同济医学院SPSSSPSSLogistic回归
- 格式:pptx
- 大小:564.89 KB
- 文档页数:44
SPSS软件在医学科研中的应用计算机实习(SPSS10.0)何平平北大医学部流行病与卫生统计学系实习六Logistic回归分析(一)Logistic回归分析的任务影响因素分析在流行病学研究中,logistic回归常用于疾病的危险因素分析,logistic回归分析可以提供一个重要的指标:OR。
(二)Logistic回归分析的基本原理1.变量特点因变量:二分类变量,若令因变量为y,则常用y=1表示“发病”,y=0表示“不发病”(在病例对照研究中,分别表示病例组和对照组)。
自变量:可以为分类变量,也可以为连续变量。
2.Logistic模型Log P1 P = ®+®1x1+ ®2x2+ ...... + ®mxmP=P(y=1|x),为发病概率;1-P=P(y=0|x),为不发病概率。
®0为常数项,®1 ,®2 ….. ®m分别为m个自变量的回归系数。
模型估计方法:最大似然法(Maximum Likelihood Method)。
构造似然函数(L ikelihood function )L= P(y=1|x) P(y=0|x),通过迭代法估计一组参数(®0,®1 ,®2 ….. ®m)使L达到最大。
3.自变量的相对重要性分析衡量变量相对重要性的指标(1)Wald值:(®i /SE(®i ))2,近似⎪2分布,用于检验自变量的显著性。
(2)对自变量作显著性检验的概率P值。
当Wald值越大,P值越小时,自变量的影响就越大。
4.自变量的筛选与多元线性回归分析类似,有Forward法(实际上是逐步向前法)、Backward法(默认方法为Enter,即所有自变量一次全部进入方程)。
5.模型拟合的优良性指标(1)拟合分类表(Classification Table)根据Logistic回归型,对样本重新判别分类,符合率越高,模型拟合越好。
SPSS 二分类的Logistic 回归的操作和分析方法二分类指的是因变量的数据只有两个值,代表事物的两种类别, 典型的二分类变量如性别、是否患病等。
因变量为二分变量原则上是 无法做回归的,在回归方程中的因变量实质上是概率,而不是变量本 身。
在理解二分类变量以后,我们看看如何做二分类变量的logistic 回归。
1 .打开数据以后,菜单栏上依次点击: analyse --regression --binary logistic ,打开二分回归对话框2 .将因变量和自变量放入格子的列表里,如图所示,上面的是因变 量,下面的是自变量,我们看到这里有三个自变量pre 1courtpre卜 卜EJ Pa ri 即 u sei.P1自中叫5口同”“LvaisTic好 Io ■网 □N W□imsnstcri RfrdddiMNonparaTTietrtc Tests Foi ■白MuH0lalfflpul3&on Deiscriplrve SI 挑助聪LfiOli ncaf - Neuf-31 nuHlpEa ResponseMissing value AnaJisis. EH 必占律蛉的国q 商本 Ublik^s 时小如M Wflftdaw HOI LFl[« Edi! View工陷 nW"" ATiilyrtCam pl«i £aEpl 骷与Opsin al Scaling (CALREGJp..R 蜜GertEralized LinearMatfcIs 卜 Mbosti ModelsRlNafllin&af .曲:AT.r+ci HC] 2^^161;! Sfiiisrcs.tosnpareGeneral LinearMMml 48?B6Ci3强理 G"一四忙—一 3 La,43W8口 AutoioaticUn^r ModjeliFig..M 二1 Linear...国 guive EslirnatiCin...C>ep«n (lferit3 .设置回归方法,这里选择最简单的方法:enter ,它指的是将所有的 变量一次纳入到方程。
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
SPSS学习笔记之——二项Logistic回归分析一、概述Logistic回归主要用于因变量为分类变量(如疾病的缓解、不缓解,评比中的好、中、差等)的回归分析,自变量可以为分类变量,也可以为连续变量。
他可以从多个自变量中选出对因变量有影响的自变量,并可以给出预测公式用于预测。
因变量为二分类的称为二项logistic回归,因变量为多分类的称为多元logistic回归。
下面学习一下Odds、OR、RR的概念:在病例对照研究中,可以画出下列的四格表:------------------------------------------------------暴露因素病例对照-----------------------------------------------------暴露 a b非暴露 c d-----------------------------------------------Odds:称为比值、比数,是指某事件发生的可能性(概率)与不发生的可能性(概率)之比。
在病例对照研究中病例组的暴露比值为:odds1 = (a/(a+c))/(c(a+c)) = a/c,对照组的暴露比值为:odds2 = (b/(b+d))/(d/(b+d)) = b/dOR:比值比,为:病例组的暴露比值(odds1)/对照组的暴露比值(odds2) = ad/bc换一种角度,暴露组的疾病发生比值:odds1 = (a/(a+b))/(b(a+b)) = a/b非暴露组的疾病发生比值:odds2 = (c/(c+d))/(d/(c+d)) = c/dOR = odds1/odds2 = ad/bc与之前的结果一致。
OR的含义与相对危险度相同,指暴露组的疾病危险性为非暴露组的多少倍。
OR>1说明疾病的危险度因暴露而增加,暴露与疾病之间为“正”关联;OR<1说明疾病的危险度因暴露而减少,暴露与疾病之间为“负”关联。
如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图 1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。
手把手教你SPSS二分类Logistic回归分析本教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、SPSS做Logistic回归分析操作步骤3.1 线性关系检验假设3.2 多重共线检验假设3.3 离群值、杠杆点和强影响点的识别3.4 Logistic回归分析四、SPSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)。
部分数据如图1。
二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。
假设1:因变量(结局)是二分类变量。
假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。
假设3:每条观测间相互独立。
分类变量(包括因变量和自变量)的分类必须全面且每一个分类间互斥。
假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样本量应达到自变量数目的50倍。
假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
假设6:自变量之间无多重共线性。
假设7:没有明显的离群点、杠杆点和强影响点。
假设1-4取决于研究设计和数据类型,本研究数据满足假设1-4。
那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3.1 检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。
这里主要介绍Box-Tidwell方法,即将连续自变量与其自然对数值的交互项纳入回归方程。
本研究中,连续的自变量包括age、BMI、TC。
使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age、ln_BMI、ln_TC。
如何用spss17.0进行二元和多元logis tic回归分析一、二元logis tic回归分析二元logis tic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logist ic回归分析。
(一)数据准备和SP SS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NC AS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NC AS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到s pss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logis tic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regress ion)→二元logis tic (BinaryLogisti c)”的路径(图1-2)打开二值Log istic回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与IC AS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Depende nt)中,而将性别和年龄选入协变量(Covaria tes)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
利用SPSS进行Logistic回归分析第8章利用SPSS进行Logistic回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1表示。
如果我们采用多个因素对0-1表示的某种现象进行因果关系解释,就可能应用到logistic回归。
Logistic回归分为二值logistic回归和多值logistic回归两类。
首先用实例讲述二值logistic回归,然后进一步说明多值logistic回归。
在阅读这部分内容之前,最好先看看有关SPSS软件操作技术的教科书。
§8.1 二值logistic回归8.1.1 数据准备和选项设置我们研究2005年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes表示,否则用No表示(图8-1-1)。
图8-1-1 原始数据(Excel中,局部)将数据拷贝或者导入SPSS的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31个地区的数据(SPSS中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary LogisticK”的路径(图8-1-3)打开二值Logistic回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图 1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。