【新品推荐】中考数学总复习 第三部分 图形与几何 第8单元 锐角三角函数与圆 第39课时 与圆有关的性质课件
- 格式:ppt
- 大小:5.88 MB
- 文档页数:16
知识必备09锐角三角函数(公式、定理、结论图表)考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、. (3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值 利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释: (1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角. (2)仔细研究表中数值的规律会发现: 、、、、的值依次为0、、、、1,而、、、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时, ①正弦、正切值随锐角度数的增大(或减小)而增大(或减小) ②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,; (2)平方关系:; (3)倒数关系:或; (4)商数关系:. 要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h 为斜边上的高.要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤两直角边(a ,b)由求∠A ,∠B=90°-∠A ,两边斜边,一直角边(如c,a)由求∠A ,∠B=90°-∠A ,锐角、邻边(如∠A ,b)∠B=90°-∠A ,,一直角边和一锐角锐角、对边(如∠A ,a)∠B=90°-∠A ,,Rt △ABC一边一角斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°. (4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释: 1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如: 3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,,.(4)如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC面积,得ab=ch.(5)如图所示,若CD是直角三角形ABC中斜边上的中线,则①CD=AD=BD=AB;②点D是Rt△ABC的外心,外接圆半径R=AB.(6)如图所示,若r是直角三角形ABC的内切圆半径,则.直角三角形的面积:①如图所示,.(h为斜边上的高)②如图所示,.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为( )A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。
第八单元锐角三角函数、圆与作图第 35 课时锐角三角函数【考点 1】锐角三角函数如图, 在Rt△ABC 中, ∠C =90°,∠A, ∠B, ∠C所对的边分别为a, b, c.正弦sinA=(____________)=(_)余弦cosA=⁽⁾/₍₎=⁽⁾/₍₎正切tan A=(___________-{(______)它们统称为∠A 的锐角三角函数.在一个直角三角形中,当锐角 A 的度数一定时,∠A 的锐角三角函数值也是固定的.1. 在Rt△ABC 中, ∠C=90°, BC : AC=1 : 2,求∠A 的三个三角函数值.2. [变式][2021 巴中中考]如图,点A, B, C 在边长为 1的正方形网格格点上,下列结论错误的是( )A.sinB=13B.sinC=2√55C.tanB=12D.sin²B+sin²C=13. [变式]如图, 在△ABC中, ∠C=90 , 设∠A,∠B, ∠C 所对的边分别为a, b, c, 则下列说法正确的是( )A. c=bsin BB. v=csin BC a=btan BD. b=ctan B4. [变式]如图, 在Rt△ABC 中, ∠ACB =90°,CD⊥AB 于点D, 下列用线段比表示 tanA 的值, 错误的是( )A.BϵAC B.CDBDC.BDCD D.CDAD5. [变式]在Rt△ABC 中, ∠c= 30°, 右BCAB =35,则下列式子一定成立的是( )A.cosA=35B.sinB=35C.tanA=43D.tanB=43点悟求一个角的锐角三角函数时,要在直角三角形中,确定对边、邻边、斜边的位置.30°45°60°sinαcosαtanα16. 求下列各式的值:(1)6tan230∘−√3sin60∘−2cos45∘(2)(cos²30°+sin²30°)×tan60°697. [变式]已知锐角 A 满足2sin(A−15∘)=√2,则∠A= .,则 cos B= .8. [变式]在Rt△ABC 中, ∠C=90∘,tanA=√33点悟可结合锐角三角函数的变化规律. 记住特殊角的三角函数值.【考点3】解直角三角形9. Rt△ABC中, ∠C=90°, AC=15, ∠A=30°,解这个直角三角形.10. [变式][2021 上海中考]如图, △ABD 中,AC⊥BD, BC=8, CD=4, cos∠ABC= 4,BF 为边A5D 上的中线.(1)求 AC 的长;(2)求tan∠FBD 的值.,∠ABC的平分线 BD 交 AC 于点 D, CD=√3,求A B的11. [变式]如图, 在△ABC 中, ∠C=90°, tan A=√33长.。
中考数学总复习《锐角三角函数》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________命题点1直角三角形的边角关系及简单应用1(2022广西北部湾经济区)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是() A.12sin α米B.12cos α米C.12sinα米 D.12cosα米(第1题) (第2题)2(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44 cm,则高AD约为(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan27°≈0.51)()A.9.90 cmB.11.22 cmC.19.58 cmD. 22.44 cm3(2022随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为()A.atanα-tanβB.atanβ-tanαC.atanαtanβtanα-tanβD.atanαtanβtanβ-tanα(第3题) (第4题)4(2022乐山)如图,在Rt △ABC 中,∠C=90°,BC=√5,点D 是AC 上一点,连接BD.若tan A=12,tan ∠ABD=13,则CD 的长为 ( )A.2√5B.3C.√5D.25(2022益阳)如图,在Rt △ABC 中,∠C=90°,若sin A=45,则cos B= .(第5题) (第6题)6(2022常州)如图,在四边形ABCD 中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin ∠ABD= .7(2022广州)如图,AB 是☉O 的直径,点C 在☉O 上,且AC=8,BC=6.(1)尺规作图:过点O 作AC 的垂线,交AC ⏜于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.命题点2解直角三角形的实际应用 角度1背靠背型8(2022安徽)如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向上,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.9(2022抚顺)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数.参考数据:sin 50°≈0.766,cos 50°≈0.643,tan 50°≈1.192,√2≈1.414)角度2母子型10(2022天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32 m,求这座山AB的高度(结果取整数).(参考数据:tan 35°≈0.70,tan 42°≈0.90)11(2022连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10 m;小亮在点G处竖立标杆FG,小亮所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5 m,GD=2 m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01 m.参考数据:sin 53°≈0.799,cos 53°≈0.602,tan 53°≈1.327)角度3拥抱型12(2021自贡)如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1米.参考数据:tan 37°≈0.75,tan 53°≈1.33,√3≈1.73)角度4实物型13(2022吉林)动感单车是一种新型的运动器械.图(1)是一辆动感单车的实物图,图(2)是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70 cm,∠BCD的度数为58°.当AB长度调至34 cm时,求点A到CD的距离AE的长度(结果精确到1 cm).(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan58°≈1.60)图(1)图(2)14(2022成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10 cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是点A的对应点),用眼舒适度较为理想,求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1 cm.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)角度5其他类型15(2022山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60 m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24 m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长(结果精确到1 m.参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,√3≈1.73).分类训练15 锐角三角函数1.A2.B 【解析】 ∵AB=AC ,AD ⊥BC ,∴BD=CD=12BC=22 cm .在Rt △ABD 中,tan ∠ABD=ADBD ,∴AD=BD ·tan ∠ABD=22×tan 27°≈22×0.51=11.22(cm). 3.D 【解析】 设AB=x.在Rt △ABD 中,tan β=AB BD =x BD ,∴BD=xtanβ,∴BC=CD+BD=a+xtanβ.在Rt △ABC 中,tan α=ABBC =xa+xtanβ,∴x=atanαtanβtanβ-tan α.4.C 【解析】 如图,过点D 作DE ⊥AB 于点E.∵tan A=DE AE =12,tan ∠ABD=DE BE =13,∴AE=2DE ,BE=3DE ,∴2DE+3DE=5DE=AB.在Rt △ABC 中,tan A=12,BC=√5,∴BC AC =√5AC =12,∴AC=2√5,∴AB=√AC 2+BC 2=5,∴DE=1,∴AE=2,∴AD=√AE 2+DE 2=√22+12=√5,∴CD=AC-AD=√5,故选C .5.456.√66 【解析】 如图,过点D 作DE ⊥BC ,垂足为E ,则四边形ABED 是矩形,∴BE=AD=1,DE=AB ,∠ADB=∠CBD.∵DB 平分∠ADC ,∴∠ADB=∠CDB ,∴∠CBD=∠CDB ,∴CB=CD=3,∴CE=BC-BE=3-1=2,∴DE=√CD 2-CE 2=√32-22=√5,∴BD=√DE 2+BE 2=√(√5)2+12=√6,∴sin ∠ABD=AD BD =√6=√66.7.【答案】 (1)作图如图所示.(2)设(1)中AC 的垂线交AC 于点F ,则OF ⊥AC∴AF=CF=12AC=4. 又点O 是AB 的中点∴OF 是△ABC 的中位线∴OF=12BC=3,即点O 到AC 的距离为3. ∵AB 是☉O 的直径 ∴∠ACB=90°∴AB=√AC 2+BC 2=√82+62=10 ∴OD=5∴DF=OD-OF=5-3=2∴在Rt △CDF 中,CD=√DF 2+CF 2=√22+42=2√5 ∴sin ∠ACD=DFCD =2√5=√55.8.【答案】如图,由题意知,∠ECA=37°,CD=90,∠ADC=90°,∠ADB=53°,AD∥EC∴∠BCD=53°,∠BDC=∠ADC-∠ADB=37°,∠A=37°∴∠BCD+∠BDC=90°∴∠CBD=90°,即AC⊥BD.在Rt△CBD中,BD=CD cos∠BDC=90cos 37°≈90×0.80=72.在Rt△ABD中,AB=BDtanA =72tan37°≈720.75=96.答:A,B两点间的距离为96 m.9.【答案】如图,过点B作BH⊥AC于点H,根据题意,得∠BAC=25°+25°=50°,∠BCA=70°-25°=45°.在Rt△ABH中,AB=100,∠BAH=50°,sin∠BAH=BHAB ,cos∠BAH=AHAB∴BH=AB·sin∠BAC≈100×0.766=76.6,AH=AB·cos∠BAC≈100×0.643=64.3.在Rt△BHC中,∠BCH=45°∴CH=BH=76.6∴AC=AH+CH=64.3+76.6≈141.答:货轮距离A港口约141海里.10.【答案】根据题意,得BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=ACPA∴PA=ACtan∠APC.在Rt△PAB中,tan∠APB=ABPA∴PA=ABtan∠APB.∵AC=AB+BC∴AB+BCtan∠APC =AB tan∠APB∴AB=BC·tan∠APBtan∠APC-tan∠APB =32×tan35°tan42°−tan35°≈32×0.700.90−0.70=112(m).答:这座山AB的高度约为112 m.11.【答案】(1)在Rt△CAE中,∵∠CAE=45°∴CE=AE.∵AB=10∴BE=AE-10=CE-10.在Rt△CEB中,由tan 53°=CEBE =CE CE-10得tan 53°(CE-10)=CE,∴CE≈40.58.答:阿育王塔的高度约为40.58 m.(2)由题意知Rt△FGD∽Rt△CED∴FGCE =GDED,即 1.540.58=2ED,∴ED≈54.11.答:小亮与阿育王塔之间的距离约为54.11 m.归纳总结解直角三角形实际应用的一般步骤①审题:根据题意画出图形,建立数学模型.②构造直角三角形:将已知条件转化到示意图中,把实际问题转化为解直角三角形问题.③列关系式:选择合适的边角关系式,使运算简便、准确.④检验:得出数学问题的答案并检验答案是否符合实际意义,同时还要注意结果有无对精确度的要求.12.【答案】在Rt△BAD中,tan∠BDA=ABAD,∠BDA=53°∴AD=ABtan53°≈18.05(米).在Rt△CAD中,tan∠CAD=CDAD,∠CAD=30°第 11 页 共 11页 ∴CD=AD ·tan ∠CAD=√33AD ≈10.4(米).故办公楼的高度约为10.4米.13.【答案】 在Rt △ACE 中,∠AEC=90°,∠C=58°,AC=AB+BC=34+70=104 ∴AE=AC sin C=104×sin 58°≈104×0.85≈88.答:点A 到CD 的距离AE 的长度约为88 cm .14.【答案】 在Rt △ACO 中,∠AOC=180°-∠AOB=30°,AC=10 cm∴OA=2AC=20 cm .在Rt △A'DO 中,∠A'OD=180°-∠A'OB=72°,OA'=OA=20 cm∴A'D=A'O sin ∠A'OD ≈20×0.95=19(cm).答:顶部边缘A'处离桌面的高度A'D 的长约为19 cm .15.【答案】 分别延长AB ,CD 与直线OF 交于点G ,点H ,如图则∠AGO=∠EHO=90°.又∵∠GAC=90°,∴四边形ACHG 是矩形∴GH=AC.由题意,得AG=60,OF=24,∠AOG=70°,∠EOF=30°,∠EFH=60°.在Rt △AGO 中,∠AGO=90°,tan ∠AOG=AG OG ∴OG=AG tan∠AOG =60tan70°≈602.75≈21.8.∵∠EFH 是△EOF 的外角∴∠FEO=∠EFH-∠EOF=60°-30°=30°∴∠EOF=∠FEO ,∴EF=OF=24.在Rt △EHF 中,∠EHF=90°,cos ∠EFH=FH EF ∴FH=EF ·cos ∠EFH=24×cos 60°=12∴AC=GH=GO+OF+FH=21.8+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58 m.。
锐角三角函数 一、锐角三角函数 1、正弦:在△ABC 中,∠C=90°,我们把锐角A 的对边与斜边的叫做∠A 的正弦,记做sinA 。
2、余弦:在△ABC 中,∠C=90°,我们把锐角A 的邻边与斜边的叫做∠A 的余弦,记做cosA 。
3、正切:在△ABC 中,∠C=90°,我们把锐角A 的对边与邻边的叫做∠A 的正切,记做tanA 。
4、余切:在△ABC 中,∠C=90°,我们把锐角A 的邻边与对边的叫做∠A 的余切,记做cotA 。
[注]:0°、30°、45°、60°、90°特殊角的三角函数值二、解直角三角形1、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2、依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法) [注]:(1)三角形面积公式:111sin sin sin 222S ab C bc A ca B ===. (2)正弦定理 :2sin sin sin a b cR A B C ===. (3)余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-三、实际应用1、仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
概率一、随机事件和概率 1、 事件的分类:(1)不可能事件:事件一定不会发生 (2)必然事件:事件一定会发生(2)随机事件:事件有可能发生,也有可能不发生2、概率:对于一个事件A ,我们把刻画其发生可能性的大小的数值叫做事件A 的概率,记做:P(A)特点:每次试验结果只有有限个;各种结果出现的可能性相等。
《锐角三角函数》全章复习与巩固--知识讲解(提高)【学习目标】1.了解锐角三角函数的概念,能够正确使用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值求出这个角的度数;2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、锐角三角函数1.正弦、余弦、正切的定义如图:在Rt△ABC中,∠C=90°,如果锐角A确定:锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A是个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切统称为∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”如∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA 130°、45°、60°角的三角函数值和解30°、60°直角三角形和解45°直角三角形为本章重中之重,是几何计算题的基本工具,三边的比借助锐角三角函数值记熟练.要点二、解直角三角形在直角三角形中,除直角外的5个元素(3条边和2个锐角),只要知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素,这叫作解直角三角形.解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)仰角与俯角:(2)坡度:;坡角:.(3)方位角:要点诠释:1.解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,2.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.3.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。