圆周运动的实例分析
- 格式:ppt
- 大小:3.19 MB
- 文档页数:53
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
F NG圆周运动实例分析一、变速圆周运动1.速度特点:速度的_______都变化的圆周运动.2.受力特点:合力方向______圆心,合力________(是或不是)向心力. 3.合力的作用(1)合力沿速度方向的分量F t 产生切向加速度,F t =ma t ,它只改变速度的_______. (2)合力沿半径方向的分量F n 产生向心加速度,F n =ma n ,它只改变速度的________.(3)F 合与v 夹角θ大于90°时,速率变________,当F 合与v 夹角θ小于90°时,速率变________. 【提示】 (1)当合力F 合指向圆心时(F t =0),F 合即为向心力F n ,故匀速圆周运动是变速圆周运动的特例. (2)对变速圆周运动,向心力是合力沿半径方向的分力,即F 向=F n =m v 2R =mω2R ,此时F 合≠m v 2R ≠mω2R .二、离心运动和向心运动 1.离心运动(1)定义:做圆周运动的物体,在所受合外力突然消失(F 合=0)或不足以提供圆周运动________的情况下,就做逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的惯性,总有沿着________飞出去的倾向. (3)受力特点:(F 为合外力提供的向心力) 当F =_______时,物体做匀速圆周运动; 当F =0时,物体沿_______飞出;当F <________时,物体逐渐远离圆心.如图所示. 2.向心运动当提供向心力大于做圆周运动所需向心力时,即F >mrω2,物体渐渐________.如图所示. 三、圆周运动实例分析1、分析步骤: 1 确定圆周平面 2 确定圆心 3 受力分析4 明确向心力来源5 依据两个动力学方程写表达式6 运用必要的数学知识 2、汽车过凸形桥和凹形桥如图1所示,汽车受到重力G 和支持力F N ,合力提供汽车过桥所需的向心力。
假设汽车过桥的速度为v ,质量为m ,桥的半径为r ,rmv F G N 2=-。
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
第六节 匀速圆周运动实例分析例1:一辆质量 2.0m =t 的小轿车,驶过半径90R =m 的一段圆弧形桥面,重力加速度210m/s g =.求:(1)若桥面为凹形,汽车以20 m /s 的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10 m /s 的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F 和阻力f .在竖直方向受到桥面向上的支持力1N 和向下的重力G mg =,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力1N 与重力G mg =的合力为1N mg -,这个合力就是汽车通过桥面最低点时的向心力,即1F N mg =-向.由向心力公式有:21v N mg m R-=, 解得桥面的支持力大小为21v N m mg R=+ 2420(2000200010)N 902.8910N=⨯+⨯=⨯ 根据牛顿第三定律,汽车对桥面最低点的压力大小是42.8910⨯N .(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F 和阻力f ,在竖直方向受到竖直向下的重力G mg =和桥面向上的支持力2N ,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力G mg =与支持力2N 的合力为2mg N -,这个合力就是汽车通过桥面顶点时的向心力,即2F mg N =-向,由向心力公式有22v mg N m R-=, 解得桥面的支持力大小为222410(2000102000)N 901.7810Nv N mg m R =-=⨯-⨯=⨯ 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为41.7810⨯N .(3)设汽车速度为m v 时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G 作用,重力G mg =就是汽车驶过桥顶点时的向心力,即F mg =向,由向心力公式有2m v mg m R=, 解得:210m/s g = 汽车以30 m /s 的速度通过桥面顶点时,对桥面刚好没有压力.例2:如图所示,飞机以15/v m s =的恒定速率沿半径10R m =的外切圆轨道,在竖直平面内做特技飞行,求质量为60M kg =的飞行员在A .B .C .D 各点对机座或保险带的作用力?选题目的:考查向心力的实际应用和计算.解析:设机座对飞行员的支持力为N F ,保险带对飞行员的拉力为F(1)在A 点时,0A F =. 根据向心力公式,有2NA v F Mg M R-= (2)在B 点时,N F .F 均为零的临界速度为010/v Rg m s ==因为0v v >,所以0NB F =,根据向心力公式,有2B g v F M M R+= ∴ 2()750B v F M g N R=-= (3)在C 点时,0NC F =, 同理2C v F Mg M R -= ∴ 2()1950C v F M g N R=+= (4)在D 点时,因为0v v >,所以0D F = 同理2ND v F Mg M R += ∴ 2()750ND v F M g N R=-=例3:一辆载重汽车的质量为4m ,通过半径为R 的拱形桥,若桥顶能承受的最大压力为3F mg =,为了安全行驶,汽车应以多大速度通过桥顶?选题目的:考查向心力的实际应用.解析:如图所示,由向心力公式得244N v mg F m R-= ∴ 244N v F mg m R=- …… ① 为了保证汽车不压坏桥顶,同时又不飞离桥面,根据牛顿第三定律,支持力的取值范围为03N F mg ≤≤ …… ②将①代入②解得 12Rg v Rg ≤≤ 例4:如图所示,用细绳拴着质量为m 的物体,在竖直平面内做圆周运动,圆周半径为R 则下列说法正确的是( )A .小球过最高点时,绳子张力可以为零B .小球过最高点时的最小速度为零C .小球刚好过最高点时的速度是RgD .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反选题目的:考查圆周运动的受力分析及速度计算.解析:小球在最高点时,受重力mg .绳子竖直向下的拉力F (注意:绳子不能产生竖直向上的支持力).向心力为n F mg F =+根据牛顿第二定律得2v mg F mR+=可见,v越大时,F越大,v越小时,F越小当0F=时,2nvF mg mR==得v Rg=最小讨论:(1)v很小时,可保证小球通过最高点,但F很小.(2)当v很小并趋近于零时,则2vmR很小并趋近于零,由于重力一定,重力大于小球所需向心力,小球偏向圆心方向,不能达到最高点,在到最高点之前已做斜抛运动离开圆轨道.(3)当v Rg=时,0F=,即刚好通过.所以,正确选项为A.C.例5:如图(a)所示,质量为m的物体,沿半径为R的圆形轨道自A点滑下,A点的法线为水平方向,B点的法线为竖直方向,物体与轨道间的动摩擦因数为μ,物体滑至B点时的速度为v,求此时物体所受的摩擦力.选题目的:考查圆周运动的向心力的分析.解析:物体由A滑到B的过程中,受到重力.轨道对其弹力.及轨道对其摩擦力作用,物体一般做变速圆周运动.已知物体滑到B点时的速度大小为v,它在B点时的受力情况如图(b)所示.其中轨道的弹力NF.重力G的合力提供物体做圆周运动的向心力,方向一定指向圆心.故2 Nv F mg mR -=2N vF mg mR =+则滑动摩擦力为2 1()Nv F F mg mR μμ==+注意:解决圆周运动问题关键在于找出向心力的来源.向心力公式.向心加速度公式虽然是从匀速圆周运动这一特例得出,但它同样适用于变速圆周运动.同步练习一.选择题1.若火车按规定速率转弯时,内、外轨对车轮的轮缘皆无侧压力,则火车以较小速率转弯时()A.仅内轨对车轮的轮缘有侧压力B.仅外轨对车轮的轮缘有侧压力C.内.外轨对车轮的轮缘都有侧压力D.内.外轨对车轮的轮缘均无侧压力2.把盛水的水桶拴在长为l的绳子一端,使这水桶在竖直平面做圆周运动,要使水在水桶转到最高点时不从桶里流出来,这时水桶的线速度至少应该是()A.2gl B./2gl C.gl D.2gl3.如图所示,水平圆盘可绕过圆的竖直轴转动,两个小物体M和m之间连一根跨过位于圆心的定滑轮的细线,M与盘间的最大静摩擦力为mF,物体M随圆盘一起以角速度ω匀速转动,下述的ω取值范围已保证物体M 相对圆盘无滑动,则A .无论取何值,M 所受静摩擦力都指向圆心B .取不同值时,M 所受静摩擦力有可能指向圆心,也有可能背向圆心C .无论取何值,细线拉力不变D .ω取值越大,细线拉力越大4.汽车在倾斜的弯道上拐弯,如图所示,弯道的倾角为θ(半径为r ),则汽车完全不靠摩擦力转弯,速率应是( )A .sin gl θB .cos gr θC .tan gr θD .cot gr θ5.在一段半径为R 的圆弧形水平弯道上,已知地面对汽车轮胎的最大摩擦力等于车重的μ倍(1μ<)则汽车拐弯时的安全速度是()A .v Rg ω≤B .Rgv μ≤C .2v Rg μ≤D .v Rg ≤6.质量为m 的小球在竖直平面内的圆形轨道内侧运动,若经最高不脱离轨道的临界速度为v ,则当小球以2v 速度经过最高点时,小球对轨道压力的大小为()A .0B .mgC .3mgD .5mg7.如图所示,小球m 在竖直放置的光滑形管道内做圆周运动.下列说法中正确的有()A .小球通过最高点的最小速度为v Rg =B .小球通过最高点的最小速度为0C .小球在水平线ab 以下管道中运动时,内侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力8.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是()A .小球过最高点时速度为零B .小球开始运动时绳对小球的拉力为20v m LC .小球过最高点时绳对小球的拉力为mgD .小球过最高点时速度大小为Lg9.一个物块从内壁粗糙的半球形碗边下滑,在下滑过程中由于摩擦力的作用,物块的速率恰好保持不变,如图所示,下列说法正确的是( )A .物块所受合外力为零B .物块所受合外力越来越大C .物块所受合外力大小不变,方向时刻改变D .物块所受摩擦力大小不变10.如图所示,长度0.5m L =的轻质细杆OP ,P 端有一质量 3.0kg m =的小球,小球以O 点为圆心在竖直平面内做匀速圆周运动,其运动速率为2.0m/s ,则小球通过最高点时杆OP 受到(g 取210m/s )A .6.0N 的拉力B .6.0N 有压力C .24N 的拉力D .54N 的拉力参考答案:1.A 2.C 3.BC 4.C 5.A 6.C 7.BC 8.D 9.C 10.B二.填空题1.M 为在水平传送带上被传送的物体,A 为终端皮带轮。