10第12章调强放射治疗技术
- 格式:ppt
- 大小:7.48 MB
- 文档页数:64
调强放射治疗计划
李宝生;于金明;王立英;徐本华;王仁本;孔丽;赵献光;周涛;李万龙
【期刊名称】《中国肿瘤》
【年(卷),期】2001(10)8
【摘要】调强放射治疗(IMRT)作为一种新近发展起来的先进放射治疗技术 ,在一些发达国家已经应用于临床。
其优势在于肿瘤靶区三维剂量分布的适形程度及其均匀性较标准的适形放疗更好 ,从而在减少或不增加正常组织受高剂量照射的前提下增加肿瘤组织的受照剂量 ,这样就可以提高肿瘤的局部控制率 ,降低正常组织并发症的发生率。
本文对调强放疗的计划过程、剂量计算及优化方式等进行了综述。
【总页数】3页(P461-463)
【关键词】调强放射治疗;放射治疗计划;放射治疗剂量;肿瘤
【作者】李宝生;于金明;王立英;徐本华;王仁本;孔丽;赵献光;周涛;李万龙
【作者单位】山东省肿瘤医院
【正文语种】中文
【中图分类】R730.55
【相关文献】
1.左乳腺癌保乳术后混合调强放射治疗计划与单纯调强放射治疗计划剂量学比较与分析 [J], 刘旭红;陈晓;艾毅钦;李文辉;杨毅;侯宇
2.自动调强放射治疗计划与手动调强放射治疗计划的剂量学比较研究 [J], 曾广平; 康盛伟; 唐斌; 黎杰; 王培
3.自制TOMO模体在螺旋断层放射治疗系统调强放射治疗计划验证研究 [J], 郭兴照; 刘静; 程金生; 徐伟; 戴相昆; 王刚
4.利用三维治疗计划系统对宫颈癌术后不同射野数调强放射治疗(IMRT)与三维适形放射治疗的计划作剂量学比较 [J], 李辉成;张晓敏;张永峰;张哲;刘丽波
5.乳腺癌保乳术后混合调强与全调强放射治疗的计划对比 [J], 余育贤;吴继平;张龙泉;张龙泉
因版权原因,仅展示原文概要,查看原文内容请购买。
调强放射治疗自动计划技术的研究进展范嘉伟【摘要】逆向调强放疗(intensity-modulated radiation therapy,IMRT)技术在保证靶区接收足够照射剂量的同时极大地降低了正常组织的受照剂量.在IMRT治疗计划的设计过程中,需要进行多次尝试与优化才能在提高靶区覆盖率与减少正常组织受照剂量的矛盾中找到平衡点.这种常规的计划设计过程十分繁杂,而且很大程度上依赖于设计者自身的经验,缺乏统一的规范和评判标准.因此,如果可以在复杂的优化过程之前就利用某些方法(例如自动计划算法)预测出最终的计划结果,将会提高计划的设计效率和质量.该研究将对放射治疗中自动计划技术的研究进展做一综述.【期刊名称】《中国癌症杂志》【年(卷),期】2018(028)006【总页数】4页(P435-438)【关键词】逆向调强放疗;计划预测;自动计划【作者】范嘉伟【作者单位】复旦大学附属肿瘤医院放射治疗科,复旦大学上海医学院肿瘤学系,上海 200032【正文语种】中文【中图分类】R73-37近年来,随着计算机及加速器技术的迅猛发展,逆向调强放疗(intensity-modulated radiation therapy,IMRT)技术在保证靶区接收足够照射剂量的同时极大地降低了正常组织的受照剂量。
作为新兴技术,自动计划技术能够提高IMRT计划的质量和效率,已获得国内外研究者的重视。
自动计划技术是指通过某种自动化的算法或手段生成临床可接受的IMRT计划的技术。
本研究将通过回顾近年来的文献,就国内外在该领域的研究进展做一综述。
1 放射治疗自动计划研究的临床意义优质的IMRT计划需要专用的治疗计划系统(treatment planning system,TPS),也需要熟悉该系统的计划设计者不断尝试和反复修改(trial and error)。
不同的计划设计者由于自身的经验、目标函数的设置等诸多方面存在差异,对同一患者可能设计出完全不同的IMRT计划。
调强放射治疗技术名词解释
调强放射治疗技术是一种利用计算机程序对放射源进行调节和控制的放射治疗技术,也被称为放射剂量调强技术。
该技术主要用于治疗一些需要较高剂量的肿瘤,如放射性照射剂量过高的肿瘤、肿瘤无法完全切除等情况。
调强放射治疗技术的基本思想是通过计算机程序对放射源进行精确的控制,使得治疗计划中的剂量达到预设的目标值。
在调强放射治疗技术中,放射源的剂量是通过一个数字信号控制的,这个信号可以通过计算机程序进行调节。
计算机程序会根据治疗计划、肿瘤的性质和患者的身体情况等因素,计算需要最合适的剂量,然后通过放射源发出正确的信号,使得剂量达到预设的目标值。
调强放射治疗技术的优点包括:精确、高效、安全。
该技术可以精确控制剂量,使得肿瘤得到更好的治疗效果。
同时,由于放射源的剂量是可以通过计算机程序进行调节和控制的,因此治疗过程更加安全和高效。
调强放射治疗技术也存在一些不足之处。
例如,由于放射源的剂量是可以通过计算机程序进行调节和控制的,因此治疗计划可能需要多次调整,以确保剂量达到最合适的目标值。
此外,调强放射治疗技术还需要精确的放射源定位和控制系统,以确保治疗过程的准确性和安全性。
调强放射治疗技术是一种高精度的放射治疗技术,可以用于许多不同的肿瘤治疗计划中。
随着技术的不断进步,调强放射治疗技术的治疗效果和安全性也在不断提高。
调强放射治疗技术的发展进程摘要】调强放射治疗是指能对射线强度进行调整的一种放射治疗方法。
调强技术从利用金属补偿器开始对X射线能量调节发展到利用独立准直器和MLC的调强技术,到现在广泛应用的旋转调强和断层调强以及IGRT技术。
调强放疗技术的不断发展旨在更加精准的确定治疗靶区,形成更加个体化的治疗方案。
【关键词】调强;IMRT;放射治疗;MLC【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2015)08-0091-03随着计算机技术的日益成熟发展,放射治疗步入“三精”时代,精确定位,精确设计治疗计划到病人精确治疗。
调强放射治疗(intensity-modulated radiotherapy ,IMRT)以其独特的优势,精确的靶区定位跟踪、剂量适形、自适应照射等特点,正逐步引领着新放疗时代。
本文旨在简要概述调强放射治疗的发展进程,以及新的图像引导下的调强放射治疗的发展。
调强放射治疗(IMRT)定义为:它可以对不同方向入射的照射野强度进行调整,从而可以以非均匀射野对靶区进行照射,所有照射野的合成效果即可得到最终靶区剂量分布。
通过改变剂量率的调强方式有组织补偿器、一维楔形板等,通过改变照射时间的调强方式有独立准直器,多叶准直器静态和动态调强。
1.金属补偿器金属补偿器通过在均匀的照射野方向上放置厚度不等的金属补偿块,实现补偿器的调强功效。
金属补偿形成调强照射野,射线强度分布明显,易于计算。
缺点是设计工作繁琐耗时,每次使用需要搬动沉重的补偿块,制作和存储上的不便,需要更先进的电子操作而非人工操作来弥补[1][2]。
2.独立准直器调强通过直线加速器的铅门准直器的运动实现的调强技术可以分为[3]:静态模式调强和动态模式调强。
独立准直器调强的原理是基于两个铅门的相对运动来进行注量调制。
准直器动态调强是,在加速器出束过程中,一对铅门处于静止状态,另一对铅门来回运动,即完成对射束的调强。
只有当铅门的运动速率够快的情况下,能实现有梯度的强度,但是在20世纪的中期,加速器的准直器还未能达到用计算机来直接控制,再加上通过准直器的运动,需要对漏射线和散射线的影响进行循环的修正,以保证出束与计划设计要求一致,这也大大的增加了临床应用的难度[4,5]。
什么是调强放疗?调强放疗(intensity modulated radiation therapy,IMRT)即调强适形放射治疗是三维适形放疗的一种,要求辐射野内剂量强度按一定要求进行调节,简称调强放疗。
它是在各处辐射野与靶区外形一致的条件下,针对靶区三维形状和要害器官与靶区的具体解剖关系对束强度进行调节,单个辐射野内剂量分布是不均匀的但是整个靶区体积内剂量分布比三维适形治疗更均匀。
严格地说,使用楔形板和常规的表面弯曲补偿器也是调强。
但这里我们所说的调强放射治疗是指一种形式的三维适形放射治疗,它使用计算机辅助优化程序不获取单个放射野内非均匀的强度分布以达到某种确定的临床目的。
下面要讲的就是这个意义上的调强放射治疗。
编辑本段调强分布的设计1、正向计划设计调强放疗在CT影像上勾画好解剖轮廓后,三维适形放射治疗是由计划者根据靶区部位和大小在计划系统上安排照射野的入射方向、大小、形数目并对各个辐射野分配权重然后由计算机系统进行剂量计算,算完后显示射野分布,计划者依据靶区及正常组织所受剂量来评估计划的好坏。
如果剂量分布不符合治疗要求,再由计划者改变射野的入射方向和权重,重新计算,如此反复进行,直至满意为止。
这种制定计划的方式叫做正向计划设计。
2、调强放疗多采用逆向计划设计方案调强概念是受了CT成像的逆原理启发:当CT的X射线管发出强度均匀的X射线穿过人体后,其强度分布与组织厚度和组织密度的乘积成反比;那么我们不是可以先确定射线照到靶区及正常组织上产生的剂量分布,然后再由此推算出各个射野应该贡献的束流强度吗?根据调强的概念,首先要依据病变(靶区)与周围重要器官和正常组织的三维解剖特点,以及期望的靶区剂量分布和危及器官(OAR)的剂量耐受极限,由计划者输入优化参数,通过计划系统计算出各个射野方向上需要的强度分布。
即在完成勾画轮廓和确定辐射野数目及入射方向后,先确定对CT影像中各个兴趣区的剂量要求。
由计划者以数学形式输入这些临床参数(即目标函数),如对靶区剂量范围的要求,对相关危及器官剂量的限制等,然后由计算机通过数学的方法(如迭代法、模拟[font color=#000000]退火[/font]法、蒙特卡洛法等)自动进行优化,在经过几百乃至上千次计算与比较后得出最接近目标函数并能够实现的计划方案。