中考数学专题讲座
- 格式:ppt
- 大小:320.00 KB
- 文档页数:22
最新全国中考数学思维与得分技巧专题讲座稿(附例)【最新全国中考攻略】专题1:客观性试题解法探讨客观性试题――选择题的题型构思精巧,形式灵活,知识容量大,覆盖面广,可以比较全面地考察学生的基础知识和基本技能,还能考查学生的思维敏捷性,是中考中广泛采用的一种题型。
在全国各地中考数学试卷中,选择题约占总分的20%—30%,因此掌握选择题的解法,快速、准确地解答好选择题是夺取高分的关键之一。
选择题由题干和选项两部分组成,题干可以是由一个问句或一个半陈述句构成,选项中有四个答案,至少有一个正确的答案,这个正确的答案可叫优支,而不正确的答案可叫干扰支或惑支。
目前在中考数学试卷中,如果没有特别说明,都是“四选一”的选择题,即单项选择题。
选择题要求解题者从若干个选项中选出正确答案,并按题目的要求,把正确答案的字母代号填入指定位置。
笔者将选择题的解法归纳为应用概念法、由因导果法、执果索因法、代入检验法、特殊元素法、筛选排除法、图象解析法、待定系数法、分类讨论法、探索规律法十种,下面通过年和年全国各地中考的实例探讨这十种方法。
一、应用概念法:应用概念法是解选择题的一种常用方法,也是一种基本方法。
根据选择题的题设条件,通过应用定义、公理、定理等概念直接得出正确的结论。
使用应用概念法解题,要求学生熟记相关定义、公理、定理等基本概念,准确应用。
典型例题:例1:(湖北随州4分)-的相反数是【 】A.12012-B. 12012C.-D. 【答案】D 。
【考点】相反数。
【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
因此-的相反数是。
故选D 。
例2:(上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . x 3yD . 3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
中考数学专题讲座——选择题解题方法哎呀,说到中考数学,那可真是让人又爱又恨的科目。
尤其是选择题,那可是让人头疼的“小妖精”。
不过别担心,今天咱们就来聊聊怎么搞定这些选择题,让你在考场上能轻松应对。
首先,咱们得知道,选择题虽然看起来简单,但它们其实暗藏玄机。
有时候,一个选项看起来特别对,但仔细一想,哎呀,怎么就那么不对劲呢?所以,咱们得有一套自己的解题方法。
比如说,咱们先来聊聊“排除法”。
这个方法简单粗暴,但有时候特别管用。
你看,四个选项,你一眼就能看出两个明显不对的,那剩下的两个,你再仔细一琢磨,是不是就简单多了?这就像是在一堆沙子里找金子,先把不是金子的沙子都筛掉,剩下的不就是金子了吗?再来说说“代入法”。
这个方法适用于那些看起来特别复杂的题目。
你把每个选项代入题目中,看看哪个能符合题目的要求。
这就像是试衣服,你一件一件试,总能找到合身的那一件。
还有“画图法”,这个方法对于几何题特别有用。
有时候,题目描述的几何图形太抽象,你脑子里想象不出来,那就干脆画出来。
一画出来,那些隐藏的条件、角度、边长,不就一目了然了吗?当然,还有“特值法”。
这个方法适用于那些看起来需要复杂计算的题目。
你随便找个特值代入,如果这个特值能符合题目的要求,那答案不就出来了吗?这就像是你在做一道菜,不知道味道怎么样,先尝一小口,味道对了,那这道菜不就成功了一半了吗?最后,别忘了“直觉法”。
有时候,你的直觉会告诉你哪个选项是对的。
虽然这个方法听起来有点玄乎,但有时候,你的直觉就是那么准。
这就像是你在街上看到一个人,你一眼就能感觉到这个人是不是好人,虽然你说不出为什么。
好了,说了这么多方法,你是不是觉得选择题也没那么可怕了?其实,这些方法就像是你的武器,你得多练习,多用,才能在考场上运用自如。
记住,中考数学选择题,不是看你会不会,而是看你能不能在有限的时间内做对。
所以,平时多练习,多总结,找到适合自己的解题方法,才是王道。
最后,祝你中考数学选择题做得又快又准,考个好成绩!咱们下次再聊别的,拜拜啦!。
中考数学复习专题讲座三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1(义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
810360专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2(宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
中考数学重难点专题讲座第四讲 一元二次方程与二次函数智康·刘豪【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。
第一部分 真题精讲【例1】2010,西城,一模已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。
第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。
中考数学备战系列讲座(一)分类讨论问题【简要分析】分类讨论问题就是将要研究的数学对象按照一定的标准划分为若干不同的情形,然后再逐类进行研究和求解的一种数学解题思想.对于因存在一些不确定因素、解答无法或者结论不能给予统一表述的数学问题,我们们往往将问题划分为若干类或若干个局部问题来解决.分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【提高训练】1.已知等腰△ABC的周长为18㎝,BC=8㎝.若△ABC≌△A´B´C´,则△A´B´C´中一定有一定有条边等于()A.7㎝ B.2㎝或7㎝ C.5㎝ D.2㎝或7㎝2.已知⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P这圆心,且与⊙O相切的圆的半径一定是()A.1或5 B.1 C.5 D.1或则3.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.5 4.已知点P是半径为2的⊙O外一点,PA是⊙O的切线,切点为A,且PA=2,在⊙O内作了长为的弦AB,连续PB,则PB的长为5.在直角坐标系xoy中,一次函数2y=+的图象与x轴交于点A,与y轴3交于点B.(1)苈以原点O这圆心的圆与直线AB切于点C,求切点C的坐标.(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.(二)信息题 【简要分析】信息题就是根据文字、图表、图形、图象等给出的数据信息,通过整理、加工、处理等手段去解决实际问题的一类题.解答信息题时,首先要仔细观阅读题目所提供的材料,从中捕捉有关信息(如数据间的关系与规律图象的形状特点、变化趋势等),然后对这些信息进行加工处理,并联系相关数学知识,从而实现信息的转换,使问题顺利获解. 【提高训练】A .160元B .140元C .120元D .100元 2.根据图2-4-7给出的信息求每件T 恤衫和每瓶矿泉水的价格.3.南宁市是广西最大的罗非鱼养殖产区,被国家农业部列为罗非鱼优势区域,某养殖场计划下半年养殖无公害标准化罗非鱼和草鱼,要求这两个品种总产值G (吨)满足:15801600G <<,总产值为1000万元.已知相关数据如上表所示,问该养殖场下半年罗非鱼的产量应控制在什么范围?(产值=产量×单价) 4.某公司推销一种新产品,设x (件)是推销新产品的数量,y (元)是推销费,图2-4-8表示了公司每月付给推销员推销费的两种方案.看图解答下列问题:(1)求12,y y 与x 的函数关系式.(2)解释图中表示的两种方案是如何付推销费的.(3)如果你是推销员,应该如何选择付费方案?102030405060100200300400500600x(件)y(元)y 1y 2图2-4-7共计26元共计44元(三)阅读理解题 【简要分析】阅读理解题的篇幅一般都较长,试题结构大致分两部分:一部分是阅读材料,别一部分是根据阅读材料需解决的有关问题.阅读材料既有选用与教材知识相关的内容的,也有广泛选用课外知识的.考查目标除了初中数学和基础知识外,更注重考查阅读理解、分析转化、范例运用、探索归纳等多方面的素质和能力. 【提高训练】1.先阅读下列材料,然后解答题后的问题.材料:从A 、B 、C 三人中选择取二人当代表,有A 和B 、A 和C 、B 和C 三种不同的选法,抽象成数学模型是:从3个元素中选取2个元素组合,记作2332321C ⨯==⨯.一般地,从m 个元素中选取n 个元素组合,记作(1)(2)(1)(1)(2)321n mm m m m n Cn n n ---+=--⨯⨯L L .问题:从6个人中选取4个人当代表,不同的选法有 种.2.阅读下列一段话,并解决后面的问题.观察下面一列数从第2项起,每一项与它前一项的比都等于2.一般地,如果一列数等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列5,-15,45,……的第4项是 .(2)如果一列数1a ,2a ,3a ,4a ,……是等比数列,且公比为q ,那么根据规定,有32441233,,,,a a a a q q q q a a a a ====L L所以223213214311,(),(),a a q a a q a q q q a a q a q q a q =======L L n a = (用1a 和q 的代数式表示)(3)一大体上等比数列的第2项是10,第3项是20,求它的第1项与第4项.先阅读下材料,然后按要求解答有关问题.已知关于x 的一元二次方程2(12)0x k x k +-+=有两个实数根1x 和2x ,且1212()30x x x x ++=g ,求实数k 的值. 小虹同学对上面的问题是这样解的:解:由根与系数的关系有: 2121221,x x k x x k +=-=g .∵1212()30x x x x ++=g ,∴22130k k -+=,即23210.kk +-=解方程,得1211,3kk =-=,∴k 的值为1-或13.老师看了小虹的这个解答后,写了如下评语:“你的解题方向是正确的,但过程欠严密,请再思考一下,相信你一定会求出正确结果.”请你帮助小虹同学订正此题,好吗?3.如果将点P 绕定点M 旋转1800后与点Q 重合那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心.此时P 与点O 关于点M 是线段PQ 的中点.如图2-4-14,在直角坐标系中,△ABO 的顶点A 、B 、O 的坐标分别为(1,0)、(0,1)、(0,0),点列1P ,2P ,3P ,……中的相信两点都关于△ABO 的一个顶点对称;点1P 与点2P 关于点A 对称,点2P 与点3P 关于点B 对称,点3P 与4P 关于O 对称,点4P 与点5P 关于点A 对称,点5P 与点6P 关于点B 对称点6P 与点7P 关于点O ,对称中心分别是A 、B 、O 、A 、B 、O 、……且这些对称中心依次循环,已知点1P 坐标是(1,1),试求出点2P ,7P ,100P 坐标.4.阅读以下短文,然后解决问题.如果一个三角形和一个矩形满期足下列条件:三角形的三边与矩形的一边重合,且三角形的这边所对的顶点在矩形的对边上,则称这样的矩形为三角形的“友好矩形”.如图2-4-15所示,矩形ABEF 即为△ABC 的“友好三角形”.显然,当△ABC 是钝角三角形时,其“友好三角形”只有一个.图2-4-17图2-4-16图2-4-15FECCCBBAAA(1)仿照以上叙述,说明了什么是一个三角形的“友好平行四边形”.(2)如图2-4-16中画出△ABC 所有的“友好矩形”.(3)若△ABC 是锐角三角形,且BC AC AB >>,在图2-4-17中画出△ABC 年有的“友好矩形”.。
2024年初中数学专题讲座课件一、教学内容1. 平面几何证明的基本方法;2. 线段、角的和差倍分关系证明;3. 全等三角形的判定与性质;4. 四边形的性质与判定。
二、教学目标1. 让学生掌握平面几何证明的基本方法,提高逻辑思维能力;2. 使学生熟练运用线段、角的和差倍分关系进行证明;3. 培养学生运用全等三角形的判定与性质解决实际问题的能力;4. 帮助学生掌握四边形的性质与判定,提高几何解题技巧。
三、教学难点与重点教学难点:全等三角形的判定与性质的应用、四边形的性质与判定。
教学重点:平面几何证明的基本方法、线段、角的和差倍分关系的证明。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、量角器、练习本。
五、教学过程1. 实践情景引入(5分钟)通过展示生活中的几何图形,引导学生发现几何证明在实际生活中的应用,激发学生学习兴趣。
2. 理论讲解(15分钟)(1)平面几何证明的基本方法;(2)线段、角的和差倍分关系证明;(3)全等三角形的判定与性质;(4)四边形的性质与判定。
3. 例题讲解(20分钟)结合教材典型例题,讲解证明过程中应注意的问题,指导学生运用所学知识解决实际问题。
4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识,教师巡回指导。
5. 课堂小结(5分钟)六、板书设计1. 2024年初中数学专题讲座——几何证明2. 内容:(1)平面几何证明的基本方法;(2)线段、角的和差倍分关系证明;(3)全等三角形的判定与性质;(4)四边形的性质与判定。
七、作业设计1. 作业题目:(1)已知:在三角形ABC中,D、E分别是AB、AC上的点,且DE 平行于BC。
求证:AD/AB = AE/AC。
(2)已知:在四边形ABCD中,对角线AC、BD相等。
求证:四边形ABCD是矩形。
2. 答案:(1)证明:由题意可知,DE平行于BC,根据平行线的性质,得到∠ADC = ∠ABC,∠ADE = ∠ACB。
中考数学复习专题讲座七:归纳猜想型问题(一)一、中考专题诠释归纳猜想型问题在中考中越来越被命题者所注重。
这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。
二、解题策略和解法精讲归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。
其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。
相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。
由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。
三、中考考点精讲考点一:猜想数式规律通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
例1(沈阳)有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.考点:多项式。
810360专题:规律型。
分析:首先观察归纳,可得规律:第n个多项式为:a n+(﹣1)n+1b2n,然后将n=10代入,即可求得答案.解答:解:∵第1个多项式为:a1+b2×1,第2个多项式为:a2﹣b2×2,第3个多项式为:a3+b2×3,第4个多项式为:a4﹣b2×4,…∴第n个多项式为:a n+(﹣1)n+1b2n,∴第10个多项式为:a10﹣b20.故答案为:a10﹣b20.点评:此题考查的知识点是多项式,此题难度不大,注意找到规律第n个多项式为:a n+(﹣1)n+1b2n是解此题的关键.例2(珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.考点:规律型:数字的变化类。
中考数学重难点专题讲座第九讲几何图形的归纳, 猜想, 证明问题【前言】实行新课标以来,中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。
08年的中考填空压轴是一道代数归纳题,已经展现出了这种趋势。
09年的一模,二模也只是较少的区县出了这种归纳题,然而中考的时候就出了一道几何方面的n 等分点总结问题。
于是今年的一模二模,这种有关几何的归纳,猜想问题铺天盖地而来,这就是一个重要的风向标。
而且根据学生反映,这种问题一般较难,得分率很低,经常有同学选择+填空就只错了这一道。
对于这类归纳总结问题来说,思考的方法是最重要的,所以一下我们通过今年的一二模真题来看看如何应对这种新题型。
第一部分真题精讲【例1】2010,海淀,一模如图,n +1个边长为2的等边三角形有一条边在同一直线上,设∆B 2D 1C 1的面积为S 1,∆B 3D 2C 2的面积为S 2,…,∆B n +1D n C n的面积为S n ,则S 2S n (用含n 的式子表示).B AC 1B 2C 2B C 3C 4C 5B【思路分析】拿到这种题型,第一步就是认清所求的图形到底是什么样的。
本题还好,将阴影部分标出,不至于看错。
但是如果不标就会有同学误以为所求的面积是∆B AC , ∆B AC 这种的, 第二步就是看这些图形之间有什么共性和联系. 首先S 所代22332表的三角形的底边C 2D 2是三角形AC 2D 2的底边, 而这个三角形和△AC 3B 3是相似的. 所以边长的比例就是AC 2与AC 3的比值.于是12接下来通过总结, 我们发现所求的三角形有一个最大的共性就是高相等,B 点,S 2= 223将阴影部分放在反过来的等边三角形中看)。
那么既然是求面积,高相等,剩下的自然就是底边的问题了。
我们发现所有的B,C点连线的边都是平行的,于是自然可以得出D n 自然是所在边上的n+1等分点. 例如D 2就是B 2C 2的一个三等分点. 于是D n C n =n +1-1(n+1-1是什么意思? 为什么要减1? 11⋅2 S ∆B n +1D n C n =D n C n =n +122【例2】2010,西城,一模在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形,如图,菱形ABCD 的四个顶点坐标分别是(-8,0 ,(0,4 ,(8,0 ,(0,-4 ,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形,则菱形A B C D 能覆盖的单位格点正0 ,(0,n ,(2n ,0 ,(0,-n (n 为正整数)A n B n C n D n 的四个顶点坐标分别为(-2n ,n n n n方形的个数为_________(用含有n 的式子表示).【思路分析】此题方法比较多,例如第一空直接数格子都可以数出是48(笑)。
中考数学复习专题讲座一:数学解题思想与方法三、中考考点精讲类型1:整体思想整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。
【例题】.(1)因式分解:2(2)16(2)x x x ---= 。
【解析】本题考点为:分解因式,首先提取整体公因式(2)x -,然后还要注意彻底分解, 2(16)x -仍可以利用平方差公式分解。
答案为:(2)(4)(4)x x x --+(2)已知2-=+b a ,求代数式a b a b a 2)2()1(2+++-的值.考点:整式的混合运算—化简求值..专题:计算题.分析:原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=a 2﹣2a +1+2ab +b 2+2a =(a +b )2+1,把a +b =﹣代入得:原式=2+1=3. 点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则整体运用是解本题的关键.【变式练习】(1)若4a ﹣2b=2π,则2a ﹣b+π= 2π .考点: 代数式求值.分析: 根据整体代入法解答即可.解答: 解:因为4a ﹣2b=2π,所以可得2a ﹣b=π,把2a ﹣b=π代入2a ﹣b+π=2π.点评: 此题考查代数式求值,关键是根据整体代入法计算.(2)已知a 2﹣a ﹣1=0,则a 3﹣a 2﹣a+2015= 2015 .考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,故答案为:2015.点评:本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.考点2:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。