氧自由基
- 格式:pptx
- 大小:1.08 MB
- 文档页数:74
氧自由基吸收能力(orac 法)下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!氧自由基吸收能力(ORAC法):保护身体健康的力量1. 概述氧自由基是一种常见的活性氧分子,它们在人体内产生并可能对细胞和组织造成损害。
光催化氧自由基光催化氧自由基是一种重要的物质,它在许多化学反应和生物过程中起着重要作用。
它们是由光能激发产生的,可以通过与其他分子发生反应来引发一系列重要的化学变化。
让我们来了解一下光催化的基本原理。
光催化是利用光能激发物质中的电子,从而引发一系列化学反应的过程。
在光催化氧自由基中,光能会激发氧分子中的电子,使其跃迁至一个更高能级。
这个过程会产生一个高能态的氧分子,即氧自由基。
氧自由基是非常活跃的,它们具有高度的化学反应性,并可以与其他分子发生反应,引发一系列重要的化学变化。
光催化氧自由基在环境净化中发挥着重要的作用。
例如,在空气净化中,光催化氧自由基可以与空气中的有机污染物相互作用,将其氧化分解为无害的物质。
这种催化作用可以有效地去除空气中的有毒有害物质,净化空气,保护人们的健康。
光催化氧自由基还在水处理中发挥着重要作用。
通过与水中的有机污染物发生反应,光催化氧自由基可以将其分解为无害的物质。
这种催化作用可以有效地去除水中的污染物,提高水的质量,保护水资源。
在生物体内,光催化氧自由基也扮演着重要的角色。
例如,在光合作用中,光催化氧自由基可以与叶绿素分子相互作用,促进光合作用的进行。
光合作用是植物进行能量转化的重要过程,它不仅为植物提供能量,还产生氧气,维持地球上生物的生存。
光催化氧自由基是一种重要的物质,它在化学反应和生物过程中起着重要作用。
它们通过与其他分子发生反应,引发一系列重要的化学变化。
在环境净化、水处理和生物体内,光催化氧自由基都发挥着重要的作用。
光催化氧自由基的研究和应用将为我们提供更多的机会,用于环境保护、资源利用和能源开发等方面。
让我们共同努力,进一步深入研究和应用光催化氧自由基,为人类的未来创造更美好的生活。
氧气变为氧自由基的具体过程1. 氧气的基本知识氧气,咱们生活中最常见的东西之一,深呼吸一口新鲜空气,哎呀,那感觉可真不错!我们每天都在和氧气打交道,它不仅是我们呼吸的必需品,还参与了许多化学反应,尤其是在生命和能量的产生中。
但是,氧气可不仅仅是个乖乖的好孩子,它在特定条件下也会变得非常活跃,甚至成为氧自由基!那么,氧气是如何变身的呢?2. 氧气的转变2.1 什么是氧自由基?首先,得聊聊这个“氧自由基”是个啥。
简单来说,氧自由基是一种不稳定的分子,里面多了一个或多个电子,结果就让它们非常“激动”。
这种状态就像一个小孩吃了糖,兴奋得跑来跑去,不知道要做什么好。
由于它们的“性格”比较躁动,氧自由基很容易跟周围的其他分子发生反应,简直是个“捣蛋鬼”。
不过,这个捣蛋鬼可不光是破坏的,很多时候它们也是身体里一些重要过程的参与者,比如免疫反应。
2.2 氧气的变身过程那么,氧气是怎么从温文尔雅的小绅士,变成捣蛋鬼的呢?其实,这个过程通常发生在细胞的代谢过程中。
我们吃的食物在细胞内被氧化,产生能量,同时释放出一些副产品。
有时候,这些副产品里就包括了氧自由基。
像是厨房里做饭,搞得一团糟,最后锅里总会有点残渣。
氧气的转变通常是在高能量状态下发生的,比如说在细胞中参与了电子传递链。
在这个过程中,氧气分子接收电子,变得不再稳定,最终形成了氧自由基。
听起来有点复杂,但简单点说,就像是一场化学派对,氧气在其中玩得太疯,结果就“变质”了。
3. 氧自由基的影响3.1 好与坏氧自由基的出现,既有好的一面,也有坏的一面。
好的一面是,它们在我们免疫系统中扮演着重要角色,能够消灭一些入侵的细菌和病毒,帮助我们保持健康。
但坏的一面呢?过多的氧自由基就像是在超市里打折的商品,大家都冲上去,结果造成了一场“抢购风波”,对我们的细胞和组织造成损伤。
这种损伤可能导致衰老、炎症,甚至某些疾病。
3.2 防御机制为了对抗这些捣蛋鬼,我们的身体可不是吃素的,里面有一套完整的防御机制。
氧自由基与氧自由基清除剂依达拉奉山东大学齐鲁医院麻醉科(250012)于金贵一、氧自由基(一)自由基的概念自由基(freeradical,FR)是指外层轨道上有未配对电子的原子、原子团、分子或离子的总称。
因其含有未配对的电子,故化学性质非常活泼,极易与其生成部位的其他物质发生反应,而这种反应的最大特点是以连锁反应的形式进行。
氧原子上有未配对电子的自由基称为氧自由基。
人体吸入的分子氧,在正常状态下绝大多数(98%)都连接4个电子,它们最终与H+结合,代谢还原为H2O。
但有极少数氧(1~2%)在代谢过程中被夺去或接受一个电子而形成活性氧,即氧自由基。
(二)氧自由基的生理作用氧自由基在生理上是必需的物质,如合成ATP 和前列腺素、中性粒细胞杀灭细菌、酸性粒细胞杀灭寄生虫等过程都必须有氧自由基参与。
氧自由基在体内的生成与清除保持动态平衡,且在体内存在时间甚短。
由于其化学性极强,反应剧烈,过量产生会对机体造成极大危害。
(三)氧自由基的种类及其作用1. 超氧化物阴离子:氧自由基连锁反应的启动者,使生物膜、激素和脂肪酸过氧化。
2. 羟自由基(OH∙):作用最强的自由基,可破坏氨基酸、蛋白质、核酸和糖类。
3. 过氧化氢(H2O2):过渡型氧化剂,主要使巯基氧化,可氧化不饱和脂肪酸。
4. 单线态分子氧(1O2):氧分子的激发状态,亲电子性强,在光作用下可由O2直接产生,对细胞有杀伤作用。
5.其他含氧的自由基如脂质过氧化物(ROOH):易于分解再产生自由基,腐化脂肪,破坏DNA,可与蛋白质交联使之形成变性交聚物。
(四)机体抗氧化机制机制一:直接提供电子,以确保氧自由基还原;机制二:增强抗氧化酶的活性,以有效地消除或抵御氧自由基的破坏作用如酶类抗氧化剂超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX);非酶类抗氧化剂如维生素E、维生素C、辅酶Q、还原型谷胱甘肽(GSH)、葡萄糖、含硫氨基酸和不饱和脂肪酸等。
氧自由基化学式氧自由基是指氧分子中的一个氧原子失去一个电子而形成的高度活跃的离子。
其化学式为O•,其中•表示自由基。
氧自由基的形成是由于氧分子的电离能较低,所以在适当的条件下,氧分子可以很容易地失去一个电子,形成氧自由基。
氧自由基在化学反应中起到了重要的作用。
它具有高度的反应性,可以与其他分子发生反应,引发新的化学变化。
在大气中,阳光的紫外线辐射可以使氧分子发生电离,形成氧自由基。
这些氧自由基可以与水蒸气反应,产生羟基自由基(OH•),进而引发大气中的氧化反应。
氧自由基还参与了许多生物体内的反应过程。
在细胞呼吸中,氧自由基是一种副产物,它参与了细胞内能量的产生。
然而,当细胞内氧自由基产生过多时,会导致细胞内的氧化应激,损伤细胞的DNA、蛋白质和脂质,甚至引发疾病,如癌症、心血管疾病等。
为了保护细胞免受氧自由基的损害,生物体内存在一系列的抗氧化系统。
这些抗氧化系统可以清除细胞内的氧自由基,维持细胞内的氧化还原平衡。
其中,一些维生素和酶具有抗氧化的作用,可以中和细胞内的氧自由基,减少其对细胞的损伤。
除了生物体内,氧自由基还在环境中发挥着重要的作用。
例如,在大气污染中,氧自由基参与了许多有害物质的分解和转化过程。
它可以与有机物发生反应,形成二氧化碳和水等无害物质。
此外,氧自由基还可以参与水处理和空气净化等环境工程中的反应过程。
为了研究氧自由基的性质和反应机制,科学家们利用不同的实验方法进行了大量的研究。
他们通过使用激光技术和质谱仪等仪器设备,观察和测量氧自由基的反应动力学和产物生成情况。
这些研究为理解氧自由基的化学性质和应用提供了重要的基础。
总结起来,氧自由基是高度活跃的离子,具有重要的化学和生物学意义。
它参与了许多化学反应和生物过程,既能产生能量,又能引发氧化应激和疾病。
了解氧自由基的性质和反应机制,可以为抗氧化疗法和环境治理提供重要的参考。
尽管氧自由基具有一定的危害性,但在适当的条件下,它们也可以发挥积极的作用,为生命的存在和发展做出贡献。
单线态氧和超氧自由基结构式1. 引言1.1 什么是单线态氧和超氧自由基单线态氧和超氧自由基是在生物体内普遍存在的具有活性的氧化性分子。
单线态氧是氧分子(O2)通过受激光转变所形成的寿命短暂的高度活化氧物种,其电子自旋方向平行(单线态),拥有高度活性。
超氧自由基是氧分子在还原条件下得到的一种带负电荷的氧分子,同样具有较强的氧化能力。
这两种自由基在生物体内的生成、传递、反应过程中起着重要的调节作用,参与了多种生物体内的氧化还原反应以及细胞代谢过程。
正因为其强氧化性,单线态氧和超氧自由基对蛋白质、脂质、核酸等生物分子造成氧化损伤,影响细胞功能并引发多种疾病的发生。
深入了解单线态氧和超氧自由基的结构和生物学作用,对于预防和治疗相关疾病具有重要意义。
1.2 重要性单线态氧和超氧自由基在生物体内扮演着重要的角色。
它们是细胞内的氧化还原反应产物,参与了多种生物化学过程。
单线态氧和超氧自由基作为活性氧物质,能够与脂质、蛋白质、DNA等生物分子发生氧化反应,导致细胞损伤甚至细胞死亡。
单线态氧和超氧自由基也参与了许多重要的细胞信号传导途径,影响细胞生长、分化和凋亡等生命活动。
由于单线态氧和超氧自由基在生物体内具有强氧化作用,长期的氧化应激可以引起细胞内氧化应激水平的升高,导致DNA的氧化损伤,增加细胞突变风险,进而导致多种疾病的发生,如癌症、心血管疾病等。
对于单线态氧和超氧自由基的产生及清除机制的研究具有非常重要的生物学意义。
只有深入了解单线态氧和超氧自由基的生物作用机制,才能有效预防和治疗由氧化应激引起的疾病。
2. 正文2.1 单线态氧的结构式单线态氧是一种高度活跃的氧化状态,通常表示为O2(a^1Δg)。
它的结构式如下:O=O这个结构式表示两个氧原子通过一个共享的双键连接在一起。
双键的存在使得单线态氧具有较高的反应性和氧化能力。
相比之下,氧分子中的氧气(O2)是双线态氧,它的结构式为:单线态氧在生物体内起着重要的作用,它可以参与许多生物化学反应,如氧化DNA、脂质和蛋白质等。
近年来的研究证实:动脉粥样硬化、脑细胞“衰老”及组织再灌注损害等多种疾病,与体内氧自由基产生过多,或清除功能减退及细胞脂质过氧化有关。
本文重点讨论氧自由基对脑细胞的损害及可能的防治对策。
1 自由基导致的脑及脑血管疾病1.1 衰老衰老过程涉及到许多内外因素,与衰老过程有关的最常见的内源性生化因子是自由基。
国内外大量研究已证实:老年动物及老年人血清脂质自由基(脂质过氧化物) 水平增高,组织内(尤其脑,肝细胞内) 脂褐素含量增多。
组织内脂褐素含量多少可做为衰老的客观依据之一,其形成与脂质自由基有关。
脂质自由基的分解产物为醛类,它可与蛋白质、磷质和核酸的氨基起反应,使分子发生交联,交联的结果,使蛋白质变性,使酶失活。
这些变性物质被吞噬细胞吞噬,但不能完全消化,结果不断增加细胞内的年色素。
Harman 指出,逃脱中和的自由基所积聚的毒性作用,可能是衰老的根本原因。
1.2 动脉粥样硬化及脑血栓花生四烯酸是细胞膜磷脂的重要组成部分,机体缺血缺氧后,细胞外液中的Ca + + 进入细胞内使细胞膜中的钙依赖的磷脂酶A2 被激活,后者使AA释出,AA 通过环氧化酶途径产生PGH2 (具有自由基性质的活性物质,PGH2 称氢过氧化物) ,后者在血小板微粒体内,在血栓素合成酶作用下,生成血栓素(TXA2) ;在动脉血管内皮细胞微粒体内,在前列腺素合成酶作用下,生成前列环素( PGI2 ) 。
TXA2 和PGI2 是2 种作用完全相反的血管活性介质,前者主要为强烈的血管收缩剂和血小板聚集剂;后者的作用与之相反,当动脉血管内皮细胞受到损害时,PGI2生成减少,TXA2 的量及作用增多增强,导致血管痉挛和促进血栓形成。
此外,AA 通过脂氧化酶途径产生的5 - 过氧化氢花生四烯酸(5 - HPETE) 和脂质自由基强抑制前列环素合成酶的作用,使PGI2 合成减少。
5 - HPETE 尚可激活血小板中的血栓素合成酶,导致血栓形成的恶性循环。
氧自由基健康的杀手--氧自由基:我们生活在富含氧气的空气中,离开氧气我们的生命就不能存在,但是氧气也有对人体有害的一面,有时候它能杀死健康细胞甚至致人于死地。
当然,直接杀死细胞的并不是氧气本身,而是由它产生的一种叫氧自由基的有害物质,它是人体的代谢产物,可以造成生物膜系统损伤以及细胞内氧化磷酸化障碍,是人体疾病、衰老和死亡的直接参与者,对人体的健康和长寿危害非常之大。
中文名氧自由基别名游离基特性含有一个不成对电子的原子团作用夺取其他物质的一个电子目录.1种类.2原理.3危害.4衰老.5应对.6研究.7糖尿病种类编辑自由基[1],化学上也称为“游离基”,是含有一个不成对电子的原子团。
由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。
在化学中,这种现象称为“氧化”。
我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。
加上过氧化氢、单线态氧和臭氧,通称活性氧。
体内活性氧自由基具有一定的功能,如免疫和信号传导过程。
但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。
如心脏病、老年痴呆症、帕金森病和肿瘤。
此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。
经过世界各国研究表明自由基的种类很多,并且大多数是瞬间产生的。
对人体产生重大影响的有5种:①超氧化物自由基:最早也是最多的自由基;②过氧化氢:产生破坏性大的羟基自由基;③羟基自由基:最活跃的自由基;主要会造成体内脂质过氧化而破坏细胞,也会和糖类、氨基酸、磷脂质、核酸、有机酸等任何生物体内的物质反应,特别是和DNA中的嘌呤、嘧啶作用,导致细胞死亡或突变;④单线态氧:体内稳定的氧受紫外线照射后会产生大量不稳定的单腺态氧,单线态氧和氯反应,造成自由基物或脂质氧化;⑤过氧化脂质:是许多自由基物反应后的产物,且多半发生在细胞膜上,导致细胞膜失去功能或死亡,另外也会直接和蛋白质核酸作用,导致细胞甚至器官的病变或死亡。
第五章自由基清除剂本章要点1.自由基理论得产生机理及来源2.自由基对机体活动得影响3.自由基清除剂得基本概念随着生命科学得飞速发展,英国人Harman于1956年提出了自由基学说、该学说认为,自由基攻击生命大分子造成组织细胞损伤,就是引起机体衰老得根本原因,也就是诱发肿瘤等恶性疾病得重要起因,其中得观点被越来越多得实验所证明。
自由基(Free radical)就是人体生命活动中各种生化反应得中间代谢产物,具有高度得化学活性,就是机体有效得防御系统,若不能维持一定水平则会影响机体得生命活动。
但自由基产生过多而不能及时地清除,它就会攻击机体内得生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平得各种损伤,加速机体得衰老进程并诱发各种疾病。
近年来,国内外对自由基及自由基清除剂得研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂得研究报道,自由基清除剂作为功能性食品得重要原料成分之一,通过人们日常消费得食品来调节人体内自由基得平衡,已受到食品营养学家得广泛重视。
第一节自由基理论一、自由基得产生机理及来源自由基又叫游离基,它就是由单质或化合物得均裂(Homdytic Fission)而产生得带有未成对电子得原子或基团。
它得单电子有强烈得配对倾向,倾向于以各种方式与其她原子基团结合,形成更稳定得结构,因而自由基非常活泼,成为许多反应得活性中间体。
人体内得自由基分为氧自由基与非氧自由基。
氧自由基占主导地位,大约占自由基总量得95%、氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)与单线态氧(1O 2)等,它们又统称为活性氧(reactiveoxygen species,ROS),都就是人体内最为重要得自由基。
氧自由基化学式氧自由基是指一个氧原子通过断裂与其他原子或分子中的化学键而形成的高度活性的自由基。
氧自由基具有一个未成对的电子,使其非常不稳定,因此会迅速与其他分子反应,引发一系列化学反应。
氧自由基的化学式为O•,其中•表示一个未成对的电子。
它的生成主要是通过氧分子的光解反应或电解反应来实现。
在光解反应中,氧分子吸收能量后会产生一个激发态的氧分子,该激发态的氧分子会进一步分解为两个氧自由基。
在电解反应中,电流通过水溶液时,水分子会发生电离反应,生成氢离子和氢氧根离子,而氢氧根离子在水溶液中会与氧分子反应生成氧自由基。
氧自由基是一种高度活性的物质,它具有强氧化性和强还原性。
在生物体内,氧自由基是一种重要的信号分子,参与调节细胞的生理功能。
然而,当氧自由基的生成速度超过生物体清除能力时,就会引发氧化应激反应,导致细胞和组织的损伤,甚至引发多种疾病。
氧自由基与其他分子的反应主要是通过氧原子上的未成对电子与其他分子中的化学键进行反应。
它可以与脂肪酸、蛋白质、DNA等生物大分子结构发生反应,引发脂质过氧化、蛋白质氧化和DNA损伤等。
这些反应会导致细胞结构和功能的紊乱,进而引发炎症反应、免疫反应和细胞凋亡等一系列病理过程。
为了保护机体免受氧自由基的损害,生物体内有一系列抗氧化系统来清除氧自由基。
抗氧化酶如超氧化物歧化酶、谷胱甘肽过氧化物酶等可以将氧自由基转化为稳定的分子。
此外,还有一些抗氧化剂如维生素C、维生素E、多酚类化合物等,可以捕获氧自由基,阻止其与生物大分子结构发生反应。
虽然氧自由基在生物体内有一定的生理功能,但过多的氧自由基会引发氧化应激反应,导致细胞和组织的损伤。
因此,人们应该注意保护机体免受氧自由基的损害。
首先,要保持良好的生活习惯,包括均衡饮食、适量运动、充足睡眠等,这些都有助于维持机体内氧自由基的平衡。
其次,应该避免过量接触各种致氧化物质,如烟草、空气污染物、辐射等,因为这些物质都会促进氧自由基的生成。
剂什么是自由基?什么是氧自由基?什么是抗氧化?产【自由基生的原因和危害:】线辐7、物和放射。
药过动5、吸烟;6、阳光紫外射;压过2、空气染;1、力大;污3、食物和水源染;污4、量运;压压敌军质自由基,也称氧化力。
氧化力是几乎所有慢性退行性疾病的根本原因。
人:自由基。
友:抗氧化物。
人离开氧气就不能生存,但是氧气人体也有破坏力。
对有超过70种慢性退行性疾病都是氧气的黑暗面---氧气毒副作用的直换话说导这压蚀坚质接原因。
句,致些疾病的根本原因就是氧化力。
氧气能侵和分解地球上最硬的物之一:金属。
正如辆车样护们锈块锈们空地上弃置的一汽那,如果不加以保,我的身体也会慢慢地生。
就像金属上的一小斑,我的身体蚀们们仅也会慢慢地被侵,身体的哪一部分先受到破坏就能决定我可能会得哪种慢性疾病。
幸好,我的身体不有一套强统还统大的抗氧化系;它有一套很出色的修复系。
剂【什么是自由基?什么是氧自由基?什么是抗氧化?】自由基:也称氧化力。
化学上也称“游离基”,是含有一个不成子的原子。
由于原子形成分子,压为对电团时键电须对现处夺质电稳质这化学中子必成出,因此自由基就到取其他物的一个子,使自己形成定的物。
在化学中,种现为们羟象称“氧化”。
我生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、自由基、脂氧自由基、二氧化氮过氢单线态和一氧化氮自由基。
加上氧化、氧和臭氧,通称活性氧。
体内活性氧自由基具有一定的功能,如免疫和信号传导过过为导细组织损脏程。
但多的活性氧自由基就会有破坏行,致人体正常胞和的坏,从而引起多种疾病。
如心病、肿难杂环辐污农药产老年痴呆症、帕金森病和瘤等等疑症。
此外,外界境中的阳光射、空气染、吸烟、等都会使人体生更多活性氧自由基,使核酸突,是人衰老和患病的根源。
变这类们们对,氧自由基:我生活在富含氧气的空气中,离开氧气我的生命就不能存在,但是氧气也有人体有害的一面时杀细杀细产有候它能死健康胞甚至致人于死地。
当然,直接死胞的并不是氧气本身,而是由它生的一种叫氧自由基的有害物,它是人体的代物,可以造成生物膜系以及胞内氧化磷酸化障碍,是人体疾病、衰老和死亡质谢产统损伤细对长的直接参与者,人体的健康和寿危害非常之大。
氧自由基.疾病与抗氧化中药任何包含一个未成对电子的原子或原子团,均称为自由基,他们具有三个明显的特点:一是反应强,二是顺磁性,三是寿命短. 自由塞氧化应激可损伤生物分子,包括蛋白质DNA和脂质过氧体,机体内也存在着氧化防御系统,包括SOD.GSH.CAT 和抗氧化营养素等对抗氧化应激反应. 氧化与抗氧化之间保持着动态平衡,一旦体内产生大量的自由基未能被抗氧化剂清除,一些重要酶的功能就会被破坏,导致氧化应激和抗氧化防御间平衡失调,引起细胞膜多价不饱和脂肪酸过氧化反应,从而引起相应疾病. 目前的研究表明,氧自由基几乎和人类大部分常见的疾病都有关系.1 氧自由基与疾病1.1 氧自由基和炎症炎症是机体受到外界微生物入侵后的一种保护性反映,吞噬细胞在炎症反应中起着重要作用,在炎症反应时吞噬细胞受到刺激活化,产生呼吸爆发,释放大量活性氧自由基.N0 自由基和各种酶,这些产物在杀伤入侵者的同时对正常机体也会产生损伤. 用耗尽中性粒细胞技术表明,中性粒细胞事实上就是血管损伤的介质。
早期的体外研究表明活化中性粒细胞分泌的蛋白酶能分解细胞间隙物质透明质酸和不溶性的弹性蛋白酶和胶原蛋白,但后来也有实验证明蛋白酶在炎症反应组织损伤中可能不起直接重要作用.中性粒细胞和巨噬细胞产生的氧自由基可直接毒害真核细胞,损伤内皮细胞.成纤维细胞、血小板,白细胞本身也能被它自己产生的氧自由基损伤。
超氧阴离子自由基在组织损伤中似乎还产生某种趋向因子,致使多形核白细胞在组织中积累。
已知的炎症介质包括前列腺素.蛋白酶. 白三烯和活化吞噬细胞产生的氧自由基. 机体在炎症感染时,当多形核的嗜中性粒细胞对微生物进行吞噬时,由膜连超氧化合成酶合成二氧化碳,使大量二氧化碳积累过剩,过剩的二氧化碳如不能及时清除和分解,则可迅速侵入正常细胞周围,破坏细胞的正常结构,而且酶促反应产生的-OH又可导致溶酶体的容细胞作用以及细胞膜脂质过氧作用引发自由基。
1.2氧自由基和自身免疫疾病急性炎症反应对机体有一定好处,因为这样有利于杀伤那些外来入侵的有害细菌,但任何引起吞噬细胞不正常活化都会引起破坏性反应,其吞噬细胞的不正常活动最突出结果就是自身免疫反应性疾病.有研究表明氧化进攻正常生物分子可产生新的抗原,这可能是自身免疫疾病的起因之一。
第五章自由基清除剂本章要点1.自由基理论的产生机理及来源2.自由基对机体活动的影响3.自由基清除剂的基本概念随着生命科学的飞速发展,英国人Harman于1956年提出了自由基学说。
该学说认为,自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因,其中的观点被越来越多的实验所证明。
自由基(Free radical)是人体生命活动中各种生化反应的中间代谢产物,具有高度的化学活性,是机体有效的防御系统,若不能维持一定水平则会影响机体的生命活动。
但自由基产生过多而不能及时地清除,它就会攻击机体内的生命大分子物质及各种细胞器,造成机体在分子水平、细胞水平及组织器官水平的各种损伤,加速机体的衰老进程并诱发各种疾病。
近年来,国内外对自由基及自由基清除剂的研究十分活跃,在各类食品科学、生命科学及医学书籍上都有许多关于自由基及其清除剂的研究报道,自由基清除剂作为功能性食品的重要原料成分之一,通过人们日常消费的食品来调节人体内自由基的平衡,已受到食品营养学家的广泛重视。
第一节自由基理论一、自由基的产生机理及来源自由基又叫游离基,它是由单质或化合物的均裂(Homdytic Fission)而产生的带有未成对电子的原子或基团。
它的单电子有强烈的配对倾向,倾向于以各种方式与其他原子基团结合,形成更稳定的结构,因而自由基非常活泼,成为许多反应的活性中间体。
人体内的自由基分为氧自由基和非氧自由基。
氧自由基占主导地位,大约占自由基总量的95%。
氧自由基包括超氧阴离子(O2-·)、过氧化氢分子(H2O2)、羟自由基(OH·)、氢过氧基(HO2-·)、烷过氧基(ROO·)、烷氧基(RO·)、氮氧自由基(NO·)、过氧亚硝酸盐(ONOO-)、氢过氧化物(ROOH)和单线态氧(1O2)等,它们又统称为活性氧(reactive oxygen species,ROS),都是人体内最为重要的自由基。
ros与氧自由基
ROS是细胞内产生的一类反应性氧物质,包括超氧阴离子
( O2- )、过氧化氢( H2O2 )、羟自由基( •OH )等。
这些ROS分
子对细胞产生氧化应激,并在一定程度上会损伤细胞膜、蛋白质和核酸等生物大分子。
氧自由基是一类高度活性的分子,其包括单氧(•O)、单电子氧(O•)、超氧阴离子( O2- )、过氧化氢( H2O2 )等。
氧自由基在
细胞的新陈代谢中产生,当其产生过多或无法被细胞抵御时,会导致氧化应激,对细胞的正常功能产生影响。
ROS和氧自由基对细胞生物分子的氧化损伤是密切相关的,
它们都可以引起蛋白质的氧化、DNA的损伤,从而导致细胞
功能受损,甚至导致细胞死亡。
然而,ROS和氧自由基在一
定范围内也对细胞具有一定的生物学效应,例如在信号传导、细胞增殖和生理调节等方面起到重要作用。
为了保护细胞免受ROS和氧自由基的损害,细胞内有一系列
的抗氧化系统,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)等,它们能够中和、清除细胞内的ROS和氧自由基。
此外,一些天然抗氧化物质,如维生素C、维生素E、谷胱甘肽等,也能够帮助细胞抵御ROS和氧自由
基的氧化损伤。