中考数学专题讲座
- 格式:ppt
- 大小:320.00 KB
- 文档页数:22
最新全国中考数学思维与得分技巧专题讲座稿(附例)【最新全国中考攻略】专题1:客观性试题解法探讨客观性试题――选择题的题型构思精巧,形式灵活,知识容量大,覆盖面广,可以比较全面地考察学生的基础知识和基本技能,还能考查学生的思维敏捷性,是中考中广泛采用的一种题型。
在全国各地中考数学试卷中,选择题约占总分的20%—30%,因此掌握选择题的解法,快速、准确地解答好选择题是夺取高分的关键之一。
选择题由题干和选项两部分组成,题干可以是由一个问句或一个半陈述句构成,选项中有四个答案,至少有一个正确的答案,这个正确的答案可叫优支,而不正确的答案可叫干扰支或惑支。
目前在中考数学试卷中,如果没有特别说明,都是“四选一”的选择题,即单项选择题。
选择题要求解题者从若干个选项中选出正确答案,并按题目的要求,把正确答案的字母代号填入指定位置。
笔者将选择题的解法归纳为应用概念法、由因导果法、执果索因法、代入检验法、特殊元素法、筛选排除法、图象解析法、待定系数法、分类讨论法、探索规律法十种,下面通过年和年全国各地中考的实例探讨这十种方法。
一、应用概念法:应用概念法是解选择题的一种常用方法,也是一种基本方法。
根据选择题的题设条件,通过应用定义、公理、定理等概念直接得出正确的结论。
使用应用概念法解题,要求学生熟记相关定义、公理、定理等基本概念,准确应用。
典型例题:例1:(湖北随州4分)-的相反数是【 】A.12012-B. 12012C.-D. 【答案】D 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-的相反数是。
故选D 。
例2:(上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . x 3yD . 3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
中考数学专题讲座——选择题解题方法哎呀,说到中考数学,那可真是让人又爱又恨的科目。
尤其是选择题,那可是让人头疼的“小妖精”。
不过别担心,今天咱们就来聊聊怎么搞定这些选择题,让你在考场上能轻松应对。
首先,咱们得知道,选择题虽然看起来简单,但它们其实暗藏玄机。
有时候,一个选项看起来特别对,但仔细一想,哎呀,怎么就那么不对劲呢?所以,咱们得有一套自己的解题方法。
比如说,咱们先来聊聊“排除法”。
这个方法简单粗暴,但有时候特别管用。
你看,四个选项,你一眼就能看出两个明显不对的,那剩下的两个,你再仔细一琢磨,是不是就简单多了?这就像是在一堆沙子里找金子,先把不是金子的沙子都筛掉,剩下的不就是金子了吗?再来说说“代入法”。
这个方法适用于那些看起来特别复杂的题目。
你把每个选项代入题目中,看看哪个能符合题目的要求。
这就像是试衣服,你一件一件试,总能找到合身的那一件。
还有“画图法”,这个方法对于几何题特别有用。
有时候,题目描述的几何图形太抽象,你脑子里想象不出来,那就干脆画出来。
一画出来,那些隐藏的条件、角度、边长,不就一目了然了吗?当然,还有“特值法”。
这个方法适用于那些看起来需要复杂计算的题目。
你随便找个特值代入,如果这个特值能符合题目的要求,那答案不就出来了吗?这就像是你在做一道菜,不知道味道怎么样,先尝一小口,味道对了,那这道菜不就成功了一半了吗?最后,别忘了“直觉法”。
有时候,你的直觉会告诉你哪个选项是对的。
虽然这个方法听起来有点玄乎,但有时候,你的直觉就是那么准。
这就像是你在街上看到一个人,你一眼就能感觉到这个人是不是好人,虽然你说不出为什么。
好了,说了这么多方法,你是不是觉得选择题也没那么可怕了?其实,这些方法就像是你的武器,你得多练习,多用,才能在考场上运用自如。
记住,中考数学选择题,不是看你会不会,而是看你能不能在有限的时间内做对。
所以,平时多练习,多总结,找到适合自己的解题方法,才是王道。
最后,祝你中考数学选择题做得又快又准,考个好成绩!咱们下次再聊别的,拜拜啦!。
中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1(义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2(宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
中考数学重难点专题讲座第四讲 一元二次方程与二次函数智康·刘豪【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。
第一部分 真题精讲【例1】2010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。