混凝土结构延性设计
- 格式:doc
- 大小:170.50 KB
- 文档页数:4
混凝土结构结构钢筋延性的意义及设计要点摘要:本文首先简述了钢筋混凝土结构抗震承载能力设计机理,其次介绍了结构进入塑性阶段的铰破坏机制,重点分析了不同破坏机制的优缺点,最后介绍了使结构达到理想破坏铰机制的承载能力级差设计法。
关键词:抗震设计、方法、途径地震是地壳相对运动、相互挤压所引起的大规模地面振动。
其对建筑结构危害极大,继而危及人类的生命财产安全。
因此必须对地震区的建筑结构进行必要的抗震设计。
但地震又是偶然发生的,其发生频率体现出概率意义上的统计规律。
在结构的使用期限内可能不发生设防的地震或不发生地震。
因此,充分、合理的利用抗震资源具有经济意义上的必要性。
一、抗震设计途径1.在抗震设计时,我们有这样两种途径。
一是按设防烈度即中震对应的地震作用来进行结构的承载力弹性设计,使其在遭遇中震时保持在弹性范围内。
另一种是适度降低设计地震作用的取值,按众值烈度即小震对应的地震作用进行结构的承载力弹性设计。
2.按第二种思路设计时,当结构遭遇设防烈度地震(中震)或罕遇地震(大震)时,结构将不可避免地进入塑性阶段,从而使结构的变形增大。
考察构件在地震力作用下反应可以发现,一些构件如框架梁在梁端出现塑性铰后,仍然具有很大的延性变形能力,且其承载力不显著降低。
而柱端在出现塑性铰后也具有一定的延性变形能力(受轴压比控制)。
可见要使结构具有一定的屈服后变形能力是行得通的。
3.考虑发挥结构的潜在抗震塑性变形能力,是第二种结构抗震设计思路的根基。
这就是二十世纪80年代到90年代中期发展起来的地震力设计法。
同时,如何确保结构构件屈服后能够达到预期的延性性能、不发生类似剪切的脆性破坏且不丧失承载力;如何使结构达到理想的破坏机制,使设计者能了解在结构遭遇超过设计地震作用时的结构性能;是随着地震力设计法发展应用而来的重要研究课题。
二、设计地震力取值1.为什么可以取较低的设计地震力而使结构在超越设计地震作用时进入塑性态?不同设计地震力取值水准下的模型化P-Δ关系图如上图所示,当结构按未折减的设防烈度水准地震力Pe设计时,为OA线。
钢筋混凝土框架结构延性设计的探讨0.引言在我国当前的高层建筑当中,对于钢筋混凝土的运用是非常广泛和普遍的,而钢筋混凝土的框架结构因为具有十分稳定的延性,所以使得其也成为了现代很多高层建筑所主要采用的结构形式之一。
这种建筑结构在当前来说,更多的运用在了地震的防护区域,因为这种结构形式具有非常好的抗震性能,但是如果这种框架结构不进行有效的延性设计,那么在较大的自然灾害发生的时候或者是在地震到来的时候,就会产生比较严重的后果,甚至会诱发更大的灾害。
接下来,笔者将在本研究中将主要以建筑钢筋混凝土框架结构延性设计为例,对建筑钢筋混凝土狂接结构设计方面的问题做出简要分析,并简单谈一谈自己的主观看法。
1.建筑钢筋混凝土框架结构的设计原则在高层建筑的框架结构设计当中,应该遵循刚柔相互协调的这一原则,这可以保证高层建筑拥有一定的延性[1]。
而且,笔者认为在抗震撼方面还需要遵循多道设计的原则,这样,如果第一道抗侧力构件受到了破坏,那么接下来的第二道防线和第三道防线就会立即作出接替,这样便能够更好地挡住各种震撼力的冲击。
对于保证建筑物不会因为震撼而倒塌起到了一定的支撑作用。
此外,笔者认为在高层建筑的抗震设计当中还需要对选择作出一定的规定,在选材上,高层建筑要遵循轻质量高强度的原则,建筑材料不单单需要具备足够的形变能力和强度,而且材料的自重也应当尽可能的轻一些[2]。
这样,即便是因为很强大的震撼而造成高层建筑的坍塌,那么轻质的材料对人体所造成的伤害也会适当的降低很多。
2.建筑钢筋混凝土框架结构的延性设计2.1梁柱的延性设计如果想要保证建筑物的框架结构具有更高的延性,那么首先需要保证这个建筑物的框架梁祝具有足够的延性。
梁柱的延性和梁柱界面的塑性铰的转动力有十分重要的关系,所以框架结构的抗震设计最关键的就是对梁柱塑性铰进行设计。
笔者认为在对其进行设计的时候需要遵照强剪弱弯的原则。
钢筋混凝土梁柱在如果受到了较大的剪力,那么一般就会呈现出脆弱性的破坏[3]。
钢筋混凝土框架结构抗震延性设计要求钢筋混凝土框架结构是一种常见的建筑结构系统,其地震性能是非常关键的,而抗震延性是钢筋混凝土框架结构的一个重要设计要求。
抗震延性是指结构在地震荷载作用下,能够发挥一定的变形能力,从而将地震能量以合理的方式耗散掉,降低破坏和损伤的程度。
以下是钢筋混凝土框架结构抗震延性设计的主要要求和原则。
1.设计强度要求:在进行抗震延性设计时,首先需要满足结构的强度要求,确保结构在地震荷载作用下能够承受足够的弯矩、剪力和轴向力。
强度的设计应符合国家规范的要求,保证结构在地震作用下不发生严重的破坏。
2.延性要求:延性是指结构在地震作用下能够有一定的变形能力,从而耗散地震能量。
钢筋混凝土框架结构的抗震延性设计要求结构具有足够的延性,能够承受地震时的大位移和变形,减少结构的刚性反应,降低地震作用所引起的内力和应力。
3.抗震设计刚度:在设计过程中,需要对结构的刚度进行合理的控制。
过刚的结构容易发生脆性破坏,而过软的结构则容易发生塑性破坏。
通过控制结构的刚度,能够在一定程度上提高结构的延性和抗震性能。
4.塑性铰的形成和能量耗散:由于钢筋混凝土框架结构材料的非线性特性,设计时通常会考虑结构发生塑性变形。
为了保证结构的抗震延性,需要合理设置塑性铰,通过其形成和变形来吸收地震能量。
塑性铰的设置需要考虑材料的延性和变形能力,以及结构的布局和构造形式。
5.剪力墙的合理设置:剪力墙是一种能够提供较高延性和抗震性能的结构构件。
在设计中合理设置剪力墙,能够提高结构的抗震延性和整体稳定性。
剪力墙的位置、厚度和布局应根据地震作用的大小和方向进行确定。
6.连接节点的设计:连接节点是结构中容易形成塑性变形的部位,也是结构抗震延性的重要组成部分。
连接节点应设计合理,并采用适当的构造措施,确保其在地震作用下能够承受较大的变形和能量耗散,避免发生脆性破坏。
7.构件的延性设计:钢筋混凝土框架结构中的构件延性也是影响结构整体延性的因素之一、梁、柱和楼板等构件在设计过程中需要考虑其延性和变形能力,确保其在地震荷载下具有较好的性能。
钢筋混凝土框架结构的延性设计分析引言钢筋混凝土框架结构广泛应用于建筑工程中,具有较强的抗震性能。
而延性作为结构的一个重要指标之一,对于保证结构在地震荷载下具有较好的性能至关重要。
本文将对钢筋混凝土框架结构的延性设计进行分析,包括延性的概念和重要性、延性设计的方法与原则等内容。
一、延性的概念和重要性延性是指结构在超过弹性阶段后,仍能继续变形并能对震动能量进行吸收和耗散的能力。
具有较好延性的结构可以在地震发生时发生弹塑性变形,将地震能量分散到整个结构中,降低震害程度,保护人员的生命安全。
延性的设计目标是确保结构在剧烈振动中不发生破坏,并能恢复到震前状态。
因此,延性设计在抗震设计中的重要性不言而喻。
二、延性设计的方法与原则1.选用合理的构件形式:合理的构件形式可以提高结构的延性。
例如,在地震力作用下,剪力墙、框架柱等构件具有较好的延性,可以通过适当增加构件尺寸或设置加劲梁、剪力墙等来提高结构的延性。
2.合理选择材料:材料的性能直接影响结构的延性。
需要合理选择混凝土和钢筋的等级和数量,以确保在弯剪承载力下,结构能够实现一定的延性要求。
3.设计适当的屈服形态:结构的变形形态对其延性有重要影响。
通过合理设计构件的屈服形态,如屈服机构或软肢连接等,可以使结构在地震作用下产生一定的塑性变形。
4.合理设计剪力墙开孔或剪力墙梁空挑:通过剪力墙开孔或剪力墙梁空挑的设计,可以提高结构的延性。
剪力墙开孔或剪力墙梁空挑的设置应满足结构刚度和强度的要求,同时考虑到结构延性的需要。
5.增加结构的耗能能力:通过合理设置耗能装置,如阻尼器、剪力墙分段等,可以提高结构的延性。
耗能装置能有效吸收震动能量,减小结构应力和变形。
三、实例分析以一座居住建筑的钢筋混凝土框架结构为例进行延性设计分析。
通过对该建筑的结构形式、构件形态、材料等进行合理设计,提高结构的延性。
1.结构形式:选择合适的框架结构形式,确保结构整体稳定。
2.构件形态:增加主要构件的尺寸,如增加柱截面尺寸和加劲梁的设置,提高结构的抗震性能和延性。
什么是混凝土的延性?混凝土延性的作用是什么?结构的延性如何规定?规范为何这样规定?答:1混凝土变形时保持的强度,并且不产生破裂的能力,即从构件屈服到破坏之间的变形能力。
2建筑物的抗震能力和安全性, 不仅取决于构件的(静)承载力, 还在很大程度上取决于其变形性能和动力响应, 取决于结构吸收和耗散能量的多少, 也就是说, 结构的抗震能力是由承载力和变形两者共同决定的.承载力较低但具有很大延性的结构, 所能吸收的能量多, 虽然较早出现损坏, 但能经受住较大变形,避免倒塌.而仅有较高强度, 却无塑性变形能力的脆性结构, 吸收的能量少, 一旦遇到超过设计水平的地震作用时, 很容易因为脆性破坏而突然倒塌.因此, 地震区的建筑物应优先考虑设计成抗震性能好的延性结构。
延性结构的设计不仅与配筋、截面面积选取有关,还与混凝土本身的延性有关系。
3由于地震作用的特殊性,除了通过地震作用计算,保证结构的承载力验算要求与变形控制以外,还需要通过抗震措施来保证结构在地震作用下具有良好的延性,因此规范采用地震计算+抗震措施保证的双重要求进行抗震设计。
规范中还通过控制截面受压区高度,限制超配筋和少筋,进而保证结构构件的延性。
为增强结构在遭遇罕见地震作用时的抗倒塌能力,结构应具有较高的延性。
对结构延性的要求具体体现在对构件延性的要求上, 特别是要提高结构中关键构件和构件中的关键部位的延性。
关键构件包括:在结构竖向的薄弱楼层的构件, 结构平面上房屋周边转角处和平面突变处的构件, 作为耗能元件设计的构件(如联肢剪力墙中的连梁)等。
关键部位如梁柱的两端、剪力墙的底部加强部位等.在设计中一般可采取下列措施来提高构件的延性:①减少竖向构件的轴压比以及梁柱截面的剪压比;②控制构件的破坏形态;③加强构造措施。
调幅的时候,也有相应的规定,抗震设计时材料方面的要求,也可以起到保障延性破坏,强剪弱弯也能保障延性破坏,一般正常配筋的构件,弯曲破坏的延性要比受剪破坏的延性好许多。
摘要:传统的抗震设计对结构构件的延性有特殊要求。
本文介绍了提高混凝土梁延性的几点具体措施,来提高对这一问题的认识。
关键词:混凝土梁延性设计1概述建筑结构的抗震设计中,结构及构件需要一定的变形能力来保证在强烈地震下的可靠度。
结构和构件在遭遇中强地震时的强度、刚度退化要与相关国家规范的规定相匹配。
对于常见的多高层钢筋混凝土房屋来说,“强柱弱梁、强墙弱连梁”的破坏机制与结构在地震作用下的耗能能力和抗倒塌能力有关。
关于框架梁、连梁的抗震性能的特殊要求,下文通过归纳分析来具体说明这一问题。
2提高框架梁延性的措施结构的延性是指它在经受塑性变形中仍能保持一定承载能力的性能。
延性一般分为三个层次———材料的延性、构件的延性和结构的延性,可由下列公式表达:材料的延性:με=εm/εy 构件的延性:μθ=θm/θy 结构的延性:μδ=δm/δy 式中εm、θm、δm 分别为循环加载条件下材料最大应变、构件最大转动能力和结构最大水平位移;εy、θy、δy 分别为材料、构件和结构开始屈服的应变转角和水平位移。
在一般情况下με≥μθ≥μδ。
要期望结构达到一定的延性目标,那么结构中必然有相对较高延性的耗能构件。
对于混凝土结构中的强柱-弱梁部分,框架梁的潜在塑性铰区域需要有足够的转动延性。
文献[1]指出随着梁受拉钢筋配筋率的增大,开裂弯矩变化很小,虽然梁截面抗弯承载力得到了很大提高,但是梁截面的延性逐渐降低。
图1为文献中的算例,梁截面宽度和高度为300x600mm,混凝土强度等级为C30,梁配筋率(钢筋为HRB335级)与曲率延性相关曲线如图所示。
从图1可以看出,随着受拉钢筋配筋率的加大,虽然梁截面抗弯能力逐渐增大了,但是梁截面的延性逐渐在减低。
超筋梁延性会趋于0,呈现出脆性特征。
对于单筋矩形框架梁来说,配筋率与梁的受压区高度和有效高度的比ξb 呈正比关系。
控制梁的相对受压区高度是保证截面延性的措施。
《建筑抗震设计规范》的条文说明解释说:“当相对受压区高度为0.25~0.35范围时,梁的位移延性系数可到达3~4”,工程实践中必须满足这样的要求。
钢筋混凝土结构构件的延性设计摘要:钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。
因此,可以采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。
关键词:钢筋混凝土结构构件延性设计1 前言在现代房屋结构设计中,延性研究越来越显得重要,钢筋混凝土结构延性的研究是塑性设计方法和抗震设计理论发展的基础。
所谓延性是指材料、构件和结构在荷载作用下,进入非线性状态后在承载能力没有显著降低情况下的变形能力。
描写延性常用的变量有:材料的韧性,截面的曲率延性系数,构件或结构的位移延性系数,塑性铰转角能力,滞回曲线,耗能能力等。
试验和非线性计算分析表明:构件的结构的破坏由受拉钢筋引起的,常表现出良好的延性,如适筋梁、大偏心受压柱等;而破坏由混凝土拉断、剪坏和压溃控制的常表现为脆性,如素混凝土板、超尽梁、地震作用下剪切破坏的短柱等。
对于建筑结构系统来说,一方面,钢筋混凝土构件的功能依赖于整体结构系统功能,任何构件一旦离开整体结构,就不再具有它在结构系统中所能发挥的功能;另一方面,构件又影响整体结构系统的功能,任何构件一旦离开整体结构,整体结构丧失的功能不等于该构件在结构系统中所发挥的功能,可能更大,也可能更小。
在地震作用下,有可能由于部分构件的破坏乃至退出工作,整个结构体系会因此破坏,这里的部分构件包括了结构构件以及非结构构件。
在地震作用下,混凝土结构或构件的破坏可分为脆性破坏和延性破坏两种,其中脆性破坏的危害时非常大的,设计上是一定要避免的,而延性破坏时指构件承载力没有显著降低的情况下,经历很大的非线性变形后所发生的破坏,在破坏前能给人以警示。
钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。
因此,可以采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。
浅述钢筋混凝土框架结构延性设计要点随着现代建筑科学的迅速发展,高层建筑已经逐渐占据城市建设的主体地位,因此,高层建筑中钢筋结构设计尤为关键。
但是目前尚没有对钢筋混凝土结构钢筋细部节点的设计形成一个统一的方法,从而造成在节点钢筋设计时往往会出现配筋率过大、钢筋锚固不够等现象。
设计钢筋混凝土剪力墙结构时对不同的剪力墙结构有不同的设计要求。
因此,在设计时如何把握好剪力墙的合理性、功能性至关重要。
希望本文可以在以后的钢筋混凝土剪力墙设计和建造中能发挥出应有的作用,并且通过人类的不断探索,不断改进剪力墙的结构和设计。
1 钢筋混凝土结构方案问题高层混凝土结构方案选型要根据能高效利用材料效率、清晰传力途径来进行,这对配筋指标等的控制具有重要作用。
在方案选型时要注意以下几点:第一,结构坚向与抗侧力传力途径要明确;第二,要形成空间的整体受力,增强结构与构件的材料使用效率;第三,要尽可能提高结构的均匀性与规则性;第四,形成良好的结构整体性与耗能机制。
在设计时,结构工程师尽量保证建筑的设计理念,结构部分要与建筑部分加强合作,减小没有必要的大空间,减少结构转换工作。
在结构的抗侧力体系选择时,首先要使得结构抗侧力体系和建筑的高度相适应;其次,结构垂直方向沿高度的变化要平缓、连续,强度等级的变化与混凝土墙的厚度变化要错开;最后尽可能使结构抗侧力构件连接成整体,要保证体系中所选材料与截面类型与施工期相符合。
另外,在在重力荷载传力方面,要尽量降低结构的自重,楼板设计时,要综合考虑设备、净高、建筑吊顶的做法等各方面因素,可以运用组合楼板和钢梁的形式来降低自重,以缩短施工工期。
如果结构很复杂要注意加强技术的分析工作,选择合理的楼面结构与转换结构,在结构抗侧力体系上要合理设定腰桁架,抗震等级的选择要适当。
2 基础的设计选型问题高层基础设计也是钢筋混凝土结构设计部分应该要特别主要的问题,这是由于基础设计的不恰当,会使建筑因承载力不足而造成不均匀沉降,使得建筑物出现开裂或倾斜,引起安全问题;另外,合理的基础设计是降低工程造价和缩短工期有重要作用。
混凝土结构延性问题及其提高措施研究王雅超ꎬ高㊀闻(山东科技大学土木工程与建筑学院ꎬ山东㊀青岛㊀266590)收稿日期:2018-11-14作者简介:王雅超(1994-)ꎬ女ꎬ山西吕梁人ꎬ硕士研究生ꎬ主要研究方向:结构工程ꎮ通信作者:高闻(1992-)ꎬ男ꎬ山东邹城人ꎬ硕士研究生ꎬ主要研究方向:结构工程ꎮ摘㊀要:混凝土结构的延性反映了结构的塑性变形能力和抗震耗能能力ꎮ本文研究了提高钢筋混凝土结构延性的措施㊁抗震措施及结构的破坏形式ꎬ指出采用合理的结构形式可以提高结构的整体性ꎬ增强结构的延性ꎮ延性是保证结构整体承载能力㊁充分发挥结构冗余潜力的重要条件ꎮ合理的抗连续倒塌设计可以通过大变形吸收和耗散初始破坏释放的能量ꎮ此外ꎬ较大的塑性变形可以使结构具有足够的延性ꎬ更好地实现内力的重分布ꎮ关键词:混凝土ꎻ延性ꎻ塑性中图分类号:TU375 4文献标志码:A文章编号:1672-4011(2019)04-0079-02DOI:10 3969/j issn 1672-4011 2019 04 0360㊀前㊀言高层建筑能抵抗大地震必须具备以下一个或两个条件:足够的强度和抗震能力或足够的延性和耗能ꎮ因此ꎬ混凝土结构的延性是提高结构抗震性能的重要措施ꎮ混凝土延性设计是为了减少结构在外力作用下的损伤程度ꎬ提高建筑抗震能力ꎬ对用户安全具有重要意义ꎮ1㊀混凝土结构延性概念1 1㊀概念和要求混凝土结构的延性是指变形能力的大小ꎬ根据不同的变形形式可分为剪切变形㊁扭转变形和弯曲变形(一般我们所指的延性即为弯曲变形)ꎬ评价弯曲变形最常用的指标包括最大挠度和截面曲率ꎮ影响混凝土结构延性的主要因素是配筋率ꎮ当然ꎬ要保证混凝土结构的抗弯延性ꎬ可以进行 强剪弱弯 的设计ꎮ延性越大则说明塑性变形能力越强ꎬ也就是有足够的能力吸收和耗散地震能量ꎬ能有效地避免结构倒塌ꎻ相反ꎬ延性小则说明变形能力弱ꎬ破坏形式为脆性破坏ꎬ导致结构倒塌ꎮ结构延性包括结构位移延性㊁材料延性㊁截面曲率延性和构件位移延性ꎮ图1为结构荷载-位移曲线ꎮ图1㊀结构荷载-位移曲线1 2㊀混凝土结构都应设计成延性结构三水准(即 小震不坏㊁中震可修㊁大震不倒 )的抗震设计原则是指在抗震设防烈度的作用下ꎬ允许出现塑性铰ꎬ即 中震可修 ꎮ在大地震破坏条件下ꎬ合理控制塑性铰可获得延性ꎬ即 大震不倒 ꎮ延性结构的塑性变形能耗散地震能量ꎬ虽然结构变形会增加ꎬ但内力不会很大ꎬ构件的承载力也不会很高ꎮ换句话说ꎬ延性结构的抗震能力取决于其变形能力ꎬ而不是承载能力ꎮ2㊀混凝土结构延性设计的重要性2 1㊀强柱弱梁强柱弱梁即保证框架结构梁端先出现塑性铰ꎬ柱端后出现塑性铰ꎮ塑性铰有足够的转动能力继续承受分压ꎬ从而保证框架结构具有快速的塑性能消耗地震能量ꎮ合理布置梁端钢筋满足配筋要求ꎬ同时提高柱端配筋率ꎬ保证梁端产生塑性铰ꎮ2 2㊀强剪弱弯当发生剪切破坏时ꎬ构件失去抗震能力ꎬ停止工作ꎮ如果首先发生剪切破坏ꎬ可能会造成局部破坏甚至整个结构的倒塌ꎮ因此ꎬ为了防止脆性剪切破坏ꎬ有必要强调 强剪切㊁弱弯曲 的原则ꎬ即梁柱斜截面承载力大于正截面承载力ꎮ在«建筑抗震设计规范»(GB50011 2010)中ꎬ根据不同抗震等级的抗震性能和 强剪弱弯 的原则ꎬ将设计值的梁柱截面抗剪承载力乘以相应的放大系数ꎮ2 3㊀强节点强锚固节点是梁和柱的共同组成部分ꎮ节点失效是指与节点连接的柱梁同时失效ꎮ换句话说ꎬ塑性铰首先出现在梁的末端ꎬ塑性铰梁末端形成的基本前提是保证梁纵向钢筋锚固连接区域的稳定性和可靠性ꎮ因此ꎬ对强节点和强锚固进行延性设计是必要的ꎮ为防止剪切破坏和钢筋锚固破坏ꎬ节点的设计应遵循准边缘原则:节点的承载力不小于连接构件的承载力ꎻ地震时间点在弹性范围内工作ꎻ在罕遇地震中ꎬ承载力的降低不应危及竖向荷载的传递ꎮ梁和柱的纵向钢筋应牢固地固定在关节处ꎮ除了这三个原则ꎬ影响延性设计的因素还包括材料强度㊁轴压比㊁箍筋比和剪切跨度比ꎮ因此ꎬ必须遵循延性设计原则ꎮ3㊀提高混凝土延性的措施3 1㊀合理结构布置框架结构的布置应整齐㊁对称ꎬ结构的横向和竖向刚度应均匀ꎬ以避免横向刚度和承载能力的突然变化ꎮ3 2㊀强剪弱弯利用剪力增量系数提高梁端㊁柱端㊁梁柱节点的剪切设计值ꎬ并对剪切控制截面的剪切条件和剪切承载力进行校核和设计ꎬ限制截面尺寸ꎬ使得构件不具有斜压型脆性破坏ꎬ从而达到提高结构延性的目的ꎮ3 3㊀ 梁柱铰接机构为确保 梁柱铰接机构 结构体系的实施ꎬ即 强柱弱97梁 的设计ꎬ«建筑抗震设计规范»(GB50011 2010)中规定ꎬ在地震作用下ꎬ抗震等级为一级的框架结构及9度设防时柱端组合的弯矩设计值应符合下式要求:ðMC=1 2ðMbua3 4㊀构造措施1)控制柱轴压比和柱纵筋的最大配筋率ꎬ达到受拉钢筋屈服时受压混凝土破坏模式的限制ꎮ通过控制混凝土受压区高度ꎬ抗震等级为一级时梁应不小于0 25ꎬ二级和三级时梁应不小于0 35ꎬ梁纵筋的最大配筋率应小于2 5%ꎬ梁端顶面和底面配筋面积的比值:抗震等级为一级时ꎬ不应小于0 5ꎬ二㊁三级不应小于0 3ꎬ其目的是提高梁柱塑性铰范围内的转动能力ꎮ2)在约束箍筋和配筋形式规范中详细规定了箍筋的最小直径㊁最大间距和长度(塑性铰链区域的最小长度)ꎬ并对箍筋的肢距和箍筋形式提出了相应的要求ꎮ3)强锚固:«混凝土结构设计规范»(GB50010 2010)中规定了框架梁柱不同节点处钢筋的锚固长度和搭接长度ꎮ4)材料选用:高压构件采用优质混凝土ꎬ钢筋首先选用HRB335㊁HRB400ꎮ抗震等级为一级和二级的框架结构ꎬ纵向受力钢筋抗拉强度与屈服强度之比不应小于1 25ꎮ为了满足强柱弱梁和强剪弱弯的要求ꎬ钢筋屈服强度与标准强度之比不应大于1 3ꎬ最大拉力下钢筋的总伸长率不应小于9%ꎮ4㊀混凝土框架柱的轴压比问题在设计高层钢筋混凝土结构时ꎬ每个有经验的结构设计工程师都应考虑轴压比的影响ꎮ轴压比是指混凝土轴压应力与轴压比的比值ꎬ即n=NfcAꎮ轴压比是影响钢筋混凝土柱承载力和延性的另一个重要参数ꎮ大量试验表明ꎬ轴压比越大ꎬ柱的极限承载力越大ꎬ但极限变形能力和耗能能力越小ꎬ轴压比对短柱的影响越大ꎮ在柱截面中ꎬ大部分是对称的钢筋ꎮ根据极限状态下截面的内力平衡条件ꎬ轴压比实际上反映了柱截面中混凝土受压区相对高度ꎮ随着偏心受压强度的增加ꎬ其延性降低ꎬ超过平衡配筋后ꎬ将发生小的偏心受压破坏ꎬ几乎没有延性ꎮ因此ꎬ应根据大偏心压力结构进行设计ꎬ使柱在大偏心压力下破坏ꎬ从而提高结构的延性和耗能能力ꎮ图2为压力区的相对高度与曲率延性比之间的关系ꎮ图2㊀压弯构件相对高度与曲率延性比关系曲线对于框架结构(10~12层)ꎬ轴压比对柱截面的影响不明显ꎻ对于框架-剪力墙结构和框架-筒体结构ꎬ柱截面应扩大ꎬ以满足轴压比的要求ꎬ形成短柱ꎮ此时ꎬ轴压比起着决定性的作用ꎬ而不是承载力ꎮ对于这种结构ꎬ轴压比的要求应放宽或取消ꎮ减少轴压比的措施有ꎮ1)采用高强混凝土:采用C50或C60以上的混凝土ꎬ混凝土轴心抗压强度增大ꎬ轴压比减小ꎬ或者轴压比保持不变ꎬ从而可以减小柱截面ꎮ这种方法的缺点是结构的脆性ꎮ2)采用约束箍筋:箍筋对混凝土的约束作用是近年来研究最多的延性柱问题ꎮ据调查ꎬ由于箍筋不足或箍筋失效ꎬ许多柱被地震作用破坏ꎮ增加箍筋可以提高柱的延性和抗震性能ꎬ这已被大量的试验和震害实例所证实ꎮ如图3所示ꎬ有约束箍筋的混凝土的强度比没有约束箍筋的混凝土高k倍ꎬ并且提高了混凝土的延性ꎮ图3㊀混凝土应力-应变曲线改善图5㊀结㊀论建筑工程中的许多问题ꎬ如汶川大地震引起的大量建筑物倒塌ꎬ表明建筑物的延性设计对建筑物的刚度和承载能力起着非常重要的作用ꎮ在建筑混凝土延性设计中ꎬ必须合理布置构件的位置ꎬ保证混凝土结构的延性ꎬ使地震等自然灾害发生时的危害最小ꎮ在设计中采取适当的措施ꎬ采用合理的结构形式ꎬ提高抗震结构的延性ꎬ提高建筑结构的变形能力ꎬ从而达到抗震设防的目的ꎬ实现 三水准 的设计理念ꎮ[ID:007568]参考文献:[1]㊀刘明军ꎬ李珠ꎬ刘元珍ꎬ等.建筑科学[J] 2014ꎬ30(11):51-54.[2]㊀贾金青ꎬ赵国落.高强混凝土短柱的抗剪强度[J].建筑结构ꎬ2000ꎬ30(10):144-146.[3]㊀朱幼跳.钢筋混凝土柱轴压比限值的研究[J].建筑结构ꎬ2000ꎬ30(10):130-131.[4]㊀左宏亮ꎬ戴纳新ꎬ王涛.建筑结构抗震[M].北京:中国水利水电出版社ꎬ2009.[5]㊀易伟建ꎬ李浩.钢筋混凝土柱的 强剪弱弯 可靠性区间分析[J].工程力学ꎬ2007ꎬ24(9):73-75.[6]㊀彭有开ꎬ吴徽ꎬ高全臣.再生混凝土长柱的抗震性能试验研究[J].东南大学学报(自然科学版)ꎬ2013ꎬ43(3):276-281.[7]㊀González-FonteboaBelénꎬMartínez-AbellaFernandoꎬCarroLópezDiego.Stress-strainrelationshipinaxialco-mpressionforconcreteusingrecycledsaturatedcoarseaggregate[J].ConstructionandBuildingMaterialsꎬ2011ꎬ25:2335-2342.[8]㊀FathifazlGholamrezaꎬRazaqpurAGꎬIsgorOBurkanꎬetal.Flexuralperformanceofsteel-reinforcedrecycledconcretebeams[J].ACIStructuralJournalꎬ2009ꎬ106(6):858-867.08。
钢筋混凝土结构中的延性措施摘要:本文总结了混凝土结构中几种较为成熟有效的提高构件延性的构造措施,并对其设计方法进行了简要介绍。
在钢筋混凝土结构设计中,为设计师解决结构中对延性有特殊要求的构件设计提供参考。
关键字:构件延性;构造措施1 延性设计引论在地震作用的整个过程中,构件和结构承载力无明显降低的非线性反应特性即为延性。
延性结构设计是利用结构中特定位置形成塑性变形来耗散地震能量,达到保护其它构件和结构整体的目的。
利用结构的延性进行钢筋混凝土房屋的抗震设计是一种经济合理的方法。
我国《建筑抗震设计规范》根据不同抗震等级规定不同抗震措施,抗震等级的划分反映了不同延性水平的要求。
但实际工程中,所遇到的问题各种各样,有时很难使所有构件都达到理想中的延性性能。
对于特殊位置的构件,要实现规范的相应要求,不得不加大构件截面、增加配筋及提高承载力。
但片面的增大截面可能会带来不利的影响。
如柱的轴压比较大时,若想使其达到规范要求限值,加大截面最为直接,但柱截面加大可能使其在该层内形成短柱,又恰恰使其延性降低,诸如此类的问题并不少见。
影响构件延性的因素很多,实际并非仅仅是规范所规定的内容,这说明可以采取其它的构造措施也同样可以实现构件的延性要求。
本文将常见的几种延性构造措施及相关的设计方法加以搜集汇总,以期借鉴选用。
2 构件延性构造2.1 框架柱的延性构造2.1.1减小轴压比[1] [3]《建筑抗震设计规范》中规定了抗震等级为一、二、三级的框架柱的轴压比限值,对于框架结构分别为:0.65、0.75、0.85。
对于框剪结构、框筒结构其限值有所不同,主要是考虑了剪力墙在地震作用下分担了较多的剪力,使得框架柱的剪应力水平得以降低,因此放松了对于其延性的构造要求。
当然,对于框支剪力墙结构的框支柱,因其对于延性的需求更大,所以轴压比限值又有所降低,体现了对于框支柱高延性的构造要求。
因此,为了提高框架柱的延性性能,尤其是首层柱根位置,在条件允许的情况下可以尽量使用强度等级较高的混凝土材料,也可以在满足剪跨比大于2的前提下,增加柱截面以减小轴压比。
钢筋混凝土框架结构的延性设计作者:廖辉来源:《现代企业文化·理论版》2011年第02期“强柱弱梁”、“强剪弱弯”等是建筑结构设计中非常重要的概念。
简单地说,虽然整个结构体系是由各种构件协调组成一体,但各个构件担任的角色不尽相同,按照其重要性也就有轻重之分。
一旦不可意料的破坏力量突然袭来,各个构件协作抵抗的目的,就是为了保住最重要的构件免遭摧毁或者至少是最后才遭摧毁,在建筑结构中,柱倒了,梁会跟着倒;而梁倒了,柱还可以不倒的。
可见柱承担的责任比梁大,柱不能先倒。
为了保证柱是在最后失效,我们故意把梁设计成相对薄弱的环节,使其破坏在先,以最大限度减少可能出现的损失。
以下就钢筋混凝土框架结构的主要构件来分别阐述延性设计的理念。
什么是混凝土框架强柱弱梁的概念设计?由于梁截面高度较高,且与现浇楼板组成T形截面构件共同工作,形成强梁弱柱,导致柱子破坏,房屋倒塌。
框架结构的弹塑性分析表明,强震作用下,梁端实际达到的弯矩与其正截面受弯承载力是相等的,柱端实际达到的弯矩也与其偏压下的受弯承载力相等。
这是地震作用效应的一个特点。
因此,所谓“强柱弱梁”指的是:节点处梁端实际受弯承载力和柱端实际受弯承载力之间满足下列不等式:这种概念设计,由于地震的复杂性、楼板的影响和钢筋屈服强度的超强,难以通过精确的计算真正实现。
国外的抗震规范多以设计承载力来衡量或将钢筋抗拉强度乘以超强系数来实现。
《建筑抗震设计规范》的规定,只在一定程度上减缓柱端的屈服。
一般采用适当增大柱端弯矩设计值的方法,其取值体现了抗震等级的差异。
具体的做法第一,柱剪跨比限制。
剪跨比反映了构件截面承受的弯矩与剪力的相对大小。
它是影响柱极限变形能力的主要因素之一,对构件的破坏形态有很重要的影响。
因此柱的剪跨比宜控制在2.0以上。
第二,梁、柱剪压比限制。
当构件的截面尺寸太小或混凝土强度太低时,按抗剪承载力公式计算的箍筋数量会很多,则箍筋在充分发挥作用之前,构件将过早呈现脆性斜压破坏,这时再增加箍筋用量已没有意义。
钢筋混凝土框架结构抗震延性设计要求导言框架结构在地震时进入屈服阶段来应对超过地震烈度的抗震设防烈度,当屈服还不能抵消时就会发生塑性变形来吸收和消耗地震能量。
钢筋混凝土框架结构延性的重要性混凝土框架结构抗震实质上就是结构的延性设计。
所谓延性,指的是指构件与结构屈服之后,在其承载能力不下降的前提下,所具备的塑性变形能力,这种能力被称为“延性比”。
提高结构的延性比有助于提升框架的抗震潜能,加强其抗倒塌能力。
设计在延性结构的混凝土框架通过其塑性铰区域发生变形,可以有效吸收和分散地震传对于框架作用力;该区域变形也可以使整体框架刚度得以降低,减弱地震对于结构的作用力。
具有延性结构能够使框架对于承载力要求降低,事实上延性结构对抗突发地震的武器就是它所具有的变形能力。
也就是说,如果钢筋混凝土框架的结构延性不够好,那么就要求框架对于地震具备足够大的承载力。
钢筋混凝土框架结构抗震延性设计延性设计是针对延性结构在钢筋混凝土建筑结构中所起到的与结构本身的承载能力一样不可忽视的作用,而进行的研究尤其对是震区的钢筋混凝土建筑显得更加重要。
倡导延性设计,以加强其抗震能力。
由于钢筋混凝土材料还具脆性,在突遇地震时会发生断裂对居住者的人身安全是一个极大隐患,所以为了最大限度减少这一特点的损害,在设计中更应当重视发挥钢筋的塑性特征,增强其吸收消耗能量的能力,实行延性设计。
根据我国目前对于钢筋混凝土结构设计的要求,在实施混凝土框架延性设计过程中需得遵循以下要求:1.控制塑性铰的位置,“强柱弱梁”框架结构若形成梁铰机构,则塑性铰分布比较均匀,而且梁铰机构的延性要求也比较容易实现。
若形成柱铰机构,则易使整个结构形成机动结构,从而导致整个结构的倒塌。
框架结构设计时应遵循的设计原则是“强柱弱梁”这是为了确保结构的延性,这样就可以确保设计荷载下同一节点上柱端截面抗弯承载力之和大于梁端截面抗弯承载力之和,而且可以使框架结构中柱的抗弯承载力储备足够。
钢筋混凝土框架结构的延性设计分析导言随着房屋建筑层数的增高,在地震设防地区的结构延性设计至关重要。
本文分析了影响抗震结构延性设计的主要因素及其实现延性设计的机理与方法。
结构的延性在抗震设计中的重要性及概念在我国的高层建筑中,钢筋混凝土结构应用最为普遍,其中钢筋混凝土框架结构是最常用的结构形式。
因为其具有足够的强度、良好的延性和较强的整体性,目前广泛应用于地震设防地区。
钢筋混凝土框架结构具有良好的抗震性能,然而未经合理设计的框架结构会在地震作用下产生较严重的震害。
结构抗震的本质就是延性,延性是指结构或构件在承载能力没有显著下降的情况下承受变形的能力。
破坏前无明显预兆,力-变形曲线达到最大承载力后突然下跌形成明显尖峰的构件(结构)称为脆性构件(结构)。
破坏前有明显预兆,力-变形曲线在最大承载力附近存在明显的平台,能承受较大变形而承载力无显著降低的构件(结构)称为延性构件(结构)。
1.结构抗震的延性设计大量的实验研究和地震实例表明,在地震(尤其是罕遇地震)作用下,建筑结构大都会进入弹塑性状态,出现弹塑性变形。
延性设计,即使结构在构件屈服之后仍具有足够的变形能力,依靠结构的弹塑性变形来消耗地震能量,保证屈服部分发生延性破坏,避免结构发生脆性破坏和整个结构的倒塌。
这种设防思想在新的建筑抗震设计规范中具体化为“小震”(在房屋服役期内最可能遭遇的强烈地震或常遇地震)不坏,“中震”(基本烈度地震)可修和“大震”(罕遇地震)不倒。
世界上其他多地震国家的抗震设计规范,也都采用了类似的设计思想。
2.影响抗震结构延性设计的主要因素(1)钢筋的配筋率增加纵向钢筋配筋率,不仅可以提高结构构件的抵抗弯矩;同时也可以提高塑性铰的转动能力,进而增加结构的延性。
(2)箍筋配筋率由实验研究可知,位移延性随着配箍率的增加而提高。
箍筋间距越小,配箍率越大,延性的增长也越显著。
增加配箍率,就是增加对混凝土横向变形的约束,提高混凝土的抗压强度。
混凝土结构延性设计
李良玉
(河北科技师范学院土木工程0901 秦皇岛市河北大街360号 066000)
摘要:针对延性和耗能能力对结构抗震有非常重要的作用,但在设计中却远没有达到对结构承载能力和刚度问题的重视程度,在介绍延性设计的概念的基础上,提出了对框架及剪力墙的基本延性设计思路,并介绍了在设计中常用的一些保证结构或构件延性和耗能能力的方法,供大家在设计中参考。
关键词:混凝土结构;延性;耗能能力;框架;剪力墙
Concrete ductility design of structure
LiLiangyu
(City Construction College ofcivil engineeringin Hebei Normal University of Science and Technology 0901Qinhuangdao,360 HeBei
street 066000)
Abstract:Ductility and energy dissipation capacity for to structure seismic have very important role, but in design but far from reach bearing capacity of structure.And the attention of rigidity, introduces the concept of the ductility design, this paper puts forward the framework and shear wall basic ductility design train of thought.And introduce the design of the commonly used in some guarantee structure or component ductility and energy dissipation capacity method, for everybody in the design of reference.
Key words:Concrete structure; Ductility; Energy dissipation capacity; Framework; Shear wall.
1 引言
我们在地震区进行结构设计时,为达到“小震不坏,中震可修,大震不倒”的抗震设防要求,通过计算,往往使结构要具备足够大的承载能力,足够大的刚度以及应具备足够大的延性和耗能能力。
承载能力是最重要的,它是结构可靠度的保证。
同样,结构必须具有足够大的侧移刚度和扭转刚度。
在同一地震作用下,刚度小的结构破坏程度大,变形小的结构破坏程度小。
结构、构件的刚度与承载能力是相关的,一般来说,刚度大承载能力也大,刚度小承载能力也小。
我们在设计计算中很重视上述两项,但对结构应具备足够大的延性和耗能能力并没有引起重视。
经济、合理的按能力设计法设计的抗震结构应当是:在大震作用下,部分结构构件破坏,通过延性耗散地震能量,避免结构倒塌。
2试验研究
2.1 结构延性的概念
延性包括材料、截面、构件和结构的延性。
延性是指屈服后,强度和承载能力没有显著降
低时的塑性变形能力。
延性大,说明塑性变形能力大,强度或承载力的降低缓慢,从而有足够大的能力吸收和耗散地震能量,避免结构倒塌;延性小,说明达到最大承载能力后承载力迅速降低,变形能力小,呈现脆性破坏,引起结构倒塌。
结构延性可以来自材料延性、截面曲率延性、构件位移延性和结构位移延性。
一般来说,对截面延性的要求高于对构件延性的要求,对构件延性的要求高于对结构延性的要求。
我国规范没有对结构、构件的延性系数和耗能能力做定量的规定,只规定了罕遇地震作用下各结
构体系的弹塑性层问位移角限值。
例如,钢筋混凝土框架结构的屈服层间位移角为1/200左右,规范规定其弹塑性层间位移角限值为1/50。
钢筋混凝土结构都应该设计成延性结构。
“小震不坏、中震可修、大震不倒”的抗震设计原则,也就是要做到在设防烈度地震作用下,允许部分构件出现塑性铰,这种状态是“中震可修”状态;合理控制塑性铰部位、构件又具备足够的延性,可做到在大震作用下结构不倒塌的状态。
延性结构的塑性变形可以耗散地震能量,虽然结构变形会加大,但内力不会很大,对构件的承载能力要求不会很高。
也就是说,延性结构是用它的变形能力,而不是承载力抵抗强烈的地震作用。
因此,对于地震发生概率极少的抗震结构,延性结构是一种经济合理和安全的设计方向。
2.2延性框架梁
梁是钢筋混凝土框架的主要延性耗能构件。
影响梁的延性和耗能的主要因素有:破坏形态,截面混凝土相对压区高度等。
我们设计时,首先要实现弯曲破坏,避免剪切破坏,限制最大剪力设计值。
剪压比限值也是确定梁最小截面尺寸的条件之一。
在满足截面高度要求的基础上,设计时应限制受拉钢筋,不出现可能引起脆性破坏的少筋梁和超筋梁;同时,配置受压钢筋,以增大其延性。
对梁端,在地震往复作用下,不仅有竖向裂缝,还有斜裂缝。
为使塑性铰区具有良好的塑性转动能力,同时为了防止混凝土压溃前受压钢筋过早压屈,在梁的两端必须设置箍筋加密区。
另外设计中可以采取措施使塑性铰外移,将塑性铰从柱面移开一定距离,避免梁端钢筋屈服后向核心区发展,引起粘结破坏。
具体措施可采用如图l所示增加梁端的纵向钢筋,或如图2所示增加梁端高度,提高梁端受弯及受剪承载力。
一般将屈服的位置移至图1,图2中的控制截面,控制截面与柱面之间的距离不小于500 mm和梁高,塑性铰的起始截面距控制截面250 mm或1/2梁高,塑性铰长度为2倍梁高,该范围内箍筋应予加密。
2.3 延性框架柱
柱是框架的竖向结构,地震时柱破坏和丧失承载力比梁破坏和丧失承载力更容易引起框架倒塌。
影响柱的延性和耗能的主要因素有:剪跨比,轴压比,纵筋配筋率和塑性铰区箍筋的配置。
现行规范对这几方面已作了详细的要求,这里不再赘述。
我们只需遵循以下基本设计概念,即采用大剪跨比柱,避免小剪跨比柱,限制轴压比,提高纵筋配筋率,保证约束塑性铰区混凝土的箍筋等。
其中,当由于为保证限制轴压比而采用了较大截面柱时,势必造成较小的柱剪跨比,这是不利的。
我们常采用如图3所示的分体柱措施来避免形成短柱或极短柱。
分体柱是用隔板将柱分为等截面的单元柱,一般为4个单元柱,截面的内力设计值由各单元柱均担,按现行规范对单元柱承载力验算,在柱的上下端留有整截面过渡区,过渡区内配置复合箍。
分体柱
各单元的剪跨比是整体柱的两倍,可以避免短柱。
当然,也可利用高强混凝土与钢组合成为延性组合柱,如钢管混凝土柱,钢管混凝土叠合柱及钢骨混凝土柱。
这些,在建筑材料飞速发展的今天,也是可以经常采用的。
2.4延性剪力墙
剪力墙由墙肢和连梁两种构件组成,从截面的形状到构件的受力性能,墙肢与柱、连梁与框架梁有很大的差别。
剪力墙的受力性能比框架复杂,抗震设计在一些方面与框架有较大的区别。
强墙肢弱连梁,强剪弱弯及限制剪压比,限制墙肢轴压比这些与框架概念是等同的。
但剪力墙延性设计又有其自身的特点。
首先,不同于框架柱是偏压构件,墙肢本身又是受弯构件,控制墙肢不出现脆性的剪切破坏就是首要的。
设计时一般通过控制剪跨比来解决。
杜绝出现剪跨比小于1的矮墙,实现延性的弯曲破坏,增强耗能能力。
另外,通过设置底部加强区,设置约束边缘构件,可以增大截面的塑性变形能力。
约束边缘构件的构造要求,主要包括沿墙肢截面的长度和墙肢的高度,箍筋数量,水平分布筋在约束边缘构件内的锚固以及确保一定的纵筋面积来保证。
这在现行规范中都有明确要求。
延性连梁的设计,我们计算时一般通过降低连梁的刚度和弯矩设计值来实现。
同时,在做法上就有多种方式。
一种是设计成开缝连梁,即对于跨高比小的连梁,在连梁腹板上沿跨度方向预留一条或两条缝或槽,将连梁沿梁高方向分成几根跨高比较大的梁,在大震作用下发生较好的弯曲破坏。
另外,在连梁内交叉配筋来抵抗地震作用下不断改变方向的剪力,是比较常用的方法。
交叉配筋连梁的延性和耗能能力明显优于普通水平配筋连梁,只是制作费工,钢筋密集,难以施工。
此外,采用钢板混凝土连梁,发挥钢板良好的塑性变形能力,同时减少了箍筋用量,给施工带来便利。
3结语
延性框架和延性剪力墙的抗震主要包括三方面:
(1)通过调整构件之间承载力的相对大小,实现合理的屈服机制,即“强柱弱梁”“强墙肢弱连梁”“强核芯区弱构件”;
(2)通过调整构件斜截面承载力和正截面承载力之间的相对大小,实现构件延性破坏形态,即“强剪弱弯”;
(3)通过采取抗震构造措施,使构件自身具有大的延性和耗能能力。
参考文献
[1]国家标准《混凝土结构设计规范[S]》GB 50010—2002.
[2]国家标准《建筑抗震设计规范[S]》GB 50011—2010.
[3]中国有色工程设计研究总院,《混凝土结构构造手册[S]》.
[4] 张志强. 《延性与抗震设计[J]》.山西建筑,2008,34(12):93—94.
[5]方鄂华.《高层建筑钢筋混凝土结构概念设计[M]》.北京:机械工业出版社,2004:8.。