有限差分法的原理与计算步骤电子教案
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
班级:通信13-4 姓名:学号:指导教师:**成绩:电子与信息工程学院信息与通信工程系求解金属槽的电位分布1.实验原理利用有限差分法和matlab软件解决电位在金属槽中的分布。
有限差分法基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解.然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题。
2.有限差分法方程的定解问题就是在满足某些定解条件下求微分方程的解。
在空间区域的边界上要满足的定解条件称为边值条件。
如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。
不含时间而只带边值条件的定解问题,称为边值问题。
与时间有关而只带初值条件的定解问题,称为初值问题。
同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。
所以要采用可行的数值解法。
有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。
此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
2.1有限差分法原理图1-1 有限差分法的网格划分导体槽中静电场的边值问题的拉普拉斯方程为:22220x y ϕϕ∂∂+=∂∂ (1-1) 为简单起见,将场域分成足够小的正方形网格,网格线之间的距离为h ,0h →。
一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。
有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图。
有限差分法基本原理有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的近似解。
其基本原理是将连续的偏微分方程转化为网格上的差分方程,通过对差分方程进行数值求解,得到问题的数值解。
首先,有限差分法将求解区域划分为一个个小网格。
通常使用矩形网格(二维)或立方体网格(三维),这些小网格称为离散点。
每个离散点上的函数值表示在该点处的近似解。
然后,将偏微分方程中的导数用差商来代替。
对于一阶导数,可以使用中心差商、前向差商或后向差商等。
中心差商是最常用的一种,它使用左右两个离散点的函数值来逼近导数的值。
例如,对于一维情况下的导数,中心差商定义为:f'(x)≈(f(x+h)-f(x-h))/(2h)其中,h表示网格的步长。
通过调整步长h的大小,可以控制逼近的精度。
对于高阶导数,可以使用更复杂的差分公式。
例如,对于二阶导数,可以使用中心差商的差商来逼近。
具体公式为:f''(x)≈(f(x+h)-2f(x)+f(x-h))/h^2通过将导数用差商代替,将偏微分方程转化为差分方程。
例如,对于二维泊松方程:∇²u(x,y)=f(x,y)其中,∇²表示拉普拉斯算子。
u(i,j)=1/4[u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)]-h²/4*f(i,j)其中,u(i,j)表示离散点(i,j)处的近似解,f(i,j)表示离散点(i,j)处的右端项。
最后,通过求解差分方程,得到问题的数值解。
可以使用迭代方法,例如Jacobi迭代法、Gauss-Seidel迭代法或SOR迭代法等,来求解差分方程。
迭代过程通过更新离散点上的函数值,直到满足收敛条件或达到指定的迭代次数。
总结来说,有限差分法通过将连续的偏微分方程转化为网格上的差分方程,然后通过数值求解差分方程,得到问题的近似解。
它是一种简单且高效的数值计算方法,广泛应用于科学计算、工程计算和物理仿真等领域。
有限差分法在数值计算中的应用有限差分法是一种常用的数值计算方法,广泛应用于各个领域,包括物理学、工程学、金融学等。
本文将介绍有限差分法的基本原理,以及其在数值计算中的应用。
一、有限差分法的基本原理有限差分法是通过近似计算导数、积分等运算的一种方法,其基本思想是将函数在某一点处展开成一个泰勒级数,然后用有限个点处的函数值来逼近原函数。
有限差分法的核心是将连续的函数转化为离散的数据点,然后通过有限个离散点之间的差分来近似原函数的性质。
有限差分法的主要步骤包括以下几个:1. 网格划分:将计算区域划分为均匀的网格,即将连续的空间划分为一系列离散的点。
2. 逼近函数:将原函数在每个网格点处做泰勒级数展开,得到对应的近似函数。
3. 差分近似:根据泰勒级数展开的结果,利用有限个网格点之间的差分,来近似计算导数、积分等运算。
4. 求解方程:根据差分结果,可以得到离散的代数方程组,通过求解这个方程组得到数值解。
二、1. 偏微分方程求解:有限差分法可以用来求解各种类型的偏微分方程,包括抛物型、椭圆型和双曲型方程。
通过将偏微分方程离散化为代数方程组,再通过求解方程组得到数值解。
2. 数值积分:有限差分法可以用来近似计算函数的积分。
通过将积分区间划分为一系列小区间,并用离散点上的函数值来近似替代原函数,可以得到积分的数值结果。
3. 非线性方程求解:有限差分法也可以用来求解非线性方程。
通过将非线性方程转化为离散的代数方程组,并利用迭代方法求解方程组,可以得到非线性方程的数值解。
4. 边值问题求解:有限差分法可以应用于求解各类边值问题,如求解热传导方程的边值问题、求解电场分布的边值问题等。
通过将边值问题离散化为代数方程组,再通过求解方程组得到边值问题的数值解。
5. 优化问题求解:有限差分法可以用来求解各种类型的优化问题。
通过将优化问题转化为非线性方程组,并利用有限差分法求解方程组,可以得到优化问题的数值解。
总结:有限差分法作为一种常用的数值计算方法,在各个领域中有着广泛的应用。
有限差分法的原理与
计算步骤
精品文档
一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。
有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图
收集于网络,如有侵权请联系管理员删除。