MATLAB 画等温线
- 格式:doc
- 大小:325.00 KB
- 文档页数:13
1.基本绘图函数:2.Matlab绘图步骤3.plot(x,y,s) s是字符串,不同的字符串代表不同的线型plot(x1,y1,s1,x2,y2,s2,…..)是将多个图形或函数曲线拼接放置在同一个图形框中。
函数曲线的颜色、线型和数据点型上面左边的b代表蓝色,-.代表点线型,就是x取的各点之间的连线为-.,而x取值的各个点的类型为空,就代表是默认的点型上面那个是r代表红色,--代表线型,而点型是*就是x取了多少个点,就多少个*,而*和*直接的连接为—上面的s里面的写法为:线型+颜色+点型线性为-.,颜色为k代表黑色,点型为h代表六角星型。
我们还可以不定义线性,为空,那么两个点之间就不连线了。
4.我们还可以定义曲线的颜色和线宽LineWidth:设定绘图曲线的粗细MarkerEdgeColor:数据点型或边界的颜色(圆形、菱形、六角星型等) MarkerFaceColor:数据点型的天聪颜色。
MarkerSize:数据点的大小从上可以看出:线型为--,颜色为r代表红色,点型为s代表方形,线的粗细为3,点标记的颜色为r代表红色,点标记的填充颜色为y代表黄色,点标记的大小为10.5.很多时候,需要在一张图上多次画多条曲线。
就需要hold函数:即图形保持命令,主要用于暂存当前的图形窗口,可以让用户继续在命令窗口中绘制其他函数图形,并且后续的图形曲线与当前窗口中的曲线在同一个图形界面中显示。
Hold函数不会因后面画的图形的坐标值不一样而改变当前坐标轴的定义范围。
Hold on函数:作用同上,但可以根据新的图形曲线的坐标轴极限值来自动调整当前坐标轴的坐标值。
Hold off函数:结束当前的图形保持状态,一般与Hold on匹配,hold off函数后就需要从新设置坐标轴的属性。
Hold All函数:保留当前的颜色和线型,这样在绘制后面的图形时就是用当前的颜色和线型。
这里x变换是从0—1我们通过hold on之后,就把后面的1—2的变换接上去了,效果很好。
matlab 径向传热
径向传热是指热量沿着物体的半径方向传播的过程。
在MATLAB 中,我们可以使用不同的方法来模拟和分析径向传热现象。
首先,
我们可以使用热传导方程来描述物体内部的温度分布随时间的变化。
热传导方程是一个偏微分方程,可以通过MATLAB的偏微分方程求解
器来求解。
另外,我们还可以使用有限元分析(FEM)来模拟径向传热。
MATLAB中有专门的工具箱可以用于有限元分析,例如Partial Differential Equation Toolbox和Finite Element Method Toolbox。
使用这些工具,我们可以建立物体的几何模型,设定边界
条件和热源,然后进行传热模拟和分析。
此外,MATLAB还提供了一些用于可视化和分析传热过程的工具,比如plot函数可以用来绘制温度分布随半径的变化,contour函数
可以用来绘制等温线图,surf函数可以用来绘制三维温度分布图等等。
除了数值模拟,MATLAB还可以用于分析实验数据。
我们可以将
实验测得的温度数据导入MATLAB,然后利用MATLAB的数据处理和
统计分析工具来分析径向传热的规律,比如拟合温度分布曲线,计算传热速率等等。
总之,MATLAB提供了丰富的工具和函数,可以帮助我们从多个角度全面地分析和模拟径向传热现象,包括数值模拟、可视化分析和实验数据处理等方面。
通过合理的使用这些工具,我们可以更深入地理解和研究径向传热过程。
MATLAB-考试试题-(1)汇总MATLAB 考试试题 (1)产⽣⼀个1x10的随机矩阵,⼤⼩位于(-5 5),并且按照从⼤到⼩的顺序排列好!(注:要程序和运⾏结果的截屏)答案:a=10*rand(1,10)-5;b=sort(a,'descend')1.请产⽣⼀个100*5的矩阵,矩阵的每⼀⾏都是[1 2 3 4 5]2. 已知变量:A=’ilovematlab’;B=’matlab’, 请找出:(A) B在A中的位置。
(B)把B放在A后⾯,形成C=‘ilovematlabmatlab’3. 请修改下⾯的程序,让他们没有for循环语句!A=[1 2 3; 4 5 6; 7 8 9];[r c]=size(A);for i=1:1:rfor j=1:1:cif (A(i,j)>8 | A(i,j)<2)A(i,j)=0;endendend4. 请把变量A=[1 2 3; 4 5 6; 7 8 9]写到⽂件⾥(output.xls),写完后⽂件看起来是这样的1 2 3 4 5 6 7 8 95.试从Yahoo⽹站上获得微软公司股票的2008年9⽉的每⽇收盘价。
6.编写M⽂件,从Yahoo⽹站批量读取60000.SH⾄600005.SH在2008年9⽉份的每⽇收盘价(提⽰:使⽤字符串函数)。
7. 将⾦⽜股份(000937)2005年12⽉14⽇⾄2006年1⽉10⽇的交易记录保存到Excel中,编写程序将数据读⼊MATLAB中,进⼀步将数据读⼊Access数据库⽂件。
8.已知资产每⽇回报率为0.0025,标准差为0.0208,资产现在价值为0.8亿,求5%⽔平下资产的10天在险价值(Var)。
9.a=[1 2 3 4 5],b=a(1)*a(5)+a(2)*a(4)+a(3)*a(3)+a(4)*a(2)+a(5)*a(1).试⽤MATLAB 中最简单的⽅法计算b,注意最简单哦。
在MATLAB中,绘制多条曲线是非常常见的需求。
通过绘制多条曲线,我们可以直观地比较不同数据之间的关系,分析数据的变化趋势,从而更好地理解数据的特点和规律。
在本文中,我们将介绍在MATLAB中绘制多条曲线的方法,希望能够帮助读者更加熟练地使用MATLAB进行数据可视化和分析。
一、使用plot函数绘制多条曲线在MATLAB中,最常用的绘制曲线的函数是plot函数。
通过plot函数,我们可以轻松地将多组数据绘制成曲线,并在同一张图上进行比较和分析。
下面是使用plot函数绘制多条曲线的基本步骤:1. 准备数据我们需要准备要绘制的多组数据。
假设我们有两组数据x1和y1,以及另外两组数据x2和y2。
这些数据可以是向量、矩阵,甚至是函数表达式。
2. 绘制曲线接下来,我们可以使用plot函数将数据绘制成曲线。
具体的代码如下所示:```matlab绘制第一组数据plot(x1, y1, 'r-'); 'r-'表示红色实线hold on; 将图形保持在同一张图上绘制第二组数据plot(x2, y2, 'b--'); 'b--'表示蓝色虚线hold off; 取消保持图形在同一张图上```通过以上代码,我们可以将两组数据分别绘制成红色实线和蓝色虚线的曲线,并显示在同一张图上。
这样,我们就可以方便地对两组数据进行比较和分析了。
3. 添加图例和标签我们可以通过legend函数添加图例,通过xlabel和ylabel函数添加坐标轴标签,通过title函数添加图标题,使得图像更加清晰和易懂。
二、使用plot3函数绘制三维曲线除了在二维平面上绘制曲线外,MATLAB还提供了plot3函数用于在三维空间中绘制曲线。
使用plot3函数绘制多条三维曲线的步骤与使用plot函数类似,只是需要将数据扩展到三维空间,并指定绘制的坐标系。
具体的代码如下所示:```matlab准备三维数据[x1, y1, z1] = meshgrid(-2:0.2:2, -2:0.2:2, -2:0.2:2);[x2, y2, z2] = meshgrid(-2:0.2:2, -2:0.2:2, -2:0.2:2);v1 = x1.*exp(-x1.^2 - y1.^2 - z1.^2);v2 = x2.*exp(-x2.^2 - y2.^2 - z2.^2);绘制三维曲线plot3(x1, y1, z1, 'r-', 'LineWidth', 2); 'r-'表示红色实线hold on;plot3(x2, y2, z2, 'b--', 'LineWidth', 2); 'b--'表示蓝色虚线hold off;xlabel('X');ylabel('Y');zlabel('Z');legend('Exp(-x^2 - y^2 - z^2)', 'X*Exp(-x^2 - y^2 - z^2)');title('Three-Dimensional Curve');```通过以上代码,我们可以将两组三维数据绘制成红色实线和蓝色虚线的曲线,并显示在同一张图上。
温度场模拟matlab代码:clear,clc,clfL1=8;L2=8;N=9;M=9;% 边长为8cm的正方形划分为8*8的格子T0=500;Tw=100; % 初始和稳态温度a=0.05; % 导温系数tmax=600;dt=0.2; % 时间限10min和时间步长0.2sdx=L1/(M-1);dy=L2/(N-1);M1=a*dt/(dx^2);M2=a*dt/(dy^2);T=T0*ones(M,N);T1=T0*ones(M,N);t=0;l=0;k=0;Tc=zeros(1,600);% 中心点温度,每一秒采集一个点for i=1:9for j=1:9if(i==1|i==9|j==1|j==9)T(i,j)=Tw;% 边界点温度为100℃elseT(i,j)=T0;endendendif(2*M1+2*M2<=1) % 判断是否满足稳定性条件while(t<tmax+dt)t=t+dt;k=k+1;for i=2:8for j=2:8T1(i,j)=M1*(T(i-1,j)+T(i+1,j))+M2*(T(i,j-1)+T(i,j+1))+(1-2*M1-2*M2)*T(i,j);endendfor i=2:8for j=2:8T(i,j)=T1(i,j);endendif(k==5)l=l+1;Tc(l)=T(5,5);k=0;endendi=1:9;j=1:9;[x,y]=meshgrid(i); figure(1);subplot(1,2,1);mesh(x,y,T(i,j))% 画出10min 后的温度场 axis tight;xlabel('x','FontSize',14);ylabel('y','FontSize',14);zlabel('T/℃','FontSize',14) title('1min 后二维温度场模拟图','FontSize',18) subplot(1,2,2);[C,H]=contour(x,y,T(i,j)); clabel(C,H);axis square;xlabel('x','FontSize',14);ylabel('y','FontSize',14); title('1min 后模拟等温线图','FontSize',18) figure(2); xx=1:600;plot(xx,Tc,'k-','linewidth',2)xlabel('时间/s','FontSize',14);ylabel('温度/℃','FontSize',14);title('中心点的冷却曲线','FontSize',18)else disp('Error!') % 如果不满足稳定性条件,显示“Error !” end实验结果:时间/s温度/℃中心点的冷却曲线x1min后二维温度场模拟图T /℃xy1min 后模拟等温线图x5min 后二维温度场模拟图T /℃xy5min 后模拟等温线图x10min后二维温度场模拟图T /℃xy10min 后模拟等温线图x10min 后二维温度场模拟图(不满足稳定性条件)yT /℃21时间/s温度/℃中心点的冷却曲线(不满足稳定性条件)。
飞秒脉冲激光辐照FRAM诱发的毁伤效应及热演化乔相信;成艺光;唐恩凌;韩雅菲【摘要】空间高能粒子辐照航天器电子器件诱发的毁伤和热演化特征,直接关系到航天器的在轨安全运行和在轨任务的顺利实施.本文利用自行构建的飞秒脉冲激光辐照系统、激光诱发毁伤的数据采集系统、数据读写系统和红外热成像系统,开展了不同激光输出重复频率、不同作用区域下辐照铁电存储器(FRAM)实验,获取激光辐照于铁电存储器被照面的稳态温度场和铁电存储器的暂态失效和永久失效出现时间,并观测了辐射效应对铁电存储器的毁伤效果,经MATLAB软件处理得到了激光辐照铁电存储器不同区域热演化过程的温度场分布.实验结果表明:在激光输出功率近似相同的飞秒脉冲激光辐照条件下,激光脉冲输出重复频率越低,诱发永久性毁伤出现时刻的时间越长,近似呈非线性增长;随着激光输出重复频率的增大,激光对铁电存储器的作用由激光电离存储器介质产生的高能带电粒子对铁电体自发极化的破坏为主,逐步转变为以热辐射与热应力诱发的毁伤;当激光在器件表面产生的最高温度接近存储器最高工作温度时,永久毁伤的出现时间将显著延长.并通过对回归参数的计算和假设检验,给出了回归参数的置信度1-α为95%的条件下激光辐照区域1与区域2的最高辐射温度与激光输出重复频率的拟合关系式.【期刊名称】《发光学报》【年(卷),期】2019(040)006【总页数】11页(P815-825)【关键词】飞秒脉冲激光;毁伤效应;铁电存储器(FRAM);温度场分布【作者】乔相信;成艺光;唐恩凌;韩雅菲【作者单位】沈阳理工大学装备工程学院,辽宁沈阳 110159;沈阳理工大学装备工程学院,辽宁沈阳 110159;沈阳理工大学装备工程学院,辽宁沈阳 110159;沈阳理工大学装备工程学院,辽宁沈阳 110159【正文语种】中文【中图分类】O432.1+21 引言目前,空间辐射效应及其衍生问题严重影响航天器的在轨安全运行,单粒子效应(SEE)已成为空间高能粒子辐射下电子设备故障的主要原因,而激光辐射的热效应及其带来的热演化问题是单粒子效应中的关键问题[1-2]。
测量到不同坐标点的高度值,如何用matlab画三维图附上部分数据:A=[-210.6627 -33391.1192 5.0273-221.3052 -33387.7415 4.5969-210.9391 -33393.0068 5.5647-221.8901 -33390.7396 5.0077-211.384 -33394.7093 5.6505-222.6117 -33392.778 5.0554-212.7074 -33397.5459 5.7381-225.8973 -33397.5869 5.5587];解:代码在matlab2009a版以上均可运行。
A=[-210.6627 -33391.1192 5.0273-221.3052 -33387.7415 4.5969-210.9391 -33393.0068 5.5647-221.8901 -33390.7396 5.0077-211.384 -33394.7093 5.6505-222.6117 -33392.778 5.0554-212.7074 -33397.5459 5.7381-225.8973 -33397.5869 5.5587];xData = A(:,1);yData = A(:,2);zData = A(:,3);fitresult = fit( [xData, yData], zData, 'linearinterp');figure( 'Name', '三维图' );plot( fitresult, [xData, yData], zData );xlabel( 'x' );ylabel( 'y' );zlabel( 'z' );grid onview( -53, 50 );试一试:A=[-210.6627 -33391.1192 5.0273-221.3052 -33387.7415 4.5969-210.9391 -33393.0068 5.5647-221.8901 -33390.7396 5.0077 -211.384 -33394.7093 5.6505-222.6117 -33392.778 5.0554-212.7074 -33397.5459 5.7381 -225.8973 -33397.5869 5.5587];xData = A(:,1);yData = A(:,2);zData = A(:,3);minx = min(xData);maxx = max(xData);miny = min(yData);maxy = max(yData);tx = linspace(minx,maxx)';ty = linspace(miny,maxy);[XI,YI] = meshgrid(tx,ty);ZI = griddata(xData,yData,zData,XI,YI); mesh(XI,YI,ZI), holdplot3(xData,yData,zData,'o'), hold offxlabel( 'x' );ylabel( 'y' );zlabel( 'z' );grid onview( -53, 50 );.................x=[7392 7392 7392 7392 5608 5608 5608 5608 80 00 5000 6500 6500 6500 6500 6500 6500 6500 6500 6500 6500];y=[476 404 476 404 476 404 476 404 440 440 440 440 500 380 440 440 440 440 440 44 0];z=[17.06 16.93 17.8 17.4 17.17 16.89 17.28 17.26 17.04 16.94 16.92 17.3 17.37 17.17 17.34 17.11 17.22 17.24 17.11 17.2];minx = min(x);maxx = max(x);miny = min(y);maxy = max(y);[X,Y,Z]=griddata(x,y,z,linspace(minx,maxx)',linspace(miny,maxy),'v4') ; %插值figure,surf(X,Y,Z) %三维曲面...%% Initialization.% Convert all inputs to column vectors.x = x(:);y = y(:);z = z(:);%% Fit: ' fit 1'.ft = 'linearinterp';opts = fitoptions( ft );opts.Weights = zeros(1,0);opts.Normalize = 'on';[fitresult, gof] = fit( [x, y], z, ft, opts );% Plot fit with data.figure( 'Name', 'untitled fit 1' );h = plot( fitresult, [x, y], z );% legend( h, ' fit 1', 'z vs. x, y', 'Location', 'NorthEast' );% Label axesxlabel( 'x' );ylabel( 'y' );zlabel( 'z' );grid on.......................x=[7392 7392 7392 7392 5608 5608 5608 5608 80 00 5000 6500 6500 6500 6500 6500 6500 6500 6500 6500 6500];y=[476 404 476 404 476 404 476 404 440 440440 440 500 380 440 440 440 440 440 44 0];z=[17.06 16.93 17.8 17.4 17.17 16.89 17.28 17.26 17.04 16.94 16.92 17.3 17.37 17.17 17.34 17.11 17.22 17.24 17.11 17.2];% Convert all inputs to column vectors.x = x(:);y = y(:);z = z(:);%% Fit: ' fit 1'.ft = fittype( 'poly22' );opts = fitoptions( ft );opts.Lower = [-Inf -Inf -Inf -Inf -Inf -Inf];opts.Upper = [Inf Inf Inf Inf Inf Inf];opts.Weights = zeros(1,0);[fitresult, gof] = fit( [x, y], z, ft, opts );fitresult% Plot fit with data.figure( 'Name', 'z' );h = plot( fitresult, [x, y], z );% legend( h, 'z fit 1', 'z vs. x, y', 'Location', 'NorthEast' );% Label axesxlabel( 'x' );ylabel( 'y' );zlabel( 'z' );grid onview( -57.5, 42 );.................A=[18467 17001 308 20177 17642 276 26852 16114 225 23785 17643 194 27823 14737 189 18906 16346 173 25981 18051 173 22046 17634 171 23238 6502 169 27696 11621 169 27700 11609 16516607 17365 155 23146 15382 153 14405 18032 152 27232 14482 150 27380 18202 136 26591 13715 126 14074 16516 124 15801 3966 115 21684 13101 114 15255 5110 110 24580 13319 107 23325 16701 105 24065 7353 104 25021 16290 104 15952 18397 103 27346 13331 100 24685 14278 98 17414 15476 97 12778 5799 93 17044 10691 93 17981 18449 93 20983 15862 93 22605 14301 93 5451 2757 92 19041 15769 90 24003 15286 90 7100 2449 89 18413 11721 88 21475 8540 85 19007 11488 84 17008 4775 82 17079 5894 81 13855 3345 79 13920 5354 79 22193 12185 79 16569 6055 78 18993 12371 78 22965 13535 78 15517 17034 77 24631 9422 76 4153 2299 73 11702 4480 71 24153 12450 71 15007 5535 7019569 7348 7015087 3512 6922846 9149 6925461 9834 6816823 4207 6721766 12348 6712625 16259 66];x=A(:,1);y=A(:,2);z=A(:,3);minx = min(x);maxx = max(x);miny = min(y);maxy = max(y);[X,Y,Z]=griddata(x,y,z,linspace(minx,maxx)',linspace(miny,maxy),'v4') ; %插值figure,surf(X,Y,Z) %三维曲面...%% Initialization.% Convert all inputs to column vectors.x = x(:);y = y(:);z = z(:);%% Fit: 'untitled fit 1'.ft = 'linearinterp';opts = fitoptions( ft );opts.Weights = zeros(1,0);opts.Normalize = 'on';[fitresult, gof] = fit( [x, y], z, ft, opts ); % Plot fit with data.figure( 'Name', ' fit 1' );h = plot( fitresult, [x, y], z );% legend( h, ' fit 1', 'z vs. x, y', 'Location', 'NorthEast' ); % Label axesxlabel( 'x' );ylabel( 'y' );zlabel( 'z' );grid on。