延性设计
- 格式:ppt
- 大小:1.51 MB
- 文档页数:24
浅谈延性设计在高烈度区抗震设计中的重要性摘要:地震烈度是指遭受地震后房屋建筑被破坏的严重程度,总共分为十二个等级。
地震对人民生命及财产安全造成的损失是不可估量的,尤其是高烈度区。
因此,加强抗震设计对保障国家及人民的安全至关重要。
延性设计在抗震设计中起着重要作用。
本文将对延性设计在高烈度区抗震设计中的重要性作出简单介绍。
关键词:延性设计;高烈度区;抗震设计;重要性延性设计通过塑性铰区域的变形有效地吸收、耗散地震能量。
同时,这种变形降低了结构的刚度,致使结构在地震作用下的反应减小,即减小了地震对结构的作用力,延性设计在高烈度区抗震设计中具有重要意义。
1.抗震设防目标我国地处世界两大地震带环太平洋地震带与地中海地震带的交汇处,受到太平洋板块与印度板块的挤压,地震断裂带十分活跃,加上我国大陆多山脉,山脉附近有很多断裂带,地壳活动频繁,地震频发。
地震活动不是人力可避免的,因此抗震工作尤为重要。
我国《抗震规范》中指出:抗震设防的目标是:第一目标:小震不坏;第二目标:中震可修;第三目标:大震不倒。
在高烈度区,希冀房屋不倒的愿望渺小且困难。
优秀的抗震设计能够增加我们希冀实现的概率,拯救人民脆弱的生命。
虽然房屋结构的强度设计是我们实现抗震目标的基础,但是却不能为我们实现目标提供助力,延性设计才是我们最应该关注的部分。
2.延性设计的定义延性是指构件、结构在受到挤压后,承载力降低不明显或基本不降低,并且有足够塑性变形能力的一种性能。
延性具有两种能力:承受较大的非弹性变形时强度不明显下降;利用滞回特性吸收、耗散地震能量。
延性设计的塑性变形能力强弱通常用延性比来表示,即允许的最大变形与屈服变形的比例。
在抗震设计中,对房屋结构中重要构件的延性设计的重视程度要高于整个结构体系的延性设计,对构件中关键杆件或者部位的延性设计的重视程度又要高于对构件的重视程度。
另外,优秀的延性材料能够建造出优秀的延性杆件,优秀的延性杆件又能建造出优秀的延性结构体系。
钢筋混凝土框架结构延性设计的探讨0.引言在我国当前的高层建筑当中,对于钢筋混凝土的运用是非常广泛和普遍的,而钢筋混凝土的框架结构因为具有十分稳定的延性,所以使得其也成为了现代很多高层建筑所主要采用的结构形式之一。
这种建筑结构在当前来说,更多的运用在了地震的防护区域,因为这种结构形式具有非常好的抗震性能,但是如果这种框架结构不进行有效的延性设计,那么在较大的自然灾害发生的时候或者是在地震到来的时候,就会产生比较严重的后果,甚至会诱发更大的灾害。
接下来,笔者将在本研究中将主要以建筑钢筋混凝土框架结构延性设计为例,对建筑钢筋混凝土狂接结构设计方面的问题做出简要分析,并简单谈一谈自己的主观看法。
1.建筑钢筋混凝土框架结构的设计原则在高层建筑的框架结构设计当中,应该遵循刚柔相互协调的这一原则,这可以保证高层建筑拥有一定的延性[1]。
而且,笔者认为在抗震撼方面还需要遵循多道设计的原则,这样,如果第一道抗侧力构件受到了破坏,那么接下来的第二道防线和第三道防线就会立即作出接替,这样便能够更好地挡住各种震撼力的冲击。
对于保证建筑物不会因为震撼而倒塌起到了一定的支撑作用。
此外,笔者认为在高层建筑的抗震设计当中还需要对选择作出一定的规定,在选材上,高层建筑要遵循轻质量高强度的原则,建筑材料不单单需要具备足够的形变能力和强度,而且材料的自重也应当尽可能的轻一些[2]。
这样,即便是因为很强大的震撼而造成高层建筑的坍塌,那么轻质的材料对人体所造成的伤害也会适当的降低很多。
2.建筑钢筋混凝土框架结构的延性设计2.1梁柱的延性设计如果想要保证建筑物的框架结构具有更高的延性,那么首先需要保证这个建筑物的框架梁祝具有足够的延性。
梁柱的延性和梁柱界面的塑性铰的转动力有十分重要的关系,所以框架结构的抗震设计最关键的就是对梁柱塑性铰进行设计。
笔者认为在对其进行设计的时候需要遵照强剪弱弯的原则。
钢筋混凝土梁柱在如果受到了较大的剪力,那么一般就会呈现出脆弱性的破坏[3]。
钢筋混凝土框架结构抗震延性设计要求钢筋混凝土框架结构是一种常见的建筑结构系统,其地震性能是非常关键的,而抗震延性是钢筋混凝土框架结构的一个重要设计要求。
抗震延性是指结构在地震荷载作用下,能够发挥一定的变形能力,从而将地震能量以合理的方式耗散掉,降低破坏和损伤的程度。
以下是钢筋混凝土框架结构抗震延性设计的主要要求和原则。
1.设计强度要求:在进行抗震延性设计时,首先需要满足结构的强度要求,确保结构在地震荷载作用下能够承受足够的弯矩、剪力和轴向力。
强度的设计应符合国家规范的要求,保证结构在地震作用下不发生严重的破坏。
2.延性要求:延性是指结构在地震作用下能够有一定的变形能力,从而耗散地震能量。
钢筋混凝土框架结构的抗震延性设计要求结构具有足够的延性,能够承受地震时的大位移和变形,减少结构的刚性反应,降低地震作用所引起的内力和应力。
3.抗震设计刚度:在设计过程中,需要对结构的刚度进行合理的控制。
过刚的结构容易发生脆性破坏,而过软的结构则容易发生塑性破坏。
通过控制结构的刚度,能够在一定程度上提高结构的延性和抗震性能。
4.塑性铰的形成和能量耗散:由于钢筋混凝土框架结构材料的非线性特性,设计时通常会考虑结构发生塑性变形。
为了保证结构的抗震延性,需要合理设置塑性铰,通过其形成和变形来吸收地震能量。
塑性铰的设置需要考虑材料的延性和变形能力,以及结构的布局和构造形式。
5.剪力墙的合理设置:剪力墙是一种能够提供较高延性和抗震性能的结构构件。
在设计中合理设置剪力墙,能够提高结构的抗震延性和整体稳定性。
剪力墙的位置、厚度和布局应根据地震作用的大小和方向进行确定。
6.连接节点的设计:连接节点是结构中容易形成塑性变形的部位,也是结构抗震延性的重要组成部分。
连接节点应设计合理,并采用适当的构造措施,确保其在地震作用下能够承受较大的变形和能量耗散,避免发生脆性破坏。
7.构件的延性设计:钢筋混凝土框架结构中的构件延性也是影响结构整体延性的因素之一、梁、柱和楼板等构件在设计过程中需要考虑其延性和变形能力,确保其在地震荷载下具有较好的性能。
桥梁博⼠V4抗震分析-延性设计-盖梁柱式墩模型基础知识算例⼿册计算报告三合⼀桥梁博⼠V4案例教程抗震分析解决⽅案---延性设计桥梁博⼠V4抗震分析---延性设计⽬录使⽤本资料前应注意的事项 (4)桥梁博⼠V4构件法基本原则 (5)⼀、地震概述 (6)⼆、结构动⼒学基础 (7)三、抗震分析概述 (8)3.1 抗震分析规范 (8)3.2 抗震分析⽅法 (8)3.3 抗震分析名词 (11)3.4 延性抗震设计 (13)四、抗震设计流程 (14)五、实例 (15)5.1 ⼯程概况 (15)5.2 计算参数 (16)5.2.1 采⽤规范 (16)5.2.2 混凝⼟参数 (17)5.2.3 普通钢筋参数 (17)5.2.4 ⽀座参数 (17)5.2.5 恒荷载 (17)5.3 抗震基本要求(对应于CJJ 166-2011第三章) (18)5.4 场地、地基与基础(对应于CJJ 166-2011第四章) (19)六、地震作⽤(对应于CJJ 166-2011第五章) (20)七、抗震分析(对应于CJJ 166-2011第六章) (21)⼋、模型建⽴ (22)8.1 新建项⽬ (23)8.2 总体信息 (23)8.3 结构建模 (25)8.3.1 建模 (25)8.3.2 截⾯ (29)8.3.3 安装截⾯ (30)8.4 钢筋设计 (31)8.4.1 盖梁钢筋布置 (31)8.4.2 桥墩钢筋布置 (32)8.4.3 桩基础钢筋布置 (33)8.5 施⼯分析 (34)8.6 抗震分析 (35)8.6.1 E1地震作⽤验算 (35)8.6.2 E2地震作⽤验算-弹性 (37)8.6.3 E2地震作⽤验算-弹塑性 (38)8.6.4 能⼒保护构件验算 (39)8.7 执⾏计算 (39)九、桥梁动⼒特性分析 (40)⼗、抗震验算(对应于CJJ 166-2011第七、⼋、⼗⼀章) (42)10.1 抗震输出参数 (42)10.1.1 桩基础m法参数 (42)10.1.2 配筋率 (43)10.1.3 塑性铰属性 (44)10.2 E1地震作⽤下抗震验算 (45)10.3 E2地震作⽤下抗震验算 (46)10.4 能⼒保护构件验算 (48)10.5 抗震构造设计 (51)10.6 抗震措施 (51)10.7 结论 (52)使⽤本资料前应注意的事项本资料重点讲述桥梁博⼠V4(Dr.BridgeV4)系统的使⽤⽅法和步骤,⽂中涉及的结构尺⼨和设计数据均为假设,⽤户不能认为是本公司推荐的同类桥梁设计的参考数据;桥梁博⼠系统基于的计算理论、约定的坐标系、单位制以及数据输⼊的格式,这些信息的详细解释⽤户可以查阅随软件提供的帮助⽂件或⽤户⼿册;使⽤桥梁博⼠系统进⾏桥梁结构分析,其结果的正确性取决于⽤户对结构模型简化的合理性和对规范的充分理解;因此使⽤程序之前,⽤户必须充分理解结构受⼒特点,充分理解桥梁博⼠系统的结构处理⽅法;程序的执⾏结果也需要⽤户的鉴定;本资料使⽤的符号均与系统⽀持的规范⼀致,具体的含义请参考有关规范。
文章编号:1009-6825(2013)06-0012-03加强延性设计提高结构抗震性能收稿日期:2012-12-08作者简介:杨淑红(1969-),女,工程硕士,副教授杨淑红(呼伦贝尔学院,内蒙古呼伦贝尔021008)摘要:介绍了延性的概念及结构抗震设计中延性的含义,阐述了延性设计的原则,总结了延性设计时提高结构抗震性能的具体措施,包括材料的延性设计、强柱弱梁设计、梁柱的延性设计、强节点弱构件设计等,为结构抗震设计提供了借鉴。
关键词:延性设计,结构,抗震性能中图分类号:TU313文献标识码:A0引言地震是能量以波的形式向各个方向传播、释放并引起振动的过程。
由于地震的难以预知和随机发生,导致现有的“中国地震区划图”及相应的地震基本烈度表具有很大的不确定性,多次强烈地震及特大地震均发生在抗震设防低烈度地区。
因此当大震来临出现弹塑性变形时,结构需通过延性设计来保证有良好的抗变形和耗能能力。
“变形、能量吸收与耗散”的能力是结构抗震性能的标志。
1延性的涵义1.1物理术语物理术语是指材料的结构、构件或构件的某个截面从屈服开始到达最大承载能力或到达以后而承载能力还没有明显下降期间的变形能力。
即:1)承受较大的非弹性变形同时强度没有明显下降的能力。
2)利用滞回特性吸收能量的能力。
延性概念最早出现在1961年美国波特兰水泥协会(PCA )制定的《多层钢筋混凝土建筑抗震设计》手册中。
延性是抗震设计中的重要特性,用延性系数来度量。
结构动力学和地震工程领域学者乔普拉(Anil K.Chopra )在其《结构动力学理论及其在地震工程中的应用》(第2版)7.2节中给出延性系数的表达式:由于地面运动引起的弹塑性体系的位移峰值(最大位移)与屈服位移之比,即:μ=μmμy是无量纲的量。
1.2四个层次在结构抗震设计中延性有四层含义:材料的延性、杆件的延性、构件的延性、结构的延性。
材料的延性:櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅发生较大的非弹性变形或反复弹塑性变形时强状态、提高透波性、减少制造工作量、节省工时和生产费用,适当选择夹芯面板还可以获得良好的抗震、隔热、隔音等性能。
《儿童家具的延展性设计研究与应用》篇一一、引言随着现代家具设计理念的不断发展,儿童家具的设计已不再仅仅满足于实用性和舒适性,更多的是考虑到儿童的成长需求和心理健康。
延展性设计作为一种新兴的设计理念,被广泛应用于儿童家具的设计中。
本文将就儿童家具的延展性设计进行深入研究,探讨其设计原理、应用领域及实际效果。
二、延展性设计的概念及原理延展性设计是指在设计过程中,通过可调整、可变换的结构设计,使产品在不同阶段都能满足用户的需求变化。
在儿童家具的设计中,延展性设计主要体现在家具的结构、尺寸、功能等方面的可调整性,以满足儿童在不同成长阶段的需求。
延展性设计的原理主要基于人体工程学、儿童心理学及家具设计原理。
在设计过程中,需充分考虑儿童的生长发育特点,以及心理需求的变化,通过合理的结构设计,实现家具的延展性。
三、儿童家具的延展性设计应用1. 结构可调整的家具结构可调整的家具是儿童家具延展性设计的典型应用。
例如,儿童床可以通过调整床板的高度和角度,适应儿童不同成长阶段的需求。
此外,一些带有储物功能的家具,如衣柜、书架等,也可以通过调整内部隔板和层架的高度和位置,实现空间的灵活利用。
2. 模块化家具模块化家具是另一种常见的儿童家具延展性设计。
通过将家具拆分成不同的模块,根据需要进行组合和搭配,实现家具功能的多样化。
例如,一款儿童桌椅套装,可以通过增加或减少桌面附件、椅背附件等,实现从学习桌到游戏桌的转变。
3. 智能调节家具随着科技的发展,智能调节家具在儿童家具设计中也得到了广泛应用。
通过智能控制系统,实现家具的自动调节和智能化管理。
例如,儿童书桌的椅高可以根据儿童的身高自动调整,确保儿童在使用过程中保持正确的坐姿。
四、实际效果及案例分析通过延展性设计,儿童家具不仅可以满足儿童在不同成长阶段的需求,还可以提高家具的使用寿命和价值。
例如,一款可调整高度的儿童床,从婴儿期到青少年期都可以使用,避免了频繁更换家具的麻烦和浪费。
结构延性与抗震设计一、结构在地震下的主要特点地震以波的形式从震源(地面上的相对位置称震中)向周围快速传播,通过岩土和地基,使建筑物的基础和上部结构产生不规则的往复振动和激烈的变形。
结构在地震时发生的相应运动称为地震反应,包括位移、速度、加速度。
同时,结构内部发生很大的内力(应力)和变形,当它们超过了材料和构件的各项极限值后,结构将出现各种不同程度的破坏现象,例如混凝土裂缝,钢筋屈服,显著的残余变形,局部的破损,碎块或构件坠落,整体结构倾斜,甚至倒塌等等。
在震中区附近,地面运动的垂直方向振动激烈,且频率高,水平方向振动较弱;距震中较远处,垂直方向的振动衰减快,其加速度峰值约为水平方向加速度峰值的1/2~1/3.因此,对地震区的大部分建筑而言,水平方向的振动是引起结构强烈反应和破坏的主要因素。
钢筋混凝土结构在地震作用下受力性能的主要特点有:1、结构的抗震能力和安全性,不仅取决于构件的(静)承载力,还在很大程度上取决于其变形性能和动力响应。
地震时结构上作用的“荷载”是结构反应加速度和质量引起的惯性力,它不像静荷载那样具有确定的数值。
变形较大,延性好的结构,能够耗散更多的地震能量,地震的反应就减小,“荷载”小,町能损伤轻而更为安全。
相反,静承载力大的结构,可能因为刚度大、重量大、延性差而招致更严重的破坏。
2、屈服后的工作阶段——当发生的地震达到或超出设防烈度时,按照我国现行规范的设计原则和方法,钢筋混凝土结构一般都将出现不同程度的损伤。
构件和节点受力较大处普遍出现裂缝,有些宽度较大;部分受拉钢筋屈服,有残余变形;构件表面局部破损剥落等。
但结构不致倒塌。
3、“荷载”低周的反复作用——地震时结构在水平方向的往复振动,使结构的内力(主要是弯矩和剪力,有时也有轴力)发生正负交变。
由于地震的时间不长且结构具有阻尼,荷载交变的反复次数不多(即低周)。
所以,必须研究钢筋混凝土构件在低周交变荷载作用下的滞回特征。
4、变形大——地震时结构有很大变形。
钢筋砼框架结构的延性设计分析黄健伟摘要:随着房屋建筑层数的增高,在地震设防地区的结构延性设计至关重要。
本文分析了影响抗震结构延性设计的主要因素及其实现延性设计的机理与方法。
关键词:房屋建筑结构抗震延性设计实现方法一、结构的延性在抗震设计中的重要性及概念在我国的高层建筑中,钢筋混凝土结构应用最为普遍,其中钢筋混凝土框架结构是最常用的结构形式。
因为其具有足够的强度、良好的延性和较强的整体性,目前广泛应用于地震设防地区。
钢筋混凝土框架结构具有良好的抗震性能,然而未经合理设计的框架结构会在地震作用下产生较严重的震害。
结构抗震的本质就是延性,延性是指结构或构件在承载能力没有显著下降的情况下承受变形的能力。
破坏前无明显预兆,力-变形曲线达到最大承载力后突然下跌形成明显尖峰的构件(结构)称为脆性构件(结构)。
破坏前有明显预兆,力-变形曲线在最大承载力附近存在明显的平台,能承受较大变形而承载力无显著降低的构件(结构)称为延性构件(结构).1、结构抗震的延性设计大量的实验研究和地震实例表明,在地震(尤其是罕遇地震)作用下,建筑结构大都会进入弹塑性状态,出现弹塑性变形。
延性设计,即使结构在构件屈服之后仍具有足够的变形能力,依靠结构的弹塑性变形来消耗地震能量, 保证屈服部分发生延性破坏,避免结构发生脆性破坏和整个结构的倒塌。
这种设防思想在新的建筑抗震设计规范中具体化为“小震”(在房屋服役期内最可能遭遇的强烈地震或常遇地震)不坏,“中震”(基本烈度地震)可修和“大震”(罕遇地震)不倒。
世界上其他多地震国家的抗震设计规范,也都采用了类似的设计思想。
2、影响抗震结构延性设计的主要因素1)钢筋的配筋率。
增加纵向钢筋配筋率,不仅可以提高结构构件的抵抗弯矩;同时也可以提高塑性铰的转动能力,进而增加结构的延性。
2)箍筋配筋率。
由实验研究可知,位移延性随着配箍率的增加而提高。
箍筋间距越小,配箍率越大,延性的增长也越显著。
增加配箍率,就是增加对混凝土横向变形的约束,提高混凝土的抗压强度。
钢筋混凝土框架结构抗震延性设计要求导言框架结构在地震时进入屈服阶段来应对超过地震烈度的抗震设防烈度,当屈服还不能抵消时就会发生塑性变形来吸收和消耗地震能量。
钢筋混凝土框架结构延性的重要性混凝土框架结构抗震实质上就是结构的延性设计。
所谓延性,指的是指构件与结构屈服之后,在其承载能力不下降的前提下,所具备的塑性变形能力,这种能力被称为“延性比”。
提高结构的延性比有助于提升框架的抗震潜能,加强其抗倒塌能力。
设计在延性结构的混凝土框架通过其塑性铰区域发生变形,可以有效吸收和分散地震传对于框架作用力;该区域变形也可以使整体框架刚度得以降低,减弱地震对于结构的作用力。
具有延性结构能够使框架对于承载力要求降低,事实上延性结构对抗突发地震的武器就是它所具有的变形能力。
也就是说,如果钢筋混凝土框架的结构延性不够好,那么就要求框架对于地震具备足够大的承载力。
钢筋混凝土框架结构抗震延性设计延性设计是针对延性结构在钢筋混凝土建筑结构中所起到的与结构本身的承载能力一样不可忽视的作用,而进行的研究尤其对是震区的钢筋混凝土建筑显得更加重要。
倡导延性设计,以加强其抗震能力。
由于钢筋混凝土材料还具脆性,在突遇地震时会发生断裂对居住者的人身安全是一个极大隐患,所以为了最大限度减少这一特点的损害,在设计中更应当重视发挥钢筋的塑性特征,增强其吸收消耗能量的能力,实行延性设计。
根据我国目前对于钢筋混凝土结构设计的要求,在实施混凝土框架延性设计过程中需得遵循以下要求:1.控制塑性铰的位置,“强柱弱梁”框架结构若形成梁铰机构,则塑性铰分布比较均匀,而且梁铰机构的延性要求也比较容易实现。
若形成柱铰机构,则易使整个结构形成机动结构,从而导致整个结构的倒塌。
框架结构设计时应遵循的设计原则是“强柱弱梁”这是为了确保结构的延性,这样就可以确保设计荷载下同一节点上柱端截面抗弯承载力之和大于梁端截面抗弯承载力之和,而且可以使框架结构中柱的抗弯承载力储备足够。
试析房屋结构抗震设计中延性设计的应用摘要:随着现代经济的高速发展,人们生活条件的提高,人们对于建筑的安全性要求也越来越高,作为安全因素中的重要方面——抗震因素,是对建筑安全的首要要求。
而作为抗震设计中的延性设计,是当前建筑行业中对于抗震设计的最主要的一种设计形式。
本文就延性设计在房屋抗震设计中的应用进行了分析。
关键词:房屋建筑;抗震;延性设计中图分类号:tu973+.31 文献标识码:a 文章编号:在现代房屋建筑中,安全首先要考虑的问题,而抗震是所有安全因素中最重要的一方面。
由于近一两年,地震的频繁发生,抗震更是成为现在建筑中首先要解决的问题。
现在房屋结构中的抗震设计大多数都是使用延性设计,由于延性设计自身的优越性,使它成为现代建筑的首选,那么,延性设计在抗震设计中占据重要地位。
一,延性设计的含义延性是指部件在受到重大压力之后,它所具有的承载力不发生变化,并且使部件具有具有足够的塑性形变能力的性能。
房屋结构延性可以用延性比来表示,延性比的大小是结构延性大小的具体体现。
也就是说,延性比的大小,反映了部件塑性变形能力的大小。
结构延性主要有以下四层含义:在房屋结构中,延性设计有一定的依据。
延性设计主要是根据建筑物抗震级别的大小来确定的。
抗震级别不同,延性设计也不相同。
一般老说,建筑物需要的抗震级别越高,它要求的延展性能也就越好。
然而,建筑物的抗震级别也要根据不同的情况进行判断。
总体来说,建筑物的高度不同,地震的级别不同,建筑物所在的地区不同,建筑物的重要性不同,这些因素都会导致建筑物抗震级别的不同。
因此,判断出抗震级别是进行延性设计的首要任务。
抗震设计中延性设计的要点1.要满足强柱弱梁要较好的进行延性设计,选择合适的框架结构是关键的因素。
在现在的延性设计中,一般的框架结构是选择强“梁弱柱型”。
这种框架结构主要把塑性结构放在柱端而不是梁端。
这样一来,可以形成所谓的梁铰结构,当地震到来时,利用柱端的塑性变形消耗大量的地震能量,以此来保护梁不被破坏。
框架结构的延性设计详解框架结构是一种常见的建筑结构形式,具有较好的抗震性能。
而延性设计是指结构在地震作用下能够延长发展破坏,从而提供更多的时间供人员疏散和结构维修。
本文将详细介绍框架结构的延性设计,包括其原理、设计方法和影响因素。
一、延性设计原理1.材料延性:选用延性材料,如钢材和高强度混凝土,以在地震作用下发生拉伸破坏前实现较大的变形。
2.结构布局:采用灵活的结构布局,如变截面和缩颈结构,以集中破坏在可控的位置从而延缓结构整体的破坏。
3.妥善设计连接:合理设计框架结构的连接,选择合适的连接件,如剪力墙、钢筋连接等,以保证结构在地震作用下能够产生延性变形。
二、延性设计方法延性设计方法主要涉及结构的弹塑性分析和设计。
以下是一些常见的延性设计方法:1.能量耗散设计:通过增加结构的耗能能力,将地震能量引导至损伤可控的区域,从而减轻结构的破坏。
常见的能量耗散器件包括剪切墙、摩擦阻尼器和拉索系统等。
2.塑性设计:通过设计结构的形状和材料的屈服点,使结构能够在超过弹性极限后仍保持良好的延性。
这需要仔细考虑结构的刚度和强度,以保证结构在地震作用下能够产生合理的延性变形。
3.控制位移法:通过控制结构的位移,从而控制结构的变形和破坏。
可以采用位移控制系统,如配筋、张拉杆和拉索,来限制结构的最大变形,以保证结构的延性。
三、影响延性设计的因素1.设计地震参数:结构的设计地震参数会直接影响结构的设计要求和延性能力。
通常,较高的地震参数要求会导致更大的延性设计要求。
2.材料性能:结构选择的材料的延性性能也是影响设计的重要因素。
通常,高展性的材料,如高强度钢材和高性能混凝土,可以提供更好的延性能力。
3.结构体系:不同的结构体系对延性设计有不同的要求。
例如,刚性框架结构需要增加耗能措施,而一些新兴的框架结构体系,如剪力墙和框剪结构可以提供较好的延性性能。
4.设计哲学:延性设计需要在设计过程中采用合适的设计哲学,包括性能设计和位移控制设计。
分析建筑结构设计中短柱延性在高层建筑建立中,短柱的应用已经比拟普遍,而在层高设计一定的情况下,为了使建筑延性提高,需要增加柱截面积,降低轴压比,轴压比越小,柱截面积越大。
随着社会经济的开展,高层建筑在诸多城市建立中不断涌现出来。
在对高层建筑进行设计的时候,多数设计都可以采用计算软件进行设计,降低了设计人员的工作量,但还有一局部工作需要设计人员进行操作,即按照软件计算结果计算建筑的受力状态,对建筑结构构造措施进行设计。
本文主要针对高程建筑中短柱延性设计的提升进行分析和研究。
在高层建筑建立中,短柱的应用已经比拟普遍,而在层高设计一定的情况下,为了使建筑延性提高,需要增加柱截面积,降低轴压比,轴压比越小,柱截面积越大。
所以,在高层建筑结构设计中,为了对轴压比限值进行满足,往往需要将柱的截面积提高,出现短柱构造,甚至是超短柱构造。
而在抗震性能的要求下,短柱要求具有足够的抗震性能,需要将短柱延性进行提高,本文也针对建筑结构设计中延性提高的方法进行分析。
根据相关要求,短柱的定义为柱子净高(H)比截面高度(h),即H/h≤4时,将该柱称为短柱,在建筑施工中,施工技术人员对短柱进行判定的时候多数都按照该判定方法来确定。
该判定方法用到的参数只是层高与柱截面的关系,而对柱本身的内力关系没有应用。
而按照材料力学、结构力学理论,根据剪跨比(λ)也可作为短柱的衡量依据,即λ=M/Vh≤2时,该柱也为短柱,但是与层高与柱截面的关系下的H/h≤4的短柱判定方法相比,在这一条件下,λ的取值未必小于2,即不一定是短柱。
在多数设计中,设计人员都采用H/h≤4来判断短柱,主要依据的原理包含以下几个方面:首先,λ=M/Vh≤2;其次,因为框架柱反弯点多数都已交接近柱中点,因此M取值为0.5VH,那么此时λ≤2,即H/h≤4。
但是在高层建筑中,由于柱、梁线刚度比拟小,特别是建筑底部基层,柱体嵌固的影响比拟大,并且柱受梁的约束弯矩较小,反弯点高度大于柱高的一半,甚至反弯点不存在,此时如果仍采用H/h≤4来判断短柱是不合理的,应该采用λ=M/Vh≤2进行判定。
建筑抗震设计中的延性设计结构、构件或截面的延性是指从屈服开始至达到最大承载力或达到以后而承载力还没有显著下降期间的变形能力,也就是说,延性是反映结构、构件或截面的后期非弹性变形能力,变形能力是指结构、构件或截面达到最大破坏状态时的最大变形,而变形能力是结构吸能和耗能能力的外在表现,所以延性的本质是吸能和耗能。
结构所吸收的地震能量,等于结构承载力与变形能力的乘积,也就是说结构抗震能力是由承载力和变形能力两者共同决定的。
在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。
在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。
具有上述性能的结构,称为延性结构。
地震中结构进入弹塑性状态后,只能依靠变形吸收能量以维持结构“安全”,所以,结构抗震设计的根本验算应是强震作用下结构的变形验算,因此从某种意义上说,结构抗震的本质就是延性。
以我们当前对地震的认识水平,要准确预测结构物与地基在未来地震作用下的抗震能力,尚难以做到。
因此,结构的抗震能力应着眼于结构物与地基整体抗震能力的概念设计,再辅以必要的计算分析和构造措施,从根本上消除结构物与地基中的抗震薄弱环节,才有可能使设计出的结构具有足够的抗震可靠度。
结构体系的抗震能力综合表现在强度、刚度、和延性三者的统一,即抗震结构体系应具有必要的强度和良好的变形能力,如果抗震结构体系有较高的抗侧强度,但同时缺乏足够的延性,这样的结构在大震作用下很容易破坏。
例如不配筋又无钢筋混凝土构造柱的的砌体结构,其抗震性能较差。
另一方面,如果结构有较大的延性,但抗侧力的能力不足,这样的结构在大震作用下,必然产生较大的变形,如纯框架结构,其抗震性能依然较差,震害调查表明,在历次地震中,钢筋混凝土纯框架破坏严重,甚至倒塌者屡见不鲜。
结构体系是由各类构件连接而成的,各个构件的抗震能力是结构体系抗震能力的前提,抗震结构的构件应具备必要的强度、适当的刚度、良好的延性和可靠的连接,并应重视强度、刚度和延性的合理均衡。
装配式建筑施工中的延展性设计要点在当今建筑行业,越来越多的项目开始采用装配式建筑技术。
与传统施工方式相比,装配式建筑具有快速、高效、环保等优势。
在装配式建筑的施工中,延展性设计是一个非常重要的方面。
本文将探讨在装配式建筑施工中实现延展性设计的要点。
一、了解延展性设计的概念和意义延展性设计是指构件或整个建筑能够适应未来需求变化而进行增加、改变或减少。
这种灵活性使得建筑能够随着功能需求的改变而作出调整,同时可以避免大规模拆改,节省时间和资源。
在装配式建筑中,延展性设计显得尤为重要,因为它可以减少对组件的重新制造和安装,并降低了维护成本和人力投入。
二、选择合适的构件和连接方式在进行延展性设计时,选择合适的构件和连接方式至关重要。
首先,在选择构件时应考虑其可拆卸性。
例如,选用可轻松分离连接的墙板、地板或屋顶构件,使其能够随时拆卸或更换。
其次,连接方式也应尽可能灵活,以便在需要修改建筑布局时能够轻松完成。
例如,采用可调节长度的螺栓连接、悬挂连接或插销连接等。
三、预留空间和设备配套为了实现延展性设计,还需要在施工过程中预留一定的空间和设备配套。
对于一些可能需要延伸或扩展的区域,应在装配式建筑的设计中提前考虑,并预留相应的空间。
同时,在安装电气、通风管道和水暖设备时,也应保证后期灵活调整、增加或减少不同功能所需的管路。
四、考虑未来需求变化在进行装配式建筑施工时,必须充分考虑未来可能出现的需求变化。
只有通过周全的规划和合理的设计才能确保装配式结构能够适应各种功能和空间布局的改变。
因此,在进行施工前要充分了解业主对未来使用需求的预期,并根据这些需求来设计相应的装配式结构。
五、注意各种模块化技术及标准通过合理利用各种模块化技术和标准,可以进一步增强装配式建筑的延展性。
例如,利用预制模块化结构可以快速满足建筑物不同部分的需求变化。
同时,标准化设计和加工也将使得系统的升级、更换或扩展更加容易和经济合理。
六、严格控制施工质量在装配式建筑施工过程中,严格控制质量至关重要。