变频器技术应用与实践 第3章
- 格式:ppt
- 大小:2.88 MB
- 文档页数:130
第1章变频调速基础1.1各种调速方法简介电力电子技术的发展开始于上世纪初汞弧整流器的发明。
真正的革命开始于1956年贝尔实验室发明的晶闸管,1958年通用电气公司推出了商品化产品。
经过40多年的发展,电力电子技术已经成为一门多学科的边缘技术,包含整流电路、电力半导体器件、计算机技术、控制理论以及集成电路等。
从调速的工作情况来看,可分为三大类,一类是机械调速,第二类是联轴节的变速,第三类是电气调速,主要是电动机的调速。
一.机械调速机械式调速是采用机械式动力源来调节传动速度,也是最古老的一种调速方法。
其典型方式如下:蒸气机调速具有起动转矩大、调速及反转容易等优点;缺点是热效率低,单位输出的重量(功率)大。
所以,中小功率已被内燃机和电动机取代,大功率改为气轮机或电动机。
气轮机的优点是能量转换效率高,容易获得高速等;缺点是需用锅炉和大的附属设备,先逐步被变速联轴节和调速电动机所取代。
使用汽油等的内燃机主要用在汽车、船舶等交通领域,不需要电源。
二.联轴节变速联轴节变速是在以定速运转的电动机轴上装设可调速的联轴节,用于改变负载装置的输入转速,其典型代表如下:变间距带轮调速主要是利用带与皮带轮的接触面摩擦力传递动力,调节轴的带与带轮间距、改变等效直径比进行调速,调速比为1:3~1:6。
这种调速响应性及精度差。
液力式变速机是利用改变液量来改变输出轴的转速,容易实现无级调速,比机械式调速平稳。
电磁转差离合器是调节励磁电流控制速度与转矩特性。
但总效率低,转筒需要冷却,不能产生制动力矩。
电气调速按调速性能分,有普通型和高性能调速型,按提供的电能类型,可分为直流调速和交流调速;而交流调速还可以再分类。
目前国内生产的电气和机械调速的各种设备主要有:变极调速电机、电磁调速电机及其调速装置、串级调速、变频调速装置及变频调速电机、直流调速装置及直流调速电机、调速液力偶合器、调速离合器、开关磁阻电机、微型电子调速电机、力矩电机等类型。
思考与练习1.交-直-交变频器的主电路包括那些组成部分?并说明各部分的作用。
答:交-直-交变频器的主电路由整流电路、中间电路、逆变电路三部分组成。
整流电路:把从电网接入幅值和频率都恒定的交流电压信号,经由整流器转换为直流电压;中间电路:整流器输出电压含有频率为电源频率6倍的纹波,中间电路的滤波电路能减少电压和电流的波动,还可以避免变频器被雷击时二极管被烧坏。
在直流回路中的制动电阻或反馈通道吸收电动机的再生电能,能使电动机快速制动。
逆变电路:能把直流电源逆变成交流电源,驱动电动机实现变速。
2.说明可控整流电路和不可控整流电路的组成和原理有什么区别。
答:不可控整流电路使用的器件为电力二极管,三相桥式整流电路共有6个整流二极管,其中3个二极管、、的阴极连接在一起,称为共阴极组;另外3个二极管、、的阳极连接在一起,称为共阳极组。
在接入电源、、工作期间,每等份时间段内,在共阴极组中二极管阳极电位最高的优先导通,在共阳极组中二极管阴极电位最低的优先导通。
同一时刻每组各一个二极管同时导通,其余四个反向截止。
在自然换相点各二极管换相导通或截止。
在每个周期内,每个二极管导通1/3周期,即导通角为120°,极性始终上正下负,为脉动直流电压。
负载电阻上输出的平均电压为输入相电压的2.34倍,不可改变。
可控整流电路:三相桥式整流电路中的二极管换为晶闸管(又称可控硅),就成为三相桥式全控整流电路。
当闸管阳极和阴极承受正向电压且门极和阴极两端加正向触发电压时才能导通,所以晶闸管可控整流电路输出电压的平均值可随门极控制电压信号的变化连续可调,负载上平均电压的平均值电压可被晶闸管触发延迟角调控。
3.中间电路有哪些形式?并说明各形式的功能。
答: 中间电路有哪些形式有滤波电路、制动电路。
滤波电路分为电压型可以可使直流母线电压基本保持恒定,能有效的减小受负载变动造成的影响;电流型电流基本不受负载的影响。
制动电路:分为动力制动、反馈制动、直流制动三种方式。
实习报告:变频器的应用与实践一、实习背景随着电力电子技术的发展和电力系统自动化程度的提高,变频器在工业生产中的应用越来越广泛。
为了更好地了解变频器的原理和应用,提高自己在电气工程领域的实际操作能力,我参加了为期一个月的变频器实习。
二、实习内容1. 变频器的基本原理实习期间,我首先学习了变频器的基本原理。
变频器是一种电力电子装置,通过改变电源频率来控制电动机的转速。
它主要由整流器、滤波器、逆变器和控制模块等组成。
变频器的工作原理是将电源交流电转换为直流电,再将直流电转换为不同频率的交流电,从而实现电动机转速的调节。
2. 变频器的分类和性能实习过程中,我了解了变频器的分类和性能。
根据输出电压的类型,变频器可分为电压型和电流型;根据控制方式,可分为模拟控制和数字控制。
不同类型的变频器具有不同的性能特点,如电压型变频器输出电压稳定,但启动转矩较大;电流型变频器启动转矩小,但输出电压波动较大。
3. 变频器的应用实例在实习过程中,我参观了工厂生产线,并现场观察了变频器在实际生产中的应用。
例如,在流水线上,通过调节变频器的输出频率,可以实现传送带的匀速运行;在起重机上,利用变频器控制电动机的转速,可以实现重物的平稳起吊。
这些实例使我深刻认识到变频器在工业生产中的重要作用。
4. 变频器的调试与维护实习期间,我还学习了变频器的调试与维护方法。
为确保变频器正常运行,需要定期进行参数设置和调整。
如:设置电动机的额定电压、电流、转速等参数;调整变频器的运行模式、启动方式、保护功能等。
同时,要关注变频器的散热情况,及时清理灰尘,确保通风良好。
三、实习收获通过这次实习,我对变频器的基本原理、分类、性能和应用有了更深入的了解,提高了自己在电气工程领域的实际操作能力。
同时,我也认识到变频器在工业生产中的重要作用,为今后的学习和工作中更好地应用变频器奠定了基础。
四、实习总结本次实习让我在理论知识的基础上,亲身体验了变频器的实际应用,使我更加明白了理论与实践相结合的重要性。
变频器应用技术教学教案第一章:变频器基础知识1.1 变频器的定义1.2 变频器的工作原理1.3 变频器的分类及应用领域1.4 变频器与其他调速方式的比较第二章:变频器的构成及功能2.1 变频器的构成部件2.2 变频器的功能介绍2.3 变频器的接线方式2.4 变频器的主要性能参数第三章:变频器的调试与维护3.1 变频器的调试步骤3.2 变频器的参数设置3.3 变频器的维护与保养3.4 变频器常见故障及排除方法第四章:变频器在电动机控制中的应用4.1 变频器控制电动机的原理4.2 变频器控制电动机的运行方式4.3 变频器与电动机的匹配选择4.4 变频器在电动机控制中的应用案例第五章:变频器在其他设备中的应用5.1 变频器在风机和水泵中的应用5.2 变频器在起重机械中的应用5.3 变频器在生产线上的应用5.4 变频器在其他领域中的应用案例分析第六章:变频器在工业自动化中的应用6.1 工业自动化概述6.2 变频器在plc 控制系统中的应用6.3 变频器与plc 的联合调试与运行6.4 变频器在工业自动化领域案例分析第七章:变频器在交通运输领域的应用7.1 交通运输领域调速需求分析7.2 变频器在轨道交通中的应用7.3 变频器在汽车制造中的应用7.4 变频器在船舶推进系统中的应用第八章:变频器在电力系统中的应用8.1 电力系统对变频器的需求8.2 变频器在电力系统中的应用案例8.3 变频器在无功补偿中的应用8.4 变频器在新能源发电领域的应用第九章:变频器的节能效果及环保意义9.1 变频器节能原理9.2 变频器在不同领域的节能案例9.3 变频器在环保方面的意义9.4 变频器节能环保的未来发展趋势第十章:变频器技术的发展与创新10.1 变频器技术的发展历程10.2 当前变频器技术的研究热点10.3 变频器技术的创新应用10.4 变频器技术在未来发展趋势展望重点和难点解析重点环节1:变频器的工作原理与分类解析:理解变频器的工作原理是掌握其应用技术的基础。
通用变频器教案(学生工作页)第一章:变频器概述1.1 学习目标理解变频器的基本概念熟悉变频器的主要应用领域掌握变频器的基本原理及组成部分1.2 教学内容介绍变频器的定义和作用分析变频器的主要应用领域,如工业、交通、家庭等讲解变频器的基本原理,包括整流、滤波、逆变等过程介绍变频器的组成部分,如整流器、滤波器、逆变器、控制模块等1.3 实践活动观察变频器的实物,识别其各个部分通过示例了解变频器在不同领域的应用第二章:变频器的工作原理2.1 学习目标理解变频器的工作原理熟悉变频器的主要功能掌握变频器的调速原理2.2 教学内容讲解变频器的工作原理,包括整流、滤波、逆变等过程分析变频器的主要功能,如速度控制、转矩控制、节能等讲解变频器的调速原理,包括频率控制、电压控制、转矩控制等2.3 实践活动通过实验了解变频器的工作原理及调速原理分析实际应用中变频器的调速效果第三章:变频器的安装与接线3.1 学习目标熟悉变频器的安装流程掌握变频器的接线方法了解变频器的安全注意事项3.2 教学内容讲解变频器的安装流程,包括安装位置、安装方式等介绍变频器的接线方法,包括电源接线、控制接线、输出接线等强调变频器的安全注意事项,如防尘、防水、防震等3.3 实践活动观察变频器的安装过程,学习正确的安装方法练习变频器的接线,掌握各种接线方式第四章:变频器的参数设置与调试4.1 学习目标熟悉变频器的参数设置方法掌握变频器的调试技巧了解变频器的故障处理方法4.2 教学内容讲解变频器的参数设置方法,包括基本参数和高级参数的设置介绍变频器的调试技巧,如启动、停止、加速、减速等分析变频器的故障处理方法,如故障原因、故障排除等4.3 实践活动练习变频器的参数设置,掌握各种参数的设置方法调试变频器,了解其运行状态和性能第五章:变频器的应用案例5.1 学习目标了解变频器在不同领域的应用案例掌握变频器在不同应用场景下的调速方法5.2 教学内容分析变频器在工业领域的应用案例,如电机控制、流水线等介绍变频器在交通领域的应用案例,如电梯控制、地铁牵引等讲解变频器在家庭领域的应用案例,如空调控制、洗衣机等5.3 实践活动分析实际应用中变频器的调速效果讨论变频器在不同领域中的应用前景第六章:变频器的维护与保养6.1 学习目标熟悉变频器的日常维护与保养措施掌握变频器故障的预防方法了解变频器的寿命延长策略6.2 教学内容讲解变频器的日常维护与保养措施,如清洁、检查、更换滤波电容等介绍变频器故障的预防方法,如避免过载、及时散热等分析变频器的寿命延长策略,如合理设置参数、避免频繁启停等6.3 实践活动观察变频器的日常维护与保养过程练习故障预防方法,如设置合适的启动停止模式第七章:变频器的故障诊断与维修7.1 学习目标熟悉变频器故障的现象与原因掌握变频器故障诊断的方法学会变频器故障的维修技巧7.2 教学内容分析变频器故障的现象与原因,如过流、过压、过热等讲解变频器故障诊断的方法,如观察法、仪器检测法、故障代码查询法等介绍变频器故障的维修技巧,如更换故障部件、修复电路等7.3 实践活动练习变频器故障诊断的方法,如通过故障现象判断故障原因尝试变频器故障的维修,如更换损坏的元件第八章:变频器的节能应用8.1 学习目标理解变频器节能的原理与效果掌握变频器在不同领域的节能应用了解变频器节能的优势与挑战8.2 教学内容讲解变频器节能的原理与效果,如减少能耗、提高效率等分析变频器在不同领域的节能应用,如电机控制、空调系统等讨论变频器节能的优势与挑战,如初始投资、维护成本等8.3 实践活动观察变频器节能效果的实验,如比较节能前后的能耗分析实际应用中变频器的节能效果第九章:变频器在自动化控制系统中的应用9.1 学习目标理解自动化控制系统的基本原理掌握变频器在自动化控制系统中的作用了解变频器与其他控制设备的协同工作9.2 教学内容讲解自动化控制系统的基本原理,如PID控制、模糊控制等介绍变频器在自动化控制系统中的作用,如速度控制、转矩控制等分析变频器与其他控制设备的协同工作,如PLC、传感器等9.3 实践活动学习自动化控制系统的设计与实施,如使用PLC与变频器配合实现控制观察变频器在自动化控制系统中的实际应用第十章:变频器的发展趋势与新技术10.1 学习目标了解变频器行业的发展趋势掌握变频器的新技术应用预测变频器未来的发展方向10.2 教学内容分析变频器行业的发展趋势,如市场规模、产品种类等介绍变频器的新技术应用,如矢量控制、神经网络控制等预测变频器未来的发展方向,如智能化、集成化等10.3 实践活动学习变频器新技术的应用案例,如矢量控制技术的实验讨论变频器未来的发展趋势及其对行业的影响重点和难点解析一、变频器的基本概念和应用领域:理解变频器的作用和它在不同行业中的应用是学习的基础。