21)(1f f f f dx x f '-'++≈⎰的代数精度为多少? 解:令()xx f =,则()21211021==⎰xdx x f ,右边=21,左边=右边同理令()2xx f =,()3xx f =均准确成立,()4xx f =时,左边≠右边所以,上式具有3阶精度4、求满足下表条件的Hermit 插值多项式。
x0 1)(x f -1 0 )(x f '-210解:使用重节点差商表法x y 一阶二阶 三阶 0 -1 0 -1 -2 1 0 1 3 1 010 9 6()()1236163212322---=-++--=x x x x xx x x H5、已知函数)(x f y =的数据如下:x1 2 4 -5 )(x f3 4 1 0(1)求3次Lagrange 插值多项式; (2)求3次Newton 插值多项式; (3)写出插值余项。
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
模 拟 试 卷(一)一、填空题(每小题3分,共30分)1.有3个不同节点的高斯求积公式的代数精度是 次的.2.设,,则=.,= ______.152210142-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A 342⎛⎫⎪=- ⎪ ⎪⎝⎭x ∞A1x3.已知y =f (x )的均差(差商),,,01214[,,]3f x x x =12315[,,] 3f x x x =23491[,,]15f x x x =, 那么均差=.0238[,,] 3f x x x =423[,,]f x x x 4.已知n =4时Newton -Cotes 求积公式的系数分别是:则,152,4516,907)4(2)4(1)4(0===C C C = .)4(3C 5.解初始值问题的改进的Euler 方法是阶方法;0(,)()y f x y y x y '=⎧⎨=⎩6.求解线性代数方程组的高斯—塞德尔迭代公式为,123123123530.13260.722 3.51x x x x x x x x x --=⎧⎪-++=⎨⎪++=⎩若取, 则.(0)(1,1,1)=- x(1)=x 7.求方程根的牛顿迭代格式是 .()x f x =8.是以整数点为节点的Lagrange 插值基函数,则01(), (),, ()n x x x 01, ,, ,n x x x =.()nk jk k x x =∑9.解方程组的简单迭代格式收敛的充要条件是.=Ax b (1)()k k +=+x Bx g 10.设,则的三次牛顿插值多项式为(-1)1,(0)0,(1)1,(2)5f f f f ====()f x ,其误差估计式为 .二、综合题(每题10分,共60分)1.求一次数不超过4次的多项式满足:,,()p x (1)15p =(1)20p '=(1)30p ''=,.(2)57p =(2)72p '=2.构造代数精度最高的形式为的求积公式,并求出10101()()(1)2xf x dx A f A f ≈+⎰其代数精度.3.用Newton 法求方程在区间内的根, 要求.2ln =-x x ) ,2(∞8110--<-kk k x x x 4.用最小二乘法求形如的经验公式拟合以下数据:2y a bx=+i x 19253038iy 19.032.349.073.35.用矩阵的直接三角分解法解方程组.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡71735 30103421101002014321x x x x 6 试用数值积分法建立求解初值问题的如下数值求解公式0(,)(0)y f x y y y '=⎧⎨=⎩,1111(4)3n n n n n hy y f f f +-+-=+++其中.(,),1,,1i i i f f x y i n n n ==-+三、证明题(10分)设对任意的,函数的导数都存在且,对于满足x ()f x ()f x '0()m f x M '<≤≤的任意,迭代格式均收敛于的根.20Mλ<<λ1()k k k x x f x λ+=-()0f x =*x 参考答案一、填空题1.5; 2. 8, 9 ; 3.; 4. ; 5. 二; 911516456. , (0.02,0.22,0.1543)(1)()()123(1)(1)()213(1)(1)(1)312(330.1)/5(220.7)/6(12)*2/7k k k k k k k k k x x x x x x x x x ++++++⎧=++⎪=+-⎨⎪=--⎩7. ; 8. ; 9. ;1()1()k k k k k x f x x x f x +-=-'-j x ()1B ρ<10.32(4)11,()(1)(1)(2)/24(1,2)66x x x f x x x x ξξ+-+--∈-二、综合题1.差商表:11122151515575720204272152230781233234()1520(1)15(1)7(1)(1)(2)5432p x x x x x x x x x x =+-+-+-+--=++++其他方法:设233()1520(1)15(1)7(1)(1)()p x x x x x ax b =+-+-+-+-+令,,求出a 和b.(2)57p =(2)72p '=2.取,令公式准确成立,得:()1,f x x =,, , .0112A A +=011123A A +=013A =116A =时,公式左右;时,公式左, 公式右2()f x x =14=3()f x x =15=524=∴ 公式的代数精度.2=3.此方程在区间内只有一个根,而且在区间(2,4)内。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
第一章1、ln2=0.69314718…,精确到 10-3 的近似值是多少? 解 精确到 10-3=0.001,即绝对误差限是 e =0.05%,故至少要保留小数点后三位才可以。
ln2≈0.693。
2、设115.80,1025.621≈≈x x 均具有5位有效数字,试估计由这些数据计算21x x ,21x x +的绝对误差限解:记126.1025, 80.115x x == 则有1123241110, | 102|||2x x x x --≤⨯-≤⨯-所以 121212121212211122||||||||||||x x x x x x x x x x x x x x x x x x -=-+-+≤--341180.11610 6.101025220.007057-==⨯⨯+≤⨯⨯1212112243|()|||11|10100.0005522|x x x x x x x x --≤≤⨯+⨯=+-+-+-3、一个园柱体的工件,直径d 为10.250.25mm,高h 为40.00 1.00mm,则它的体积V 的近似值、误差和相对误差为多少。
解:()()22222222431421025400000033006422102540000251025100243644433006243624360073873833006,.....;()()()......,..().()..%.r d hV d h V mm d h V dh d d h V mm V V V πππππεεεεε=≈=⨯⨯===+=⨯⨯⨯+⨯==±====第二章:1、分别利用下面四个点的Lagrange 插值多项式和Newton 插值多项式N 3(x ),计算L 3(0.5)及N 3(-0.5)x -2 -1 0 1 f (x )-112解:(1)先求Lagrange 插值多项式332211003)()()()()(y x l y x l y x l y x l x L +++= (1分)=----+---+=------=)12)(02)(12()1)(0)(1())()(())()(()(3020103210x x x x x x x x x x x x x x x x l x x x )1)(1(61-+-, (2分)=----+---+=------=)11)(01)(21()1)(0)(2())()(())()(()(3121013201x x x x x x x x x x x x x x x x l x x x )1)(2(21-+ (2分)=-++-++=------=)10)(10)(20()1)(1)(2())()(())()(()(3212023102x x x x x x x x x x x x x x x x l )1)(1)(2(21-++-x x x (2分)=-++-++=------=)01)(11)(21()0)(1)(2())()(())()(()(2313032103x x x x x x x x x x x x x x x x l x x x )1)(2(61++ (2分)x x x x x x x x x x L )1)(2(31)1)(2(21)1)(1(61)(3+++-++-+=x x x 212323-+= (1分)所以 41)5.0(3=L (1分)(2)再求Newton 插值多项式 列均差表如下:)(123221)(23100)(211)(12],,,[],,[],[222232103210分分分分x x x x x x x x f x x x f x x f y x k j i j i -----所以x x x x x x x N )1)(2()1)(2(23)2(21)(3+++++-++-=x x x 212323-+= (2分) 21)5.0(3=-N(1分)2、求过下面四个点的Lagrange 插值多项式L 3(x )和Newton 插值多项式N 3(x )。
)解:(1)L 3(x )=l o (x )y o +l 1(x )y 1+l 2(x )y 2+l 3(x )y 3(1分))())(())(()())(()1)(()(1110110n i i i i i i i n i i i x x x x x x x x x x x x x x x x x x x x l ---------+=+-+-得出)1)(1(61)(-+-=x x x x l o(2分))1)(2(21)(1-+=x x x x l(2分))1)(1)(2(21)(2-++-=x x x x x l (2分))1)(2(61)(3++=x x x x l (2分)∴)1)(2(61)1)(1)(2(21)1)(2(21)1)(1(31)(3++--++--++-+=x x x x x x x x x x x x x L(1分)(2)))()(())(()()(21031020103x x x x x x a x x x x a x x a a x N ---+--+-+=(1分)2)(00-==x f a (2分) 3)()(10101=--=x x x f x f a(2分)23)()()()(20212110102-=------=x x x x x f x f x x x f x f a (2分),613=a (2分)∴x x x x x x x N )1)(2(61)1)(2(23)2(32)(3+++++-++-=(1分)第三章 1、令1x 1,e )x (f x≤≤-=,且设x a a )x (p 1+=,求1a,a 使得)x (p 为)x (f 在[-1,1]上的最佳平方逼近多项式。
2.已知数据对(7,3.1),(8,4.9),(9,5.3),(10,5.8),(11,6.1), (12,6.4),(13,5.9)。
试用二次多项式拟合这组数据。
解:y =-0.145x 2+3.324x -12.794第四章:1.数据如下表用中心差分公式,分别取h = 0.01、0.02计算)02.1(f '.解:中心差分公式为 hh x f h x f x f 2)()()(--+≈'(2分)1)取h =0.01时, 302.012.318.302.0)01.1()03.1()02.1(=-=-≈'f f f (4分)2)取h =0.02时, 5.304.010.324.304.0)00.1()04.1()02.1(=-=-≈'f f f (4分)2.(10分)根据如下函数表用中心差分公式,分别取h =0.3,0.1计算)3.1(f '解:中心差分公式hh x f h x f x f 2)()()(--+=' (2分)取h =0.3时,7233.16.0)3.03.1()3.03.1()(=--+≈'f f x f(4分)取h =0.1时,7000.12.0)1.03.1()1.03.1()(=--+≈'f f x f(4分)3.分别用复合梯形公式T 6和复合辛普森公式S 3计算定积分⎰+6.00d 11x x的值.解:)2)()0((2116∑-=++-=n i i n y x f f n ab T (2分))])5.0()4.0()3.0()2.0()1.0([2)6.0()0((6206.0f f f f f f f ++++++⨯-=470510739.0=(3分))]}]4.0()2.0([2)]5.0()3.0()1.0([4)6.0()0({63f f f f f f f nab S ++++++-=470006382.0=(3分)f (0)=1,f (0.1)=0.9090,f (0.2)=.08333,f (0.3)=0.7692,f (0.4)=0.7142, f (0.5)=0.6667,f (0.6)=0.625(7分)4、利用复合Simpson 公式S 4计算积分⎰+102d 11x x (取小数点后4位)。
解:)]24()2()0([611212∑∑==-+++⨯-=n i ni i i n y y n f f n ab S (2分) 00000.4)0(=f ,93846.381=⎪⎭⎫ ⎝⎛f ,76470.382=⎪⎭⎫⎝⎛f ,50685.383=⎪⎭⎫ ⎝⎛f ,20000.384=⎪⎭⎫ ⎝⎛f ,87640.285=⎪⎭⎫ ⎝⎛f ,56000.286=⎪⎭⎫⎝⎛f ,26000.287=⎪⎭⎫ ⎝⎛f ,00000.2)1(=f(9分) ⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⨯-=8)684822878583814)1()0(46014f f f f f f f f f S 1416.3=(4分)第五章:1、利用列主元消去法求解线性方程组⎪⎩⎪⎨⎧=+-=-=++-6557710462332121321x x x x x x x x (计算过程保留到小数点后四位).解:216515707104623r r ↔⎪⎪⎪⎭⎫ ⎝⎛---(1分)⎪⎪⎪⎭⎫⎝⎛---6515462370710(2分)⎪⎪⎪⎭⎫⎝⎛--+-5.255.201.661.0070710103132112r r r r (2分)⎪⎪⎪⎭⎫ ⎝⎛-↔+2.62.6005.255.2070710235.21.032r r r r (2分) 回代解得 13=x ,12-=x ,03=x (1分)2、用矩阵的LU分解法解方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛---43221412212321xxx解:设⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛==332221131211323121111uuuuuulllLUA(1分)⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=11112112111LU(4分)LUX=b其中设UX=y,则Ly=b⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-432112111321yyy(2分)∴y=(2,-1,1)T UX=y⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛-11211112321xxx(2分)∴x=(0,-2,1)T(1分)5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式计算得6. 用平方根法解方程组解:用分解直接算得由及求得第六章:1、用Gauss-Seidel 迭代法求解方程组⎪⎩⎪⎨⎧=+-=++=++301532128243220321321321x x x x x x x x x ,取初值T)0()0,0,0(=x ,写出Gauss-Seidel 迭代格式,求出)1(x ,)2(x,计算∞-)2()1(x x,并根据原方程组的系数矩阵说明该迭代格式是否收敛.2、对方程组⎪⎩⎪⎨⎧=+--=-+-=--1052151023210321321321x x x x x x x x x (1)写出其Jacobi 迭代格式,并据迭代矩阵的范数,说明该迭代格式收敛。