有限差分法
- 格式:doc
- 大小:37.50 KB
- 文档页数:9
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
有限差分法有限差分法是数学领域的一项最新成果,它在某些特定情况下能得到非常好的结果。
所谓有限差分方程就是利用积分和求差公式将差分方程化成为多个等价的偏微分方程组的组合形式,然后再应用最优化方法求解这种方程组,从而得出未知数的近似值。
当已知方程组的每个参数及其变量代入数据计算后的误差时,只要对其进行必要的调整或者修改后,就可获得满意的精度与效率的估计值。
此外,还可以通过有限差分方程的求解来了解其物理背景。
比如说在物体碰撞问题中,两个质点之间距离的测量往往涉及到很复杂的三维几何关系。
即使是一个小的距离误差也会引起很大的误差。
因此,对于碰撞问题中两个质点之间的相互位置误差测量,必须考虑它们之间的三维几何关系,并根据具体问题建立相应的坐标系统。
有限差分方程可以用来描述许多不同类型的实际问题,例如质量、压力、速度、温度、流动、热传导、声音和电磁场等。
但是由于数学模型本身的复杂性,使得有限差分方程在求解上遇到了困难。
因此,人们开始寻找一种更加直观的方法来解决问题。
有限差分法正是基于此原理提出的。
利用有限差分方程求解偏微分方程,我们首先要给出所求解的偏微分方程的数学表达式,这样才能够在有限差分方程的数学模型中寻找解析解。
有限差分方程的解析解,需要借助解析函数的理论来确定。
但是在自然科学和工程技术领域里,对于一般的实际问题,很少会存在着某种数学模型完全适合于所有的具体问题,那么对于任意一个偏微分方程,总是存在着一个解析解。
当把偏微分方程的解析解用适当的坐标表示出来后,有限差分方程的求解就转化为如何寻找与这个解相对应的函数值的问题。
通常,解析函数的形式是比较复杂的,因此需要运用数值方法进行拟合,从而得到符合实际的数学表达式。
然后通过对这个数学表达式的求解来确定所求偏微分方程的解析解。
这种数值求解方法称为数值积分法。
在研究有限元法和边界元法时都可以采用一些简单易行而且计算机可能很容易处理的函数作为边界条件,而这些函数本身又是很容易计算的。
有限差分法推导【最新版】目录1.有限差分法的基本概念2.有限差分法的推导方法3.有限差分法的应用实例4.有限差分法的优缺点正文一、有限差分法的基本概念有限差分法是一种数值计算方法,主要应用于求解偏微分方程的初值问题。
它是通过将连续的函数值用有限个离散点上的函数值来代替,从而将偏微分方程转化为关于这些离散点上的代数方程组。
这种方法可以有效地降低问题的复杂度,使得求解过程更加简便。
二、有限差分法的推导方法有限差分法的推导过程主要包括以下几个步骤:1.对边界条件进行离散处理,将边界上的函数值用有限个离散点上的函数值来代替。
2.对偏微分方程进行离散处理,将偏微分方程转化为关于这些离散点上的代数方程组。
3.求解代数方程组,得到离散点上的函数值。
4.通过插值方法,将离散点上的函数值还原为连续函数。
三、有限差分法的应用实例有限差分法广泛应用于各种物理、工程和数学问题中,例如求解热传导方程、波动方程和亥姆霍兹方程等。
下面以求解一维热传导方程为例,展示有限差分法的应用过程。
假设我们要求解如下的热传导方程:u/t = k * ^2u/x^2x = [0, 1]t = [0, T]边界条件:u(0, t) = f(t), u(1, t) = 0初始条件:u(x, 0) = 0我们可以通过以下步骤应用有限差分法:1.对边界条件进行离散处理,将边界上的函数值用有限个离散点上的函数值来代替。
2.对偏微分方程进行离散处理,将偏微分方程转化为关于这些离散点上的代数方程组。
3.求解代数方程组,得到离散点上的函数值。
4.通过插值方法,将离散点上的函数值还原为连续函数。
四、有限差分法的优缺点有限差分法具有以下优点:1.适用范围广泛,可以应用于各种偏微分方程的初值问题。
2.推导过程相对简单,容易理解和实现。
3.计算精度较高,可以通过增加离散点数来提高精度。
然而,有限差分法也存在以下缺点:1.计算量较大,需要处理大量的代数方程组。
2.对于某些问题,可能需要进行特殊的处理,例如处理不稳定的代数方程组。
有限差分法有限差分法(Finite Differential Method, FDM )什么是有限差分法 有限差分法是指用泰勒技术展开式将变量的导数写成变量,在不同时间或空间点值的差分形式的方法。
按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
有限差分法的基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
(1) 现在分别对时间(从0时刻到到期日)和股票价格(S max )为可达到的足够高的股票价格)进行分割,即\triangle S=S_{max}/M,\triangle T/N,这样就分别有N+1个时间段和M+1个股票价格,建立如图(所示的坐标方格,将定解区域网格化,坐标方格上的点(i,j )对应时刻和股票价格,用变量f i ,j 表示(i,j )点的期权价格。
2.建立差分格式(1)内含的有限差分方法其步骤可分为以下几步:(1)求前向差分近似:(2) 后向差分格式:(3)将(2),(3)式平均可更加对称地求出的近似,即(4)(2)求用前向差分近似:(5)(3)求(6)(4)将(4),(5),(6)式代入(1)式可得到内含有限差分公式:+ b j f i,j−c j f i,j + 1 = f i + 1,j(7)aj f i,j− 1其中:i=0,1,…,N-1。
j=0,1…,M-1针对看跌期权和看涨期权可分别求出方程的边界条件:看跌期权:看涨期权:(5)利用边界条件和(7)式可以给出M-1个联立方程组:+ b j f N− 1,j + c j f N− 1,j + 1j=1,2…,M-1aj f N− 1,j− 1求解这M-1个联立方程组即可以求出期权价格,但对美式看跌期权时我们必须考虑其提前执行的情况。
1. 引言有限差分法(Finite Difference Method,FDM)是一种求解微分方程数值解的近似方法,其主要原理是对微分方程中的微分项进行直接差分近似,从而将微分方程转化为代数方程组求解。
有限差分法的原理简单,粗暴有效,最早由远古数学大神欧拉(L. Euler 1707-1783)提出,他在1768年给出了一维问题的差分格式。
1908年,龙格(C. Runge 1856-1927)将差分法扩展到了二维问题【对,就是龙格-库塔法中的那个龙格】。
但是在那个年代,将微分方程的求解转化为大量代数方程组的求解无疑是将一个难题转化为另一个难题,因此并未得到大量的应用。
随着计算机技术的发展,快速准确地求解庞大的代数方程组成为可能,因此逐渐得到大量的应用。
发展至今,有限差分法已成为一个重要的数值求解方法,在工程领域有着广泛的应用背景。
本文将从有限差分法的原理、基本差分公式、误差估计等方面进行概述,给出其基本的应用方法,对于一些深入的问题不做讨论。
2. 有限差分方法概述首先,有限差分法是一种求解微分方程的数值方法,其面对的对象是微分方程,包括常微分方程和偏微分方程。
此外,有限差分法需要对微分进行近似,这里的近似采取的是离散近似,使用某一点周围点的函数值近似表示该点的微分。
下面将对该方法进行概述。
2.1. 有限差分法的基本原理这里我们使用一个简单的例子来简述有限差分法的基本原理,考虑如下常微分方程\begin{cases} u'(x)+c(x)u(x)=f(x), \quad x \in [a, b]; \\u(x=a) = d \end{cases} \tag{1}微分方程与代数方程最大的不同就是其包含微分项,这也是求解微分方程最难处理的地方。
有限差分法的基本原理即使用近似方法处理微分方程中的微分项。
为了得到微分的近似,我们最容易想到的即导数定义u'(x)=\lim_{\Delta x\rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}\approx \frac{u(x+\Delta x)-u(x)}{\Delta x} \tag{2}上式后面的近似表示使用割线斜率近似替代切线斜率,\Delta x 即为步长,如图 1(a)所示。
第四章有限差分方法4.1引言有限差分法:数值求解常微分方程或偏微分方程的方法。
物理学和其他学科领域的许多问题在被分析研究之后, 往往可以归结为常微分方程或偏微分方程的求解问题。
一般说来,处理一个特定的物理问题,除了需要知道它满足的数学方程外,还应当同时知道这个问题的定解条件,然后才能设计出行之有效的计算方法来求解。
有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。
在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离散取值后对应的函数值。
但是从原则上说,这种方法仍然可以达到任意满意的计算精度。
因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得到。
这种方法是随着计算机的诞生和应用而发展起来的。
其计算格式和程序的设计都比较直观和简单,因而,它的实际应用已经构成了计算数学和计算物理的重要组成部分。
有限差分法的具体操作分为两个部分:(1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式; (2)求解差分方程组。
在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。
通常采用的是规则的分割方式。
这样可以便于计算机自动实现和减少计算的复杂性。
网络线划分的交点称为节点。
若与某个节点P 相邻的节点都是定义在场域内的节点,则P 点称为正则节点;反之,若节点P 有处在定义域外的相邻节点,则P 点称为非正则节点。
在第二步中,数值求解的关键就是要应用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。
有限差分法的差分格式:一个函数在x 点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。
如对一个单变量函数f(x),x 为定义在区间[a,b]的连续变量。
以步长h=Δx 将[a,b]区间离散化,我们得到一系列节点x = a , x = x + h , x = x + h = a + 212132Δx , ..., x = x + h = b , 然后求出 f(x)在这些点上的近似值。
有限差分方法有限差分法是一种用于数值解决常微分方程(ODE)、偏微分方程(PDE)的数学技术。
它将原本的微分方程式转化为差分方程,最终可以用数值计算解决。
作为一门数值分析技术,有限差分方法主要用于计算解决微分方程的参数和状态。
有限差分法的步骤一般分为三个:(1)数学模型的构建,(2)对物理场的离散化,(3)对差分方程进行求解。
首先,我们要建立准确的物理模型,这一步涉及到选取合适的假设和参数,以及采用适当的边界条件和初始条件。
其次,我们要对原方程进行离散处理,使其转化为有限差分方程,从而为求解此类方程打下基础。
最后,我们要设计出一个有效的求解方法,通过用数值计算解决有限差分方程,获得所求解的结果。
有限差分法的优点主要体现在精度和速度上。
首先,它的精度极高,它可以求解出精确的解,而且计算速度也很快,无需复杂的数学推理,就可以较快速度解决问题,大大降低了计算的难度。
其次,有限差分法可以拓展到更多的系统,不限于只能解决二维静止场,而能够解决一般感兴趣的场景。
此外,有限差分技术也可以解决有时限性的问题,例如分析物体的动态特性。
此外,有限差分方法也存在一些缺点,例如边界条件的处理和计算复杂性的增加。
由于差分的求解是基于某些边界条件的,一旦边界条件发生变化,原有的求解方案就会失效。
此外,在进行离散化处理时,随着问题规模的增大,计算复杂性也会随之增加,使得求解较大规模的问题极其困难。
有限差分法已经成为当今解决复杂问题数值计算的重要技术手段。
它在准确性、精度和计算速度方面均具有优势,深受工业界、医学界及数学领域的青睐。
有限差分法的实际应用也正在层出不穷,今后有望在更多的领域得到广泛的应用。
有限差分法推导摘要:一、有限差分法简介1.有限差分法的概念2.有限差分法在数值计算中的应用二、有限差分法的推导1.差分法的定义2.有限差分法的推导过程3.有限差分法的性质三、有限差分法的应用1.微分方程的数值解法2.有限差分法在数值积分中的应用四、有限差分法的优缺点1.优点2.缺点正文:一、有限差分法简介有限差分法是一种数值计算方法,通过将连续函数离散化,用差分代替微分,从而实现对微分方程或积分方程的求解。
有限差分法广泛应用于科学、工程和金融领域,例如,在天气预报、海洋学、生物学、经济学等方面都有重要作用。
二、有限差分法的推导1.差分法的定义差分法是一种将函数在某一点上的值与该点附近点的值相减的方法,用于近似计算函数在该点处的导数或变化率。
给定一个函数f(x),在x=a 处求导,可以得到差分算子Df(a,h),其中h 为差分步长。
2.有限差分法的推导过程有限差分法是将差分法应用于离散点集,通过有限个差分算子来近似表示函数在某一点的值。
设函数f(x) 在区间[x0, x1] 上可导,离散点集为{x0,x0+h, x0+2h, ..., x1},有限差分法的表达式为:Df(x0+k h) ≈ (h/(k+1)) * [f(x0+k h) - f(x0+(k-1) h)] (k=1,2,3,...,n-1)3.有限差分法的性质有限差分法具有以下性质:(1) 线性性质:Df(x) + Dg(x) = D(f(x) + g(x))(2) 移位性质:Df(x+h) = Df(x) + h * df(x)/dx(3) 微分性质:Df(x) * (x - x0) = f"(x) * (x - x0) + O(h^2)三、有限差分法的应用1.微分方程的数值解法有限差分法可以用于求解微分方程,例如,对于一阶线性微分方程:df(x)/dx + p(x) * f(x) = q(x)可以用有限差分法将其离散化为一个线性代数方程组,从而求解离散解。
有限差分法(Finite Difference Method)是一种数值方法,用于求解偏微分方程(PDEs)的近似解。
这种方法通过将连续的微分方程离散化,将其转化为一系列代数方程,从而在计算机上进行求解。
有限差分法特别适用于求解具有固定边界条件和初始条件的偏微分方程。
以下是有限差分法求解偏微分方程的基本步骤:1. 网格划分:首先,将问题的连续域划分为离散的网格点。
对于二维问题,这通常涉及到在空间和时间上进行网格划分,形成网格点的集合。
2. 离散化:使用差分公式将微分方程中的导数替换为差分。
例如,一阶导数可以用前向差分或后向差分近似,而二阶导数可以用中心差分近似。
3. 构建差分方程:在每个网格点上应用差分公式,将微分方程转化为代数方程。
对于边界条件,也需要进行相应的离散化处理。
4. 求解线性方程组:差分方程通常会导致一个线性方程组。
对于大型问题,这可能需要使用迭代方法或直接求解器来找到解。
5. 稳定性分析:在求解过程中,需要确保数值解的稳定性。
这涉及到对时间步长和空间步长的选择,以满足CFL(Courant-Friedrichs-Lewy)条件。
6. 迭代求解:对于时间依赖的问题,如热传导或波传播,可以通过时间步进方法(如显式或隐式方法)来迭代求解。
7. 结果分析:最后,分析数值解以验证其准确性,并与解析解(如果存在)进行比较。
有限差分法在处理规则区域和简单边界条件的问题时非常有效。
然而,对于具有复杂几何形状或边界条件的问题,可能需要更高级的数值方法,如有限元方法(FEM)或边界元方法(BEM)。
在实际应用中,有限差分法通常与计算机软件结合使用,如MATLAB、Python的SciPy库等,以便于高效地处理大规模问题。
有 限 差 分 法流体运动的控制方程多为偏微分方程,在复杂的情况下不存在解析解。
但是对于一些简单的情况存在解析解,偏微分方程的解析解可用精确的数学表达式表示,该表达式给出了因变量在整个定义域中的连续变化状况。
有限差分法(Finite Difference Method ,FDM )是数值计算中比较经典的方法,由于其计算格式直观且计算简便,因此被广泛地应用在计算流体力学中。
有限差分法首先将求解区域划分为差分网格,变量信息存储在网格节点上,然后将偏微分方程的导数用差商代替,代入微分方程的边界条件,推导出关于网格节点变量的代数方程组,通过求解代数方程组,获得偏微分方程的近似解。
偏微分方程被包含离散点未知量的代数方程所替代,这个代数方程能求出离散节点处的变量,这种离散方法叫做有限差分法。
2.1有 限 差 分 逼 近2.1.1 有限差分网格 由于有限差分法求解的是网格节点上的未知量值,因此首先介绍有限差分网格。
图2.1 – 1是x-y 平面上的矩形差分网格示意图。
在x 轴方向的网格间距为△x ,在y 轴方向的网格间距为△y ,网格的交点称为节点,计算变量定义在网格节点上。
称△x 和△y 为空间步长,△x 一般不等于△y ,且△x 和△y 也可以不为常数。
取各方向等距离的网格,可以大大简化数学模型推导过程,并且经常会取得更加精确的数值解。
本章作为计算流体力学入门知识,假设沿坐标轴的各个方向网格间距分别相等,但是并不要求各方向的网格间距一致。
例如假设△x 和△y 是定值,但是不要求△x 等于△y 。
在图2.1 - 1中,网格节点在x 方向用i 表示,在y 方向用j 表示。
因此,假如(i ,j )是点P 在图2.1 – 1中的坐标,那么,点P 右边的第一个点的就可以用(i+1,j )表示;在P 左边的第一个点的就可以用(i —1,j )表示;点P 上边的第一个点的就可以用(i ,j+1)表示;点P 下边的第一个点的就可以用(i ,j —1)表示。
有限差分法有限差分法是基于差分原理的一种数值计算法。
其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ的差分方程组的问题。
1.1 二维泊松方程的差分格式图1-1 有限差分的网格分割二维静电场边值问题:F yx =-=∂∂+∂∂ερϕϕ2222 (1-1) )(s f L =ϕ (1-2)通常将场域分成足够小的正方形网格,网格线之间的距离为h ,节点4,3,2,1,0上的电位分别用3210,,,ϕϕϕϕ和4ϕ表示。
设函数ϕ在0x 处可微,则沿x 方向在0x 处的泰勒公式展开为()()()∑=-+-=nK n K K K 000)(!χχοχχϕϕχ (1-3)将1χχ=和3χ分别代入式(1-3),得⋅⋅⋅⋅⋅⋅+∂∂+∂∂+∂∂+=03330222001)(!31)(!21)(x h x h x h ϕϕϕϕϕ (1-4)⋅⋅⋅⋅⋅⋅+∂∂-∂∂+∂∂-=03330222003)(!31)(!21)(xh x h x h ϕϕϕϕϕ (1-5)由(1-4)-(1-5)得h2x 31x x 0ϕϕϕ-≈∂∂=)((1-6)(1-4)+(1-5)得2301x x 22h2x 0ϕϕϕϕ+-≈∂∂=)( (1-7) 同理hy y y 2)(310ϕϕϕ-≈∂∂= (1-8) 2301222)(0hy y y ϕϕϕϕ+-≈∂∂= (1-9) 将式(1-7)、(1-9)代入式(1-1),得到泊松方程的五点差分格式)(414243210204321Fh Fh -+++=⇒=-+++ϕϕϕϕϕϕϕϕϕϕ当场域中,0=ρ得到拉普拉斯方程的五点差分格式)(41044321004321ϕϕϕϕϕϕϕϕϕϕ+++=⇒=-+++1.2 边界条件的离散化处理图1-2 边界条件的离散化处理若场域离散为矩形网格(如图2-2示),差分格式为:F 2h 1h 1h 1h 10222142222121=+-+++ϕϕϕϕϕ)()()( (1-10) (1)第一类边界条件:给边界离散节点直接赋已知电位值 (2)对称边界条件:合理减小计算场域,差分格式为:)(F h 24124210-++=ϕϕϕϕ (1-11)图1-3 边界条件的离散化处理•12(3)第二类边界条件:边界线与网格线相重合的差分格式:h f f hn 2102010-ϕ=ϕ=ϕ-ϕ≈∂ϕ∂,)((1-12)(4)介质分界面衔接条件 的差分格式)1212(4143210ϕϕϕϕϕ+++++=KKK (1-13)其中b a K εε=1.3 差分方程组的求解方法(1) 高斯——赛德尔迭代法][)(,)(,)(,)(,)(,2k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 41-+++=+++-+-+ϕϕϕϕϕ (1-14)式中:⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=,2,1,0,2,1,k j i ,• 迭代顺序可按先行后列,或先列后行进行。
有限差分法一、有限差分法的定义有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。
其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数ϕ的泊松方程的问题转换为求解网格节点上ϕ的差分方程组的问题。
二、有限差分法的应用例3.7.1 有一个无限长直的金属槽,截面为正方形,两侧为正方形,两侧面及底板接地,上盖板与侧面绝缘,其上的电位为ϕ=100V, 试用有限差分法计算槽内电位。
(1)用Matlab 中的有限差分法计算槽内电位;(2)对比解析法和数值法的异同点;(3)选取一点,绘制收敛曲线;(4)总的三维电位图;1、根据有限差分公式计算出电位最终近似值为1,12,13,11,22,23,21,32,33,3=7.144=9.823=7.144=18.751=25.002=18.751=42.857=52.680=42.857ϕϕϕϕϕϕϕϕϕ,,,,,,用Matlab有限差分法计算出来结果:(见附录程序一)2、解析法和数值法的异同点解析法数值法定义在分析具体问题的基础上,抽取出一个数学模型,这个数学模型能用若干个解析表达式表示出来,解决了这些表达式,问题也就得以解决。
数值法是用高性能的计算机以数值的、程序的形式解决问题,主要是指有限元法和差分法相同点都是在具体问题的基础上取一个用解析表达式表示的数学模型来解决问题;数值法是在解析法的基础上在不同尺度上进行有限元离散,离散单元尺度不同,进行有限元计算时要满足的连续性条件不同,预测结果的精确度就不同不同点解析法可以计算出精确的数值结果;可以作为近似解和数值解的检验标准;解析法过程可以观察到问题的内在和各个参数对数值结果起的作用。
但是分析过程困难又复杂使其仅能解决很少量的问题。
数值法求解过程简单,普遍性强,用户拥有的弹性大;用户不必具备高度专业化的理论知识就可以用提供的程序解决问题。
但求解结果没有解析法精确。
有限差分法有限差分法finite difference method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
关于差分格式的构造一般有以下3种方法。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
;小;内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
哈密特单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。
常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。
在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。
对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。
对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。
区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。
有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。
对于自然边界条件,一般在积分表达式中可自动得到满足。
对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。
划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
第二节有限差分法(FDM)一、基本思想按时间步长和空间步长将时间和空间区域剖分成若干网格,用未知函数在网格结(节)点上的值所构成的差分近似代替所用偏微分方程中出现的各阶导数,从而把表示变量连续变化关系的偏微分方程离散为有限个代数方程,然后解此线性代数方程组,以求出溶质在各网格结(节)点上不同时刻的浓度。
二、基本步骤(1)剖分渗流区,确定离散点。
将所研究的水动力弥散区域按某种几何形状(如矩形、任意多边形等)剖分成网络系统。
(2)建立水动力弥散问题的差分方程组。
(3)求解差分方程组。
采用各种迭代法,如点逐次超松驰方法(SOR)、线逐次超松驰方法(LSOR)、迭代的交替方向隐式方法(IADI)及强隐式方法(SID)等。
三、几种导数的差分近似1、一阶向前差分设f(x)为任一足够光滑的函数,将其沿x的正向展开为Tayler级数:于是若略去O(△x), 则有2、一阶向后差分3、一阶中心差分4、二阶导数的差分四、差分方程的相容性、收敛性、稳定性1、相容性导数与其差分近似式之间存在截断误差。
因此,差分方程的解并不是严格的,而是近似地满足原来的偏微分方程。
但是,当时间步长△t和空间步长△x都趋近于零时,差分方程的截差(截断误差)也趋近于零,差分方程的极限形式就是原偏微分方程。
这时,认为差分方程与偏微分方程是相容的,这种相容性表示差分方程“收敛”于原偏微分方程。
2、收敛性指差分方程的解,即当步长△t、△x→0时收敛于原偏微分方程的解。
3、稳定性由于差分方程的求解是以步进方式进行的,在逐步推进的过程中,误差也逐步积累。
若这种误差积累保持有界,则差分方程是稳定的,若这种误差积累无界则差分方程是不稳定的。
五、差分格式1、显式差分格式将及差分中的浓度取为tn,便可得到其显式差分格式:2、隐式差分格式将及差分中的浓度取为tn+1,便可得到其隐式差分格式:3、Crank-Nicolson差分格式取显式与隐式差分格式的平均,便得到该格式:上述三种差分格式截断误差不同,稳定性条件也不同。
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。