医学统计
- 格式:doc
- 大小:589.00 KB
- 文档页数:9
医学统计学一、介绍医学统计学是医学领域中一门重要的学科,它通过收集、整理和分析医学数据,为医学研究和临床决策提供科学依据。
医学统计学的主要任务是使用统计方法分析各种医学数据,从中提取有意义的信息,并对结果的可靠性和有效性进行评估。
在医学研究中,医学统计学起着至关重要的作用,帮助研究人员通过数据分析对疾病的发病机制、病理生理过程和治疗效果等进行评估。
二、常见统计方法1. 描述统计学描述统计学是医学统计学的基础,它主要用于对医学数据的数量特征进行描述和总结。
常见的描述统计学方法包括:•平均值:用于描述数据的中心趋势。
•标准差:用于描述数据的离散程度。
•百分位数:用于描述数据的分布情况。
2. 推断统计学推断统计学是医学统计学的核心,它基于样本数据对总体进行推断。
常见的推断统计学方法包括:•假设检验:用于检验研究假设的真实性。
•置信区间:用于估计总体参数的范围。
•方差分析:用于比较多个样本的均值差异。
3. 生存分析生存分析是医学统计学中的一项重要内容,它主要用于研究患者的生存时间和相关因素。
常见的生存分析方法包括:•生存曲线:用于描述患者生存时间的分布情况。
•生存率:用于描述患者在某一时间点存活的概率。
•Cox比例风险模型:用于研究生存时间和危险因素的关系。
三、应用领域医学统计学广泛应用于医学研究和临床实践中,对于评估疾病的风险因素、制定预防策略、确定诊断标准和评估治疗效果等方面都起着至关重要的作用。
以下是医学统计学在不同领域的应用示例:1. 流行病学研究医学统计学在流行病学研究中发挥着重要作用。
通过收集大量的样本数据,并运用相关的统计方法,可以研究疾病的发病规律、危险因素和暴露因素等,为疾病的预防和控制提供科学依据。
2. 临床试验医学统计学在临床试验中的应用也非常重要。
通过对试验组和对照组的数据进行比较分析,可以评估新药物或治疗方法的疗效和安全性,为临床决策提供可靠依据。
3. 医疗质量评估医学统计学可以用于医疗质量评估,通过对不同医疗机构之间的数据进行比较分析,评估医疗服务的质量,为改善医疗质量提供参考。
医学统计学(statistics of medicine ):医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。
医学统计工作的基本步骤:1、研究设计2、收集资料3、整理(sorting data)资料4、分析(analysis of data)资料研究单位(unit):研究中的个体(individual),是根据研究目的确定的。
观察单位可以是一个人、一个家庭、一个地区、一个样品、一个采样点等。
变量(variable):研究单位的研究特征。
例如:研究7岁男孩身高的正常值范围变量:身高变量可分为:数值变量和分类变量变量之间可以互相转换。
变量值(value of variable):变量的观察结果大小或属性。
数值变量:变量值是可以定量测量并有数值大小的变量。
分类变量:变量值为变量的属性或类别的变量。
同质(homogeneity):根据研究目的给研究单位确定的相同性质。
注意:同质实质上是指有条件的相同,不是全部相同。
只是一个相对的概念,不是绝对的相同。
变异(variation):同质研究单位中变量值间的差异。
总体(population):是根据研究目的确定的同质研究单位的全体。
更确切地说是同质研究单位某种变量值的集合。
例如:调查某地2002年正常成年男子的红细胞数的正常值范围研究单位:一个人变量:红细胞数同质:同某地、同2002年、同成年男子、同正常。
总体:1)某地所有的正常成年男子2)某地所有的正常成年男子的红细胞数样本(sample):是总体中抽取的有代表性的一部分。
注意:随机抽样(无主观性)参数(parameter):根据总体个体值统计计算出来的描述总体的特征量。
(一般用希腊字母表示)统计量(statistic):根据样本个体值统计计算出来的描述样本的特征量。
(一般用拉丁字母表示)注意:总体参数一般是不知道的统计学抽样研究的目的就是:样本统计量→总体参数误差(error)是指实际观察值与观察真值之差、样本指标与总体指标之差。
医学统计学公式整理1. 平均数(Mean):平均数是一组数据的所有观察值之和除以观察值的个数。
用数学符号表示为:μ = (x1 + x2 + ... + xn) / n。
其中,μ表示总体均值,x1,x2,...,xn表示样本数据,n表示样本容量。
2. 中位数(Median):中位数是将一组数据按照大小排序后,位于中间位置的数值。
对于有奇数个数的数据,中位数是中间的那个数;对于有偶数个数的数据,中位数是中间两个数的平均值。
3. 众数(Mode):众数是一组数据中出现次数最多的数值,可以有一个或多个。
4. 方差(Variance):方差是一组数据与其均值之差的平方的平均值,用来衡量数据的离散程度。
用数学符号表示为:σ^2 = ( (x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2 ) / n。
5. 标准差(Standard Deviation):标准差是方差的平方根,用来衡量数据的离散程度。
用数学符号表示为:σ = sqrt( ( (x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2 ) / n )。
6. 相对风险(Relative Risk):相对风险是比较两个暴露组之间罹患其中一种疾病的风险大小的指标。
计算方式为:相对风险=(发病率在暴露组中的比例)/(发病率在非暴露组中的比例)。
相对风险大于1表示暴露组的风险大于非暴露组,相对风险小于1表示暴露组的风险小于非暴露组,相对风险等于1表示两组风险相等。
7. 绝对风险差(Absolute Risk Difference):绝对风险差是比较两个暴露组之间发病率差异的指标。
计算方式为:绝对风险差=(发病率在暴露组中的比例)-(发病率在非暴露组中的比例)。
绝对风险差大于0表示暴露组的发病率高于非暴露组,绝对风险差小于0表示暴露组的发病率低于非暴露组,绝对风险差等于0表示两组发病率相等。
8. 相对危险度(Relative Risk Ratio):相对危险度是比较两个暴露组之间发病率的相对大小的指标。
医学统计学方法1. 引言医学统计学是医学研究中不可或缺的一门学科,它通过应用统计学的原理和方法,对医学数据进行收集、整理、分析和解释,从而为医学研究提供可靠的依据。
本文将介绍医学统计学的基本概念、常用方法以及在医学研究中的应用。
2. 医学统计学的基本概念2.1 总体与样本在医学研究中,我们通常关注的是一个特定人群或物体的某种特征。
这个人群或物体称为总体,而从总体中选取出来的一部分个体则称为样本。
通过对样本进行观察和测量,我们可以对总体进行推断。
2.2 参数与统计量参数是描述总体特征的数值,例如总体均值、方差等。
由于很难获得总体所有个体的数据,我们通常通过样本来估计参数。
样本所得到的数值称为统计量,例如样本均值、样本方差等。
2.3 假设检验与置信区间在医学研究中,我们经常需要判断某种治疗方法是否有效、某种因素是否与疾病有关等。
假设检验是一种常用的统计方法,它通过对样本数据进行分析,判断总体参数是否符合某种假设。
置信区间则是对总体参数的估计范围。
3. 常用的医学统计学方法3.1 描述统计学描述统计学是对数据进行整理、总结和展示的方法。
常用的描述统计学方法包括:频数分布表、直方图、散点图等。
这些方法可以帮助我们了解数据的分布特征、集中趋势和离散程度。
3.2 推断统计学推断统计学是根据样本数据对总体进行推断的方法。
常用的推断统计学方法包括:参数估计和假设检验。
参数估计可以帮助我们估计总体参数,并给出其置信区间;假设检验可以帮助我们判断某个假设是否成立。
3.3 生存分析生存分析是研究个体发生某个事件(如死亡、复发)所需时间的方法。
常用的生存分析方法包括:生存函数曲线、危险比(hazard ratio)等。
生存分析可以帮助我们评估治疗效果、预测疾病进展等。
3.4 回归分析回归分析是研究因变量与自变量之间关系的方法。
常用的回归分析方法包括:线性回归、 logistic回归等。
回归分析可以帮助我们探索影响因素、预测结果等。
医学统计学基础医学统计学是一门研究医学中数据的收集、分析和解释的科学。
它在医学研究中扮演着至关重要的角色,并且对医学实践和决策具有深远影响。
本文将介绍医学统计学的基本概念、常用的统计方法以及其在医学领域的应用。
一、基本概念1.1 总体与样本在医学统计学中,我们常常需要研究某个感兴趣的群体,这个群体被称为总体。
总体可以是人群中的所有个体,也可以是其他单位,如医院、地区等。
由于总体往往很大,我们无法对其进行全面的研究,因此我们从总体中选取一部分个体进行研究,这部分个体称为样本。
1.2 数据类型医学研究中常见的数据类型包括定性数据和定量数据。
定性数据是描述性质或属性的数据,如性别、病情分类等;定量数据是可度量或计数的数据,如年龄、生命体征等。
了解数据类型对选择合适的统计方法至关重要。
1.3 描述统计学与推断统计学描述统计学用于总结和描述已有数据的特征,如均值、中位数、标准差等。
推断统计学则是通过对样本进行分析,推断总体的特征,并对结果进行估计和推断。
推断统计学可通过假设检验和置信区间来实现。
二、常用统计方法2.1 均值与标准差均值是用来描述一组数据集中趋势的指标,一般用于定量数据。
标准差则衡量了数据的离散程度,即数据的波动情况。
2.2 相关分析相关分析用于研究两个变量之间的关系。
通过计算相关系数,可以了解两个变量是正相关、负相关还是无关。
2.3 生存分析生存分析是用来研究事件发生和持续时间的统计方法。
在医学中,生存分析常用于研究患者的生存时间、复发时间等。
2.4 方差分析方差分析用于比较两个或多个组的均值是否存在显著差异。
它适用于一组分类变量和一个连续变量的比较。
三、医学统计学的应用3.1 临床试验设计与分析临床试验是评价药物疗效的重要手段。
医学统计学在临床试验的设计和分析中起到关键作用,如确定样本量、随机分组、双盲试验等。
3.2 流行病学研究流行病学研究可以揭示疾病的发病原因、预后以及控制策略。
医学统计学的方法可以帮助研究者分析大量数据,确定疾病的危险因素和相关性。
医学研究中常用的数据统计方法1.描述统计:描述统计是通过描述、汇总和展示数据的特征来对数据进行分析。
常用的描述统计方法包括:-平均数:用于衡量一个数据集的集中趋势,计算方法是将所有数据相加然后除以数据的个数。
-中位数:将数据按照从小到大的顺序排列,位于中间的值即为中位数,用于描述中间值的位置。
-众数:在数据集中出现次数最多的数值,可以用于描述数据的模式。
-方差和标准差:用于描述数据的离散程度,方差是样本偏离均值的平方和的平均值,而标准差是方差的平方根。
-频率分布表和直方图:将数据按照一定的区间进行分类,并统计各个区间内数据的个数或频率,用于展示数据的分布情况。
2.推断统计:推断统计是根据从样本获得的数据对总体进行推断和判断。
常用的推断统计方法包括:-参数估计:通过样本数据估计总体参数的值,例如使用样本平均数估计总体平均数。
-假设检验:用于判断样本观测值是否支持一些假设的正确性。
常用的方法包括t检验、F检验和卡方检验等。
-置信区间:给出参数估计的上下限,表示估计值的不确定性范围。
例如给出95%的置信区间意味着有95%的把握总体参数位于这个区间内。
-相关分析:用于分析两个或多个变量之间的关系,例如皮尔逊相关系数可用于衡量两个连续变量之间线性关系的强度。
-回归分析:用于建立变量之间的数学关系模型,例如线性回归可用于描述一个自变量与一个因变量之间的线性关系。
3.生存分析:生存分析是研究人口中一些事件(如死亡、复发等)发生的概率和影响因素的统计方法。
常用的生存分析方法包括:-生存函数:生存函数描述了在一些特定时间点之前没有发生事件的概率。
-生存曲线:生存曲线是根据生存函数绘制的曲线图,可以描述出时间和事件之间的关系。
-危险比:危险比用于比较两个或多个不同组中事件的风险,可以得出不同因素对事件发生的相对影响。
- Cox比例风险模型:Cox模型是用于探索自变量对生存时间的影响的一种半参数模型,可以同时考虑多个预测因素。
统计学中的医学统计方法统计学在医学领域中扮演着重要的角色,它提供了一种科学的方法来分析医学数据、评估治疗效果和探索潜在的病因。
本文将介绍几种常用的医学统计方法,包括描述性统计、假设检验、回归分析和生存分析。
1. 描述性统计描述性统计是医学统计学中最基础的方法之一。
它通过对医学数据的总结和整理,来描述数据的特征和分布。
其中常用的统计指标包括均值、中位数、标准差等。
例如,在一个临床试验中,医生可以使用描述性统计来总结患者的年龄分布、性别比例等基本信息。
2. 假设检验假设检验是医学统计学中用来判断一个观察结果是否具有统计学意义的方法。
该方法基于样本数据对总体参数进行推断,并对研究假设进行验证。
常见的假设检验方法包括t检验和卡方检验。
例如,医生可以使用假设检验来判断一种新药物的疗效是否显著优于常规治疗。
3. 回归分析回归分析是一种用于探索变量之间关系的统计方法。
它可以帮助医生理解不同因素对医学结果的影响程度,并用于预测和解释结果。
常见的回归分析方法有线性回归和逻辑回归。
例如,在研究心脏病发作的风险因素时,医生可以使用回归分析来确定各种危险因素对心脏病发作的贡献程度。
4. 生存分析生存分析是一种用于研究事件发生时间的统计方法,尤其在医学领域中被广泛应用于研究疾病的生存率和预后。
生存分析可以帮助医生评估治疗方法的有效性和预测患者的生存时间。
常见的生存分析方法包括Kaplan-Meier 生存曲线和Cox比例风险模型。
例如,在肿瘤研究中,医生可以使用生存分析来评估不同治疗方法对患者生存率的影响。
总结:统计学在医学领域中有着广泛的应用,它提供了一系列方法来分析和解释医学数据。
本文介绍了描述性统计、假设检验、回归分析和生存分析等几种常用的医学统计方法。
了解和掌握这些方法对于医学研究和临床实践具有重要意义,能够帮助医生做出科学的决策,提高医疗质量和患者的健康水平。
医学统计学的概念和作用
医学统计学是研究在医学领域中的统计方法和技术的学科,它的主要目标是使用统计学的原则和技巧来分析和解释医学数据。
医学统计学的概念和作用如下:
1. 数据分析和解释:医学统计学可以帮助医学研究人员对医学数据进行分析和解释,以了解疾病的发病机制、治疗效果和预后预测等。
2. 研究设计和样本量计算:医学统计学可以为医学研究提供研究设计方法和样本量计算的理论基础,以确保研究结果的可靠性和统计效果的有效性。
3. 验证和推论:医学统计学可以通过假设检验和置信区间等方法对医学研究结果进行验证和推论,从而判断是否存在显著差异或关联。
4. 预测和预测模型:医学统计学可以使用回归分析、生存分析和机器学习等方法来构建预测模型,以预测患者的预后、疾病风险和治疗效果等。
5. 患者群体分析:医学统计学可以帮助医学研究人员对患者群体进行分类、描述和比较,从而揭示不同患者群体的特点和差异。
6. 基因组学和遗传学研究:医学统计学在基因组学和遗传学研究中起着重要作用,可以通过遗传连锁、基因频率和基因关联等统计方法来揭示基因与疾病之间的关系。
7. 临床决策和指南制定:医学统计学可以为临床医生提供统计数据和证据,帮助他们做出准确的诊断和治疗决策,并为临床指南的制定提供科学依据。
总体而言,医学统计学在医学研究和临床实践中的作用非常重要,可以帮助人们更好地理解和应用医学数据,以提高医疗质量和患者的健康状况。
医学统计学傻瓜教程作为一名临床医师,有时为了完成一些小科研,或晋升职称,都必须撰写医学论文。
大多数人会碰到一个难题,医学论文的数据都必须进行统计学处理,上大学时学过的《医学统计学》早已忘得差不多了,重新翻开统计学书本,花上十天半个月的时间,还是看得不知所云。
《医学统计学傻瓜教程》有别于其他任何的统计学教程,其特点是略去一些高深难懂的统计学原理及计算公式,直奔解决实际问题的方法。
本教程的学习时间约需要2~3小时,但你必须曾经学过《医学统计学》,不管学得好或学得差,或是否已忘记,只要有一点印象即可,同时还需要下载一个简明统计学处理软件《临床医师统计学助手V3.0》,因为作数据统计学处理时最令人头痛的问题是烦琐的计算,则由预存在本软件内的计算公式来完成。
《临床医师统计学助手V3.0》下载地址: /03/tjx/help.htm这是一个全“傻瓜化”的教程,由4个实例组成,只要认真看完这4个实例,将实际中碰到的问题对号入座,就足以解决绝大多数问题了。
接下来我们开始轻松愉快的学习过程。
一、均数与标准差【例1】本组105 例,男55例,女50例;平均年龄:62.3±6.1岁,所有入选病例均符合1999年WHO高血压诊断标准。
举这个例子是为了说明“均数”与“标准差”的概念。
我实在不愿意多花时间阐述一些概念性的东西,但是由于“标准差”实在太重要了。
【例1】中的数据“62.3±6.1”,“62.3”就是年龄的均数,均数的概念大家都懂,那么后面的“6.1”是什么呢?它就是标准差。
有人可能会问,表达一组人的平均年龄,用均数就够了,为什么还要加一个标准差呢?先看下面的一个例子:有两组人,第1组身高(cm):98、99、100、101、102;第2组身高(cm):80、90、100、110、120,这两组人虽然身高的均数都是100cm,但是,仔细观察,第1组的身高很接近,第2组的身高差别很大,故仅仅用一个平均数表达一组数据的特征是不完整的,还需要用另一个指标来表达其参差不齐的程度,这就是标准差。
统计学上对一组测量结果的数据都要用“均数±标准差”表示,习惯表达代号是:,具体例子如:平均收缩压120±10.2mmHg。
我想现在大家都已知道标准差是什么东东了,那么,标准差是怎样得到的呢?有一个比较复杂的计算公式,我们不必去深究这个公式是怎么样的,只需知道标准差越小,说明数据越集中,标准差越大,说明数据越分散。
撰写医学论文的第一步是收集原始数据,如:第1组身高(cm):98、99、100、101、102;第2组身高(cm):80、90、100、110、120。
在论文中并不是直接给出原始数据,而是要以方式表示。
利用软件《临床医师统计学助手V3.0》,只要输入原始数据,就能自动计算出均数及标准差,即第1组平均身高:100±1.58cm;第2组平均身高:100±15.81cm,如下图。
二、两样本均数差别T检验【例2】目的研究中药板兰根对“非典”疗效。
方法将36例“非典”患者随机分为治疗组19例,采用常规治疗+板兰根口服,对照组17例,仅采用常规治疗。
结果治疗组平均退热时间3.28±1.51d;对照组平均退热时间 5.65±1.96d,两组间对照差别有极显著意义(p <0.01 )结论中药板兰根对“非典”有显效疗效,实为国之瑰宝。
这是最常见的一种统计学数据处理类型,统计学述语叫做“两样本均数差别T检验”,说得通俗易懂一些,就是检验两组方法所得到的数据到底有没有差异,或者说,差异是否有意义。
我们平时的思维习惯是,数据的大小还用得着检验吗?这是小学生都会的问题。
可是别忘记了现在是在搞科研,科学方法看问题可不一定这么简单。
可能还没有说明白这个问题,下面举一个简单的例子。
我们的目的是得出这样一个结论:“北京出产的西瓜比上海出产的西瓜大”。
最可靠的方法是把所有北京的西瓜和上海的西瓜都测量重量,得到两个均数,然后比大小即可,可是智商正常的人并不会这样去做,通常的做法是,随机选一部分北京的西瓜和一部分上海的西瓜,先让这两部分西瓜比大小,然后推断到底那里的西瓜大。
这种方法是“窥一斑可见全豹”,统计学述语叫做“由样本推断总体”,事实上,我们所做的医学科研都是基于这种方法。
再回到上面的例子,假如我们有二种做法:A、随机选2个北京西瓜,平均重量是5.6±0.3kg;再随机选2个上海西瓜,平均重量是4.3±0.25kg;B、随机选1000个北京西瓜,平均重量是5.6±0.3kg;再随机选1000个上海西瓜,平均重量是4.3±0.25kg。
凭生活常识,由B推出“北京的西瓜比上海西瓜大”这个结论的把握性就非常的大,而A 则基本上推不出这个结论。
现在,终于可以引出我们的主题了,统计学处理本质是考查由样本差异推断总体差异的把握性有多大,这种把握性在统计学上由P值表示。
如P<0.05或P <0.01,可以理解为由样本差异推断总体差异的把握性达95%或99%以上,两组数据差异有显著意义;如P>0.05,可以理解为这种把握性在95%以下,两组数据差异没有显著意义。
上面所讲的实已为统计学之精髓,建议多看几遍,如果天生愚鲁,还是看不太懂,也没有关系,现在进一步“傻瓜化”,即所谓统计学处理,只要求得P值即可。
P<0.05或P<0.01,表示阳性结果,两组数据差异有显著意义;P>0.05,表示阴性结果,两组数据差异没有显著意义。
所以,统计学处理的中心任务是求P值。
下面讲解遇到【例2】这样的问题,如何求P值。
【例2】中一共有6个数据:第一组均数(X1)、标准差(S1)、例数(N1)与第二组均数(X2)、标准差(S2)、例数(N2),就是根据这6个数据,先通过复杂计算,求出“T”值(如果没有想成为统计学专家,就不必去理解“T”是什么了,知道“T”是为了求“P”用的就可以了),求出“T”值后,再查“T界值表”,就知道“P值”了。
具体解法步骤如下:⑴通过计算(这里略去计算公式,可由软件求出),T=4.088⑵计算自由度:自由度=N1+N2-2=19+17-2=34(计算自由度是为了查T界值表用的,自由度即两组例数之和减去2,不要问我为什么不减去3或减去1这样的问题了。
)⑶查T界值表,对应自由度34,T0.05=2.032,T0.01=2.728,今T=4.088>T0.01,即P<0.01,差别有高度显著意义。
T=4.088是如何求出的呢?我们再回到软件《临床医师统计学助手V3.0》,只要把第一组均数(X1)、标准差(S1)、例数(N1)与第二组均数(X2)、标准差(S2)、例数(N2)这6个数据输入对应的框内,该软件就会利用预先存储的公式自动计算T值,并查T界值表,得到P值,如图:三、配对计量资料T检验【例3】目的研究音乐胎教对胎儿运动技能培养的效果。
方法10例28~32周孕妇,分别记录听音乐(水浒传主题曲)前每小时的胎动次数及听音乐后每小时的胎动次数,结果数据如表1所示,音乐胎教后胎动次数增多,差别有显著意义(p<0.05 )结论音乐胎教可增强胎儿运动技能,对培养我国运动天才有现实意义。
显然【例3】与【例2】有所不同,主要是【例3】两组间的数据可以前后配对的。
我们经常碰到这种情况,即同一个体做两次处理,如治疗前检测某一指标,治疗后再检测某一指标,而后做治疗前后配对比较,以判断疗效,正如【例3】。
这种情况如何进行统计学处理呢?同样也是先计算T值,然后按自由度(这时自由度=对子数-1,如本例自由度是9。
)查T界值表,求得P值。
但是“配对T检验”计算T值的方法与“两样本均数T检验”有所不同,这里不再作介绍,由软件《临床医师统计学助手V3.0》自动完成即可,如下图。
本例T=2.47,自由度=10-1=9,查T界值表,对应自由度9,T0.05=2.26,T0.01=3.25,今T=2.47>T0.05,即P<0.05,差别有显著意义。
可能有人会问,【例3】的情况,也可以把胎教前视为对照组,求得平均胎动次数是:21.8±5.31,胎教后视为治疗组,求得平均胎动次数是:24.0±6.31,然后套用【例2】的方法,用“两样本均数T检验”行不行?这样虽无大错误,但是将会导致检验效率的下降,就是说,如果数据差异较大时,两种方法均可,如果数据差异较小时,用“配对T检验”会显示出差异有意义,而用“两样本均数T检验”时,可能差异无意义。
切记,非配对资料误用配对T检验,则是错误的。
四、计数资料卡方检验【例4】目的研究医患关系对重症病人死亡率的影响。
方法根据问卷调查对收住重症监护病房的病人分为“医患关系良好组”与“医患关系紧张组”,比较两组间的住院死亡率。
结果“医患关系良好组”25例,住院间死亡3例,死亡率13.6%,“医患关系紧张组”23例,住院间死亡9例,死亡率39.1%,两组间差别有显著意义(p<0.05 )结论医患关系紧张增加重症病人的住院死亡率,可能与医师害怕被病人告而治疗方案趋向保守有关。
【例4】又是一个非常常见的一种统计学数据处理类型。
【例4】中所提供的数据是“比例”,或百分数,与前面三个例子不同,前面三个例子所提供的数据则是直接在病人身上测量到的数据,如收缩压120±10.2mmHg、身高100±15.81cm等,我们把【例4】中的数据叫做计数资料,而【例1、2、3】中的数据叫做计量资料。
计数资料无法用形式表示,只能用比例表示,如:死亡率13.6%、30例中显效10例(10/30)等。
显然,对于计数资料,再用T检是不适合了,必须用卡方检验。
卡方检验的步骤是:先求出X2(类似于T检验时先求T值)值,然后进行判断:⑴如果X2<3.84,则P>0.05;⑵如果X2>3.84,则P<0.05;⑶如果X2>6.63,则P<0.01。
解释一下,上面的两个数字“3.84”与“6.63”是查“X2界值表”得来的,只要记住即可。
所以,卡方检验的关键是求出X2值。
为了求出X2值,必须先介绍“四表格”概念。
“四表格”的形式如下,关键数据是a、b、c、d 四个数,X2值就是通过这四个数据计算出来的(这里仍不介绍公式,由软件计算。
)。
现将【例4】中的数据填入“四表格”即如下图。
当你学会了填“四表格”数据之后,就能利用软件《临床医师统计学助手V3.0》非常容易的进行卡方检验了,本软件提供与“四表格”完全相同的界面,把数据填写正确之后,就自动计算X2值并判断结果,【例4】X2=4.702>3.84,故P<0.05,如下图:在此说明一下,大家可能已注意到本软件中出现的“理论数(T)”,在此不解释“理论数(T)”是什么,只要记住,当例数(n)<40或T<1时,应采用“精确概率法”,这个方法太复杂,在此不作介绍。