【精品】宏观交通流模型汇总
- 格式:ppt
- 大小:127.00 KB
- 文档页数:12
数学建模在交通拥堵中的应用近年来,随着城市化进程的加速和汽车保有量的快速增长,交通拥堵已成为城市居民面临的一大挑战。
针对这一问题,数学建模作为一种有效的解决途径不断被应用和研究。
本文将介绍数学建模在交通拥堵中的应用,并分析其作用和意义。
一、交通流模型交通流模型是研究交通拥堵问题的核心工具之一。
通过数学建模,可以对交通流的形成、发展和演化进行系统的描述和预测,从而为交通管理和规划提供重要的参考依据。
1.1 宏观模型宏观模型主要关注整体交通流的运动规律。
常见的宏观模型包括瓶颈模型、微观模型等。
瓶颈模型通过考虑瓶颈区域的阻塞效应,描述了繁忙路段的交通流特征和拥堵情况。
而微观模型则通过模拟车辆的运动轨迹,重点研究车辆之间的相互作用和影响。
1.2 微观模型微观模型更关注具体车辆的行为和决策过程。
基于微观模型可以进行交通仿真实验,通过对不同交通组织方案的模拟,评估其在减少拥堵方面的效果。
此外,微观模型还能为交通规划和出行预测提供数据支持。
二、拥挤度分析拥挤度分析是利用数学建模来判断交通流拥堵状况的一种方法。
通过对数据的收集和分析,可以找出容易发生拥堵的路段和时间段,并提供相应的交通管理建议。
2.1 数据收集拥堵分析的前提是收集大量的交通数据,包括车辆速度、流量、密度等信息。
常用的数据采集手段有视频监控、微信小程序、感应器等。
这些数据能够提供交通拥堵问题的基本现状和变化趋势。
2.2 拥挤度指标基于收集到的数据,可以构建拥挤度指标来量化交通拥堵的程度。
常用的指标包括道路服务水平、空间容量利用率等。
这些指标能够帮助交通管理部门了解交通拥堵的程度及其发生的原因。
三、交通优化方案数学建模在交通拥堵中的应用不仅限于拥堵分析,还包括了交通优化方案的制定。
通过数学建模,可以为交通管理部门提供有针对性的解决方案,从而减少交通拥堵问题。
3.1 路网规划通过数学建模,可以对城市路网进行优化设计。
比如,可以通过模拟交通流的传播,评估不同规划方案下的拥堵状况,并为决策者提供科学的依据。
第2卷 第1期2002年3月交通运输工程学报Journal of T raffic and T ransportation Eng ineeringV ol.2 No.1Mar.2002收稿日期:2001-11-12作者简介:宫晓燕(1976-),女,山东淄博人,中国科学院博士生,从事数据挖掘和城市智能交通系统研究.文章编号:1671-1637(2002)01-0074-06高速公路交通流建模综述宫晓燕,汤淑明,王知学,陈德望(中国科学院智能控制中心,北京 100080)摘 要:交通流建模是智能交通自动控制、分析、设计、仿真和决策的前提,历来是交通工程界的一个重要的研究课题,分三条主线(宏观交通流模型、微观交通流模型、其它交通流模型)对交通流建模的发展做了详细介绍,并在文末提出了对交通流建模今后发展的展望。
关键词:交通流建模;宏观交通流模型;微观交通流模型中图分类号:U 491.112 文献标识码:ASurvey on freeway traffic flow modelingGON G X iao -y an ,T AN G Shu -ming ,W A N G Zhi -x ue ,CH EN De -w ang(Intelligent Contr ol &Sy stem Engineer ing Center ,Chinese A cademy of Sciences,Beijing 100080,China)Abstract :T raffic flow mo deling as the basis of traffic contro l 、traffic desig n 、traffic analysis 、traffic simulatio n and traffic control decision -making alw ays is the the resear ch focus in traffic eng ineer ing field.T his paper makes a detail introduction o f tr affic flow m odeling from three different aspects.Ex pectation on its development is also given.Key words :traffic flow mo deling ;macroscopic traffic flow model ;micro cosmic traffic flo w mo del Author resume :GONG Xiao-yan (1976-),fem ale,a dotoral student of Chinese Academ y of Sciences,eng aged in resear ch of data mining and intellig ent transportation sy stem. 城市高速公路交通流模型是描述交通流状态变量随时间与空间而变化、分布的规律及其与交通控制变量之间的关系的方程式。
高速公路交通流模型的数学建模与仿真高速公路已经成为我们日常生活中一个不可或缺的交通工具,而高速公路上的车流量也越来越大,如何对高速公路的交通流量进行建模与仿真,是一个非常有意义和挑战性的研究领域。
本文将从数学建模、数学仿真等方面探讨高速公路交通流模型的研究进展。
一、高速公路交通流的数学建模1. 宏观模型宏观模型是基于对高速公路上车辆集合行驶过程的描述,以统计分析的方法进行预测和控制的模型。
这种模型忽略车辆之间的距离和时间间隔,仅从车流量、平均车速、车道数量、最大速度、通行能力等角度来考虑。
其中最经典的宏观模型是Lighthill-Whitham-Richards(LWR)模型,它采用的基本假设是车辆集合的压力会导致交通流的压缩,进而影响车辆密度和流量。
LWR模型以一维连续守恒方程为基础,不仅可以得到高速公路交通流的通行能力和瓶颈位置,还可以有效地预测车辆密度、速度和流量等交通指标。
2. 微观模型微观模型是基于车辆之间的互动,通过对每辆车的行驶过程进行描述来得到高速公路交通流特性的模型。
这种模型通常使用数学形式来描述每辆车的动力学方程,以模拟车辆在高速公路上的运动轨迹。
同时,微观模型也通常考虑车辆之间的相互作用、交通信号等因素对车辆行驶的影响。
著名的微观模型有保持距离模型(IDM)、汽车运动模型(MOT)和车间距模型(GMC)等。
二、高速公路交通流的数学仿真数学仿真技术基于对数学模型的计算机处理,以可视化的方式模拟高速公路交通流的特性。
常见的数学仿真技术包括:蒙特卡罗方法、离散事件仿真、连续仿真等。
1. 蒙特卡罗方法蒙特卡罗方法是一种统计计算方法,它基于随机数生成来模拟随机事件的过程。
在高速公路交通流的仿真中,蒙特卡罗方法可以通过生成大量的随机车辆行驶数据,模拟高速公路上车辆的进出、车速等行驶特性。
2. 离散事件仿真离散事件仿真是一种基于事件驱动的仿真技术,它考虑车辆在运动过程中遇到各种事件,例如车辆的加速、减速、变道、超车等。
基于宏观经济因素的中国高速公路交通量增长预测模型交通量是打算高速公路项目经济效益的核心内容。
国内外许多学者都做过相关研究,国内学者对交通量的预估大多数采用了神经网络预估方法。
这种方法是在分析影响某条高速公路所在地的国道、县道等历史数据的基础上进行的。
一些学者也利用影响交通量的其他因素直接对交通量的大小进行估计。
分析过程中许多不确定因素只能依靠预估者的主观猜测,因此,找到影响交通流量的宏观经济因素是非常必要的,而得出一种基于宏观数据的精确预估模型更是迫在眉睫。
一、影响交通量增长的经济因素目前,国内外学者普遍认为影响高速公路交通量增长有两个方面的因素:一是收费公路本身的一些物理参数(比如:隧道和桥梁的数量,这一地区受洪水、山崩等的倾向);二是国家的经济指标或者地区的经济指标。
Matas(20XX)的研究模型是建立在1981年~1998年的72条公路的数据的基础上回归而得出的。
Matas利用GDP作为国家经济指标进行研究。
他的研究显示交通量变化的百分比直接受国家经济指标变化的百分比影响。
与他的研究相符和的是,一些学者利用地区经济指标的变化量作为影响交通量的变量。
影响交通量的地区经济指标包括:失业人口,就业人口,失业率,工资,零售量,税收收入,CDP和人口数。
AshandBazile在20XX年做过的相关研究显示:在发展中国家,长期的交通量增长近似等于经济增长的水平。
而Matas 的研究结果显示影响交通量变化的最显著因素是地区经济变量中的失业人口。
因而,本文的选取地区生产总值,地区人口总数,地区失业人口作为影响交通流量变化的经济因素。
二、交通量增长预估模型1.回归预估模型预估模型本文利用的回归方程模型为:Yit=β0+β1iEit+μit其中Yit表示在第t年,高速公路的第i段交通量增长的百分比。
EIt表示第t年,经济指标的增长百分比。
μit表示误差项。
回归选定的经济指标因子包括:GDP,地区人口总数,地区失业人口数,分别用这些经济指标的年变化百分比进行计算。