实验七计数器及其应用
- 格式:doc
- 大小:472.50 KB
- 文档页数:5
实验七计数器及其应用一、实验目的1.熟悉中规模集成电路计数器的功能及应用。
2.掌握利用中规模集成电路计数器构成任意进制计数器的方法.3.学会综合测试的方法。
二、实验仪器及材料a) TDS-4数电实验箱、双踪示波器、数字万用表。
b) 参考元件:与非门74LS00、74LS161、74LS47各一片,7段数码一个。
三、预习要求和思考题:1.预习要求:1)根据指定的任务和要求设计电路,画出逻辑图及理论分析的工作波形,以便与实验比较。
2)拟定实验方法、步骤用multisim软件对实验进行仿真并分析实验是否成功。
2.思考题:1)同步计数器与异步计数器有何不同?2)用两片74LS161及门电路怎样连接可组成M=256异步计数器?四、实验原理计数器对输入的时钟脉冲进行计数,来一个CP脉冲计数器状态变化一次。
根据计数器计数循环长度M,称之为模M计数器(M进制计数器)。
通常,计数器状态编码按二进制数的递增或递减规律来编码,对应地称之为加法计数器或减法计数器。
一个计数型触发器就是一位二进制计数器。
N个计数型触发器可以构成同步或异步N 位二进制加法或减法计数器。
当然,计数器状态编码並非必须按二进制数的规律编码,可以给M进制计数器任意地编排M个二进制码。
在数字集成产品中,通用的计数器是二进制和十进制计数器。
按计数长度、有效时钟、控制信号、置位和复位信号的不同有不同的型号。
74LS161是集成TTL四位二进制加法计数器,其符号和管脚分布分别如下图所示:74LS161的功能表7-1A B C D从表7-1不需要时钟信号。
在复位端高电平条件下,预置端LD为低电平时实现同步预置功能,即需要有效时钟信号才能使输出状态等于并行输入预置数A B C D。
在复位和预置端都为无效电平时,两计数使能端输入使能信号,74LS161实现模16加法计数功能,;两计数使能端输入禁止信号,,集成计数器实现状态保持功能,。
在时,进位输出端OC=1。
在数字集成电路中有许多型号的计数器产品,可以用这些数字集成电路来实现所需要的计数功能和时序逻辑功能。
一、实验目的1. 理解计数器的基本原理和构成方式。
2. 掌握中规模集成计数器的使用方法和功能测试。
3. 了解计数器在数字系统中的应用,如定时、分频、数字运算等。
二、实验原理计数器是一种时序逻辑电路,用于对输入脉冲进行计数。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制、十进制、任意进制。
2. 触发器翻转方式:同步、异步。
3. 计数功能:加法、减法、可逆(加/减)。
常见的集成计数器有74LS161(4位二进制同步加法计数器)、74LS193(4位二进制同步可逆计数器)等。
三、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS001四、实验步骤1. 搭建实验电路:根据实验要求,搭建计数器实验电路,包括计数器芯片、时钟源、复位端等。
2. 功能测试:分别对计数器进行加法计数、减法计数、可逆计数等功能的测试,观察输出波形和计数结果。
3. 应用实验:利用计数器实现定时、分频等功能,观察实际效果。
五、实验结果与分析1. 功能测试:- 加法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证加法计数功能。
- 减法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证减法计数功能。
- 可逆计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证可逆计数功能。
2. 应用实验:- 定时功能:利用计数器实现定时功能,例如,通过计数器计数1000个脉冲,实现1秒定时。
- 分频功能:利用计数器实现分频功能,例如,将输入的50Hz时钟信号分频为5Hz。
六、实验总结通过本次实验,我们掌握了计数器的基本原理、构成方式和使用方法,了解了计数器在数字系统中的应用。
实验过程中,我们学会了如何搭建实验电路、进行功能测试和应用实验。
本次实验有助于提高我们对数字电路和时序逻辑电路的理解,为后续学习打下基础。
七、实验心得1. 计数器在数字系统中应用广泛,掌握计数器的基本原理和构成方式非常重要。
计数器及其应用的实验原理1. 什么是计数器?计数器是一种电子数字逻辑电路,用于计算和记数。
它由触发器和逻辑门组成,根据输入信号的变化来记录和显示一个有序的数字序列。
计数器可以实现加法、减法、乘法和除法等运算。
2. 计数器的工作原理计数器基于触发器工作,触发器是一种可以存储和改变其状态的电子开关。
常见的触发器有RS触发器、JK触发器和D触发器。
计数器根据触发器的状态改变来计数。
2.1 二进制计数器二进制计数器是最常用的计数器类型。
它由多个触发器按照一定顺序串联而成,每个触发器表示一个二进制位(0或1)。
当计数器接收到时钟信号时,触发器按照设定的计数模式改变其状态,从而实现计数功能。
2.2 计数模式计数器可以采用不同的计数模式,如递增计数、递减计数、加法计数和减法计数等。
计数模式根据输入信号的变化来确定计数的方向和方式。
3. 计数器的应用3.1 秒表计数器可用于制作秒表。
通过将计数器连接到一个时钟信号源,每个时钟周期就会触发计数器计数一次。
当需要计时时,可以启动计数器并显示经过的时间。
3.2 频率计计数器可以用来测量和显示信号的频率。
通过将计数器连接到输入信号,每个计数器计数周期都会表示输入信号的一个完整周期。
根据计数器计数的频率,可以得到输入信号的频率。
3.3 数字表计数器可以用于制作数字表。
通过将计数器的输出与数码管连接,可以实现数字表对时间、温度、湿度等数值的显示。
通过控制计数器的计数速度,可以调整数字表的刷新速率。
3.4 电子游戏计数器还可以用于制作电子游戏。
通过将计数器的输出与游戏的计分系统连接,可以实现计分的功能。
玩家的得分通过计数器累加并显示在游戏界面上。
4. 总结计数器是一种重要的数字电路,可以用于计数、计时和计算等应用。
它基于触发器的工作原理,通过触发器的状态改变来实现计数功能。
计数器可应用于秒表、频率计、数字表和电子游戏等领域。
掌握计数器的原理和应用可以帮助我们理解和设计更复杂的数字逻辑电路。
实验七 计数器及其应用一.实验目的1.熟悉计数器的工作原理,掌握MSI 计数器逻辑功能及其应用。
2.掌握计数器的级联方法,并会用MSI 计数器实现任意进制计数器。
3.会用MAX+PLUS Ⅱ系统软件进行任意进制计数器的设计。
二、实验器材1.74LS00 四2输入与非门 2.74LS20 双4输入与非门3.74LS161 同步二进制可预置计数器 4.74LS290 异步2-5-10进制计数器三、实验原理计数器是一种使用相当广泛的功能器件,现在无论是TTL 还是CMOS 集成电路,都有品种齐全的MSI 计数器。
计数器是一种时序电路,工作方式可分为同步和异步两种。
计数器按计数制可分为二进制,十进制和任意进制计数器;按计数方式可分为加法﹑减法和可逆计数器。
下面介绍几种常用的MSI 计数器及其应用(一) 同步计数器同步计数器是将计数脉冲同时引入到各级触发器,当输入计数时钟脉冲触发时,各级 触发器的状态同时发生转移。
这类计数器有四位二进制可予置计数器﹑十进制可予置计数器和可予置可逆计数器等,常用的74LS160为十进制计数器,直接清除;161为二进制计数器,直接清除;162为十进制计数器,同步清除;163为二进制计数器,同步清除。
两个高电平有效允许输入P 和T 及动态进位输出使计数器易于级联;T 允许动态进位输出;在允许态若计数器处于最大值的状态,动态进位输出变为高电平;对于160和162,动态进位输出=T A Q B Q C Q D Q ;对于161和163,动态进位输出=T D C B A Q Q Q Q 。
功能表(160/161)输 入输出 Qn 时钟 清除 置数 P T X L X X X 清除 H L X X 置数 H H H H 计数 XH H L X 不计数 XHHXL不计数 功能表(162/163)输 入 输出 Qn 时钟 清除 置数 P T L X X X 清除 H L X X 置数 H H H H 计数 X H H L X 不计数 XHHXL不计数在可逆计数器中,74190﹑74LS190﹑74HC190为可予置BCD 十进制同步可逆计数器(带方式控制);74191﹑74LS191﹑74HC191为可予置四位二进制同步可逆计数器(带方式控制);74192﹑74LS192﹑74HC192﹑74C192为可予置BCD 十进制同步可逆计数器(双时钟带清除);74193﹑74L193﹑74LS193﹑74HC193﹑74C193为可予置四位二进制同步可逆计数器(双时钟带清除)。
计数器的应用实验总结介绍计数器是一种常见的应用,广泛应用于各个领域。
在本次实验中,我们对计数器的应用进行了研究和总结。
本文将对实验的目的、实验过程、实验结果以及对计数器应用的总结进行详细阐述。
实验目的本次实验的目的是通过研究计数器的应用,探索其在实际生活和工程中的应用价值。
我们希望能够深入了解计数器的原理和相关知识,并通过实验验证计数器在不同场景下的应用效果。
实验过程1.确定实验步骤:我们首先确定了实验步骤,包括材料准备、实验环境搭建、实验操作等。
2.材料准备:我们准备了一台计算机、一块开发板、若干导线和一个计数器模块作为实验所需材料。
3.实验操作:我们按照设定的实验步骤进行操作,将计数器模块与开发板进行连接,并通过编程的方式设置计数器的初始值和计数方式。
4.实验观察:在实验过程中,我们观察了计数器模块的工作状态,并记录相关数据。
5.数据分析:根据实验获得的数据,我们进行了详细的数据分析和处理,得出了一些结论。
实验结果通过本次实验,我们获得了以下实验结果:1.计数器模块能够准确地记录计数次数,并且可以根据设置的计数方式进行自动计数。
2.不同的计数方式对计数器的性能影响较大,有些计数方式可能会导致计数器出现误差。
3.计数器模块的精度与其技术规格有关,选择合适的计数器模块可以提高计数器的性能。
计数器应用总结计数器在生活和工程中有着广泛的应用。
以下是对计数器应用的总结:1.计步器:计步器是计数器的一个常见应用,用于记录行走步数。
可以通过计步器来监控日常运动量,帮助人们进行健康管理。
2.生产计数:在生产线上,可以使用计数器来记录生产数量,帮助工厂管理生产进度和产品质量。
3.交通流量统计:计数器可以用于统计道路上的车辆流量,为交通管理提供数据支持,帮助进行交通规划和拥堵预测。
4.频率计数:计数器可以用于测量信号的频率,广泛应用于电子设备测试和通信领域。
5.时间测量:计数器也可以用于测量时间,如秒表和倒计时器等,广泛应用于运动比赛和实验室实验等场景。
计数器的应用——实验报告
计数器的应用——实验报告
本实验旨在深入了解计数器的工作机制并熟悉其应用。
实验设备:实验室计数器(新陶计数器XTC-300A)
实验过程:
一、计数器的粗略调试
1、根据实验室计数器XTC-300A使用手册,开机检查计数器输出数字和显示结果,确认是否正常。
2、检查计数器输入电源,随机调节计数电源,观察输出数字和显示的变化,以熟悉计数器的各种功能。
3、调节开关,设定计数器精度、次数、时间、温度等参数,以及观察运行时的电源变化,熟悉计数器的精确控制功能。
4、检查计数器的各个部件,观察运行时的状态,确认计数器的发挥最大效果。
二、计数器的应用
1、根据实验室中所需完成的实验项目,结合计数器的工作原理,确定出不同参数下计数器的最佳使用率,以便最终能够发挥出计数器的最佳性能。
2、利用计数器精准控制时间,操作不同的温度仪器及相关理化试验仪器,实现实验数据的精确测量。
3、将计数器神经网络连接至实验室中的计算机,实现实验数据的连续监测,让实验参数得以更好的控制。
实验结论:
通过本次实验,对计数器的运行机制及其实验设备中的应用有了更加深入的了解。
结合前述操作,可确定计数器在实验中起着很重要的作用,可以实现对实验室实验的高精度控制,帮助做出更为准确的测量和监测数据。
数字电子技术实验报告实验四:计数器及其应用一、实验目的:1、熟悉常用中规模计数器的逻辑功能。
2、掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:1、数字电路实验箱;2、74LS90。
三、实验原理:1、计数是一种最简单基本运算,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时具有分频功能。
计数器按计数进制分有:二进制计数器,十进制计数器和任意进制计数器;按计数单元中触发器所接收计数脉冲和翻转顺序分有:异步计数器,同步计数器;按计数功能分有:加法计数器,减法计数器,可逆(双向)计数器等。
2、74LS90是一块二-五-十进制异步计数器,外形为双列直插,NC表示空脚,不接线,它由四个主从JK触发器和一些附加门电路组成,其中一个触发器构成一位二进制计数器;另三个触发器构成异步五进制计数器。
在74LS90计数器电路中,设有专用置“0”端R0(1),R0(2)和置“9”端S9(1)S9(2)。
其中前两个为异步清0端,后两个为异步置9端。
CP1, CP2为两个时钟输入端;Q0~Q3为计数输出端。
当R1=R2=S1=S2=0时,时钟从CP1引入,Q0输出为二进制;从CP2引入,Q3输出为五进制。
时钟从CP1引入,二Q0接CP1,则Q3Q2Q1Q0输出为十进制(8421码);时钟从CP2引入,而Q3接CP1,则Q0Q3Q2Q1输出为十进制(5421码)。
四、实验原理图及实验结果:1、实现0~9十进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~9十个数字。
2、实现六进制计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0~5六个数字。
3、实现0、2、4、6、8、1、3、5、7、9计数。
1)实验原理图如下:(函数信号发生器:5V 3Hz 偏移2.5V方波)2)实验结果:解码器上依次显示0、2、4、6、8、1、3、5、7、9十个数字。
实验七 中规模集成计数器的应用一、实验目的1.熟悉中规模集成电路计数器的功能及应用。
2.进一步熟悉数字逻辑实验箱中的译码显示功能。
二、实验原理计数器是一种中规模集成电路,其种类有很多。
如果按照触发器翻转的次序分类,可分为同步计数器和异步计数器两种;如果按照计数数字的增减可分为加法计数器、减法计数器和可逆计数器三种;如果按照计数器进位规律又可分为二进制计数器、十进制计数器、可编程N 进制计数器等多种。
常用计数器均有典型产品,不须自己设计,只要合理选用即可。
本实验选用四位二进制同步计数器74LS161做计数器,该计数器外加适当的反馈电路可以构成十六进制以内的任意进制计数器。
图1是它的逻辑符号,它除了具有二进制加法计数功能外,还具有预置数、清零、保持的功能。
图中LD 是预置数控制端,0D 、1D 、2D 、3D 是预置数据输入端,r C 是清零端,T CT 、P CT 是计数器使能控制端,0C 是进位信号输出端,它的主要功能有:(1)异步清零功能 若r C =0(输出低电平),则输出0Q 1Q 2Q 3Q =0000,与其它输入信号无关,也不需要CP 脉冲的配合,所以称为“异步清零”。
(2)同步并行置数功能 在r C =1,且LD =0的条件下,当CP 上升沿到来后,触发器0Q 1Q 2Q 3Q 同时接收0D 1D 2D 3D 输入端的并行数据。
由于数据进入计数器需要CP 脉冲的作用,所以称为“同步置数”,由于4个触发器同时置入,又称为“并行”。
(3)保持功能 在r C =LD =1的条件下,T CT 、P CT 两个使能端只要有一个低电平,计数器将处于数据保持状态,与CP 及0D 1D 2D 3D 输入无关。
(4)计数功能 当r C =LD =T CT =P CT =1时,电路为四位二进制加法计数器。
在CP 脉冲作用下,电路按自然二进制递加,状态变化在0000~1111间循环。
74LS161的功能表详见表一所示。
实验七计数器及其应用一、实验目的1.学习用集成触发器构成计数器的方法2.掌握中规模集成计数器的使用方法及功能测试方法3.运用集成计数器构成1∕N分频器二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数器的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、用D触发器构成异步二进制加∕减计数器图7-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D 触发器接成T′触发器,再由低位触发器的Q端和高一位的CP端相连接。
图7-1若将图7-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器3.中规模十进制计数器74LS90,其内部是由四个下降沿J-K触发器组成的两个独立CP为时钟脉冲输入端,Q0为输出端;另一个是异步五进计数器。
一个是二进制计数器,CP为时钟脉冲输入端,Q3Q2Q1为输出端。
R0A、R0B称异步复位(清零)端,制计数器,1S9A、S9B称异步置9端。
表7-1是该计数器功能表。
由该表可见:(1)复位端R0A= R0B=1以及置9端S9A或S9B之中有一个接“0”就实现计数器清零,即Q3Q2Q1Q0=0000。
(2)置9端S9A= S9B=1以及复位端R0A或R0B状态任意就实现计数器置“9”,即Q3Q2Q1Q0=1001。
(3)正常计数时,必须使R0A或R0B之中有一个接“0”,同时R9A或S9B之中有一个接“0”。
深圳大学实验报告课程名称:数字电子技术实验项目名称:计数器学院:光电工程学院专业:光源与照明指导教师:**报告人:黄学号:2016 班级:实验时间:2018年12月19日实验报告提交时间:教务处制三、实验原理:计数器器件是应用较广的器件之一,它有很多型号,各自完成不同的功能,可根据不同的需要选用。
本实验选用74LS162做实验器件。
74LS162引脚图见图1。
74LS162是十进制BCD同步计数器。
Clock是时钟输入端,上升沿触发计数触发器翻转。
允许端P和T都为高电平时允许计数,允许端T为低时禁止Carry产生。
同步预置端Load加低电平时,在下一个时钟的上升沿将计数器置为预置数据端的值。
清除端Clear为同步清除,低电平有效,在下一个时钟的上升沿将计数器复位为0。
74LS162的进位位Carry在计数值等于9时,进位位Carry为高,脉宽是1个时钟周期,可用于级联。
四、实验内容与步骤:(一)实验内容:1、用1片74LS162和1片74LS00采用复位法构一个模7计数器。
用单脉冲做计数时钟,观测计数状态,并记录。
用连续脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。
2、用1片74LS162和1片74LS00采用置位法构一个模7计数器。
用单脉冲做计数时钟,观测并记录Q D,Q C,Q B,Q A的波形。
3、用2片74LS162和1片74LS00构成一个模60计数器。
2片74LS162的Q D,Q C,Q B,Q A分别接两个译码显示的D,B,C,A端。
用单脉冲做计数时钟,观测数码管数字的变化,检验设计和接线是否正确。
(二)实验接线及测试结果:1、复位法构成的模7计数器接线图及测试结果(1)复位法构成的模7计数器接线图图9.1 复位法7进制计数器接线图1 图9.2 复位法7进制计数器接线图2 图中,AK1是按单脉冲按钮,LED0,LED1,LED2和LED3是逻辑状态指示灯,100kHz 是连续脉冲源。
实验七计数器及其应用
一、实验目的
1、学习用集成触发器构成计数器的方法
2、掌握中规模集成计数器的使用及功能测试方法
3、运用集成计数计构成1/N分频器
二、实验原理
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能.
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器.使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、中规模十进制计数器
CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图7—1所示。
图7-1 CC40192引脚排列及逻辑符号
图中LD-置数端CP U—加计数端 CPD—减计数端
CO—非同步进位输出端BO—非同步借位输出端
D0、D1、D2、D3-计数器输入端
Q0、Q1、Q2、Q3—数据输出端 CR-清除端
CC40192(同74LS192,二者可互换使用)的功能如表7—1,说明如下:
表7-1
当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。
当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器.当CR 为低电平,LD 为高电平时,执行计数功能。
执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。
执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CPD 输入,表9-2为8421码十进制加、减计数器的状态转换表。
表7-2
加法计数 减计数
2、用D 触发器构成异步二进制加/减计数器
图7-2是用四只D 触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D 触发器接成T ’触发器,再由低位触发器的Q 端和高一位的CP 端相连接.
图7-2 四位二进制异步加法计数器
若将图7—2稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器.
3、计数器的级联使用
一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用.
同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器.
图7-3是由CC40192利用进位输出CO控制高一位的CP U端构成的加数级联图。
图7—3 CC40192级联电路
4、实现任意进制计数
(1)用复位法获得任意进制计数器
假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
如图7-4所示为一个由CC40192十进制计数器接成的6进制计数器。
(2)利用预置功能获M进制计数器
图7—5是一个特殊12进制的计数器电路方案.在数字钟里,对时位的计数序列是1、2、…11,12、1、…是12进制的,且无0数.如图所示,当计数到13时,通过与非门产生一个复位信号,使CC40192(2)〔时十位〕直接置成0000,而CC40192(1),即时的个位直接置成0001,从而实现了1—12计数.
图7-4 6进制计数器7-5 特殊12进制计数器
三、实验设备与器件
1、+5V直流电源2、双踪示波器
3、连续脉冲源4、单次脉冲源
5、逻辑电平开关
6、逻辑电平显示器
7、译码显示器
8、CC40192×2(74LS192) CC4012(74LS20) CC4013×2(74LS74)四、实验内容(提示:各项实验的计数输出可接到LED数码管显示电路显示)
1、测试CC40192或74LS192同步十进制可逆计数器的逻辑功能
计数脉冲由单次脉冲源提供,清除端CR、置数端LD、数据输入端D3 、D2、D1、D0 分别接逻辑开关,输出端Q3、Q2、Q1、Q0接实验设备的一个译码显示输入相应插口A、B、C、D;CO和BO接逻辑电平显示插口。
按表7—1逐项测试并判断该集成块的功能是否正常。
(1) 清除
令CR=1,其它输入为任意态,这时Q3Q2Q1Q0=0000,译码数字显示为0.清除功能完成后,置CR=0
(2)置数
CR=0,CP U,CPD任意,数据输入端输入任意一组二进制数,令LD= 0,观察计数译码显示输出,予置功能是否完成,此后置LD=1。
(3)加计数
CR=0,LD=CP D=1,CP U接单次脉冲源。
清零后送入10个单次脉冲,观察译码数字显示
是否按8421码十进制状态转换表进行;输出状态变化是否发生在CP U的上升沿。
(4)减计数
CR=0,LD=CP U=1,CP D接单次脉冲源。
参照3)进行实验。
2、图7-3所示,用两片CC40192组成两位十进制加法计数器,输入1Hz连续计数脉冲,进行由00—99累加计数,记录之。
3、将两位十进制加法计数器改为两位十进制减法计数器,实现由99-00递减计数,记录之。
4、6进制计数器,按图7-4电路进行实验,记录之。
5、特殊12进制计数器,按图7-5进行实验,记录之.
6、用CC4013或74LS74 D触发器构成4位二进制异步加法计数器。
(选做)
(1)按图7-2接线,R D接至逻辑开关输出插口,将低位CP0端接单次脉冲源,输出端Q3、Q2、Q3、Q0接逻辑电平显示输入插口,各S D接高电平“1”。
(2)清零后,逐个送入单次脉冲,观察并列表记录Q3~Q0状态.
(3) 将单次脉冲改为1HZ的连续脉冲,观察Q3~Q0的状态。
(4)将1Hz的连续脉冲改为1KHz,用双踪示波器观察CP、Q3、Q2、Q1、Q0端波形,描绘之.
(5) 将图7—2电路中的低位触发器的Q端与高一位的CP端相连接,构成减法计数器,按实验内容2),3),4)进行实验,观察并列表记录Q3~Q0的状态。
五、实验预习要求
1、复习有关计数器部分内容
2、绘出各实验内容的详细线路图
3、拟出各实验内容所需的测试记录表格
4、查手册,给出并熟悉实验所用各集成块的引脚排列图
六、实验报告
1、画出实验线路图,记录、整理实验现象及实验所得的有关波形.对实验结果进行分析。
2、总结使用集成计数器的体会.。