数学(理):专题4.1+数列的通项公式与求和(解析版)
- 格式:doc
- 大小:1.92 MB
- 文档页数:28
数列通项公式和求和公式总结一公式法例 1 数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.二利用n a 与n S 的关系例2 若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.三累加法例3 数列{}n a 中已知111,2n n n a a a n +=-=-, 求{}n a 的通项公式.四累乘法例4数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式. 五构造法例5 ①数列{}n a 中已知113,33n n a a a +==+, 求{}n a 的通项公式;②数列{}n a 中已知()2*121,2,21nn n S a a n n N S ==≥∈-, 求{}n a 的通项公式.③数列{}n a 中已知0,n n a S >是数列的前n 项和,且12nn na S a +=,求{}n a 的通项公式一利用公式例6 等比数列{}n a 的前n 项和21n n S =-求2222123n n T a a a a =++++的值.二分组求和例7 求数列39251,,,,,2482n n ?+??? ??的前n 项和. 三错位相减例8 求和()23230nn S x x x nx x =++++≠四裂项相消例9 求和()()111114477103231nS n n =++++-+ 五倒序相加例10 设()442x x f x =+,求和122001200220022002S f f f=+++ ? ?1. 求数列1357,,,,24816,212n n -的前n 项和.2 已知3log 1log 23-=x ,求+++++nx x x x 32的前n 项和. 3. 求数列a,2a 2,3a 3,4a 4,…,na n, …(a 为常数)的前n 项和。
第4讲 数列通项公式求法一、观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21--二、公式法公式法1:等差与等比数列例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B) 42+=n a n(C) 122+-=n a n (D) 102+-=n a n例3:已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式.公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n nn .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n . (2)12-=n s n练习:1.已知数列{}n a 的前n 项和n S ,满足关系()lg 1n S n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列,并写出}{n a 的通项公式2:已知数列{}n a 前n 项的和为sn =23a n -3,求这个数列的通项公式。
3:已知正项数列{}n a 中,sn =21(a n +n a 1),求数列{}n a 的通项公式.三、 累加法 【型如)(1n f a a n n +=+的递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得 例6、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
数列的求和与通项公式推导在数学中,数列是一组按照一定规律排列的数的集合。
而数列的求和以及推导通项公式是数列研究中的重要内容。
本文将介绍数列的求和以及通项公式推导,并通过实例进行说明。
一、等差等差数列是指一个数列中每个数与它的前一个数之差是一个常数,这个常数被称为公差。
我们将针对等差数列的求和与通项公式进行讨论。
1. 求和公式:设等差数列的首项为a₁,公差为d,我们要求前n项的和Sn。
我们可以观察等差数列的前n项和与首项与末项的关系:Sn = (a₁ + a₂ + ... + aₙ) + (aₙ + aₙ₋₁ + ... + a₁)根据等差数列的性质,我们可以得到:Sn = (a₁ + aₙ)(n/2)这就是等差数列的求和公式。
2. 通项公式推导:为了推导等差数列的通项公式,我们假设等差数列的首项为a₁,公差为d,第n项为an。
通过观察等差数列的规律,我们可以发现:aₙ = a₁ + (n-1)d二、等比等比数列是指一个数列中每个数与它的前一个数之比是一个常数,这个常数被称为公比。
我们将针对等比数列的求和与通项公式进行讨论。
1. 求和公式:设等比数列的首项为a₁,公比为r,我们要求前n项的和Sn。
类似地,我们观察等比数列的前n项和与首项与末项之间的关系:Sn = (a₁ + a₂ + ... + aₙ)Sn * r = (a₁r + a₂r + ... + aₙr)通过两式相减,我们可以得到:Sn * (1 - r) = a₁(1 - rⁿ)化简后得到:Sn = a₁(1 - rⁿ) / (1 - r)这就是等比数列的求和公式。
2. 通项公式推导:为了推导等比数列的通项公式,我们假设等比数列的首项为a₁,公比为r,第n项为an。
通过观察等比数列的规律,我们可以发现:an = a₁ * r^(n-1)综上所述,我们介绍了等差数列和等比数列的求和以及通项公式推导。
这些公式在数列相关问题的求解中起到重要的作用。
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
数列数列的通项( 叠加法、累乘法求通项)一、具体目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.(2)数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值 得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。
【考点讲解】4. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 5. 递推公式推导通项公式方法: (1)叠加法:1()n n a a f n +-= 叠加法(或累加法):已知()⎩⎨⎧=-=+n f a a aa n n 11,求数列通项公式常用叠加法(或累加法)即112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ.(2)累乘法:已知()⎪⎩⎪⎨⎧==+n f a a a a nn 11求数列通项公式用累乘法. (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n na a p q q q q++=⋅+,令n n n q a b =,得:q b q p b n n 11+=+,再按 第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,, 解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较, 解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列.1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ(6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列. (7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数).解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q +=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解. 6. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要 求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法. 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用叠加法求解例1.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .【解析】法一:由题意可知:112,1n n a a a n +==++ 所以有()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,K ,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++.法二:由题意11n n a a n +=++可得:11n n a a n +-=+, ()111n n a a n --=-+,()1221n n a a n ---=-+,()2331n n a a n ---=-+,K ,3221a a -=+,2111a a -=+,1211a ==+.将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++.【答案】()112n n ++ 类型2 n n a n f a )(1=+ .解法:把原递推公式转化为)(1n f a a nn =+,利用叠乘法求解。
专题4.1 数列的概念与简单表示法知识储备知识点一数列及其有关概念思考1数列1,2,3与数列3,2,1是同一个数列吗?【答案】不是.顺序不一样.思考2根据你对于数列的定义的理解,看看能不能回答下面的问题:(1)按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.(2) 数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.思考3数列的记法和集合有些相似,那么数列与集合的区别在哪儿?【答案】数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.知识点二通项公式思考1数列1,2,3,4,…的第100项是多少?你是如何猜的?【答案】100.由前四项与它们的序号相同,猜第n项a n=n,从而第100项应为100.思考2上例中的a n=n当序号n取不同的值,就可得到不同的项,所以可以把a n=n当作数列1,2,3,4,…的项的通用公式,这个公式就叫通项公式.你能把通项公式推广到一般数列吗?【答案】如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.思考3数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?【答案】如图,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域,数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.知识点三数列的分类(1)按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.(2)按项的增减趋势分类,从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 知识点四 递推公式思考1 (1)已知数列{a n }的首项a 1=1,且有a n =3a n -1+2(n >1),则a 4=________. (2) 已知数列{a n }中,a 1=a 2=1,且有a n +2=a n +a n +1(n ∈N *),则a 4=________. 【答案】(1)53 (2)3思考2 上例是一种给出数列的方法,叫递推公式.你能概括一下什么叫递推公式吗?【答案】如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.思考3 我们已经知道通项公式和递推公式都能给出数列.那么通项公式和递推公式有什么不同? 【答案】通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项. 知识点五 数列的表示方法思考1 以数列2,4,6,8,10,12,…为例,你能用几种方法表示这个数列? 【答案】(1)解析法、列表法、图象法.数列可以用通项公式、图象、列表等方法来表示. (2)对数列2,4,6,8,10,12,…可用以下几种方法表示: ①通项公式法:a n =2n .②递推公式法:⎩⎪⎨⎪⎧a 1=2,a n +1=a n +2,n ∈N *.③列表法:④图象法:思考2 归纳一下数列的表示方法.【答案】数列的表示方法有通项公式法、图象法、列表法、递推公式法.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列11n ⎧⎫+⎨⎬⎩⎭是递增数列 D .数列()11nn ⎧⎫-⎪⎪+⎨⎬⎪⎪⎩⎭是摆动数列【答案】D【解析】数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列. 2.已知数列12,23,34,…,1n n +,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项【答案】C 【解析】由1nn +=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14 【答案】C【解析】观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .231log 3log 325+【答案】B【解析】a1·a2·a3·…·a30=log23×log34×log45×…×log3132=log232=log225=5. 5.已知递减数列{a n}中,a n=kn(k为常数),则实数k的取值范围是() A.R B.(0,+∞)C.(-∞,0) D.(-∞,0]【答案】C【解析】a n+1-a n=k(n+1)-kn=k<0.6.数列{a n}中,a n=-n2+11n,则此数列最大项是()A.第4项B.第6项C.第5项D.第5项和第6项【答案】D【解析】a n=-n2+11n=-2112n⎛⎫-⎪⎝⎭+1214,∵n∈N+,∴当n=5或n=6时,a n取最大值.故选D.7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘n,得到数列(记为)a1,a2,a3,…,a n.则n≥2时,a1a2+a2a3+…+a n-1a n=()A.n2B.(n-1)2 C.n(n-1) D.n(n+1)【答案】C【解析】由题意得a k=nk.k≥2时,a k-1a k=2211(1)1nnk k k k⎛⎫=-⎪--⎝⎭.∴n≥2时,a1a2+a2a3+…+a n-1a n=n21111112231n n⎡⎤⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦=n211n⎛⎫-⎪⎝⎭=n(n-1).故选C.8.由1,3,5,…,2n-1,…构成数列{a n},数列{b n}满足b1=2,当n≥2时,b n=a b n-1,则b6的值是()A.9 B.17C.33 D.65【答案】C【解析】∵b n=a b n-1,∴b2=a b1=a2=3,b3=a b2=a3=5,b4=a b3=a5=9,b5=a b4=a9=17,b6=a b5=a17=33.二、多选题9.(多选)一个无穷数列{a n }的前三项是1,2,3,下列可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2-12n -6C .a n =12n 2-12n +1 D .a n =26611n n -+ 【答案】AD【解析】对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2-12n +6,则a 1=-11,不符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =26611n n -+,则a 1=1,a 2=2,a 3=3,符合题意.故选A 、D. 10.(多选)数列{F n }:1,1,2,3,5,8,13,21,34,…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( ) A .S 5=F 7-1 B .S 5=S 6-1 C .S 2 019=F 2 021-1 D .S 2 019=F 2 020-1【答案】AC【解析】根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1,S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.故选A 、C.11.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+【答案】BD【解析】因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.12.“太极生两仪,两仪生四象,四象生八卦……”大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,从第一项起依次为0,2,4,8,12,18,24,32,40,50,…….记大衍数列为{}n a ,其前n 项和为*,n S n ∈N ,则( )A .20220a =B .357202111115051011a a a a ++++=C .232156S =D .246489800a a a a ++++=【答案】BCD【解析】根据数列前10项依次是0,2,4,8,12,18,24,32,40,50,,则奇数项为:2112-,2312-,2512-,2712-,2912-,,偶数项为:222,242,262,282,2102,,所以通项公式为221,(2,(2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数)为偶数),对于A , 22020020==2a ,故A 错误;对于B ,35720211111a a a a ++++22222222=++++31517120211----1111224466820202022⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭111111*********20202505100222202211⎛⎫=⨯-+-++-=-= ⎪⎝⎭,故B 正确; 对于C ,()()2313232422S a a a a a a =++++++222212323122+++-=,由()()22221211236n n n n +++++=,所以()()2323231461112215626S ++⎛⎫=-= ⎪⎝⎭,故C 正确;对于D ,24648a a a a ++++()222221242922421224=⨯+⨯+⨯++⨯=++()()242412241298006+⨯+=⋅=,故D 正确.故选:BCD三、填空题13.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________. 【答案】9【解析】由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9.14.已知数列{a n }的通项公式a n =1nn +,则a n ·a n +1·a n +2=________. 【答案】3n n + 【解析】a n ·a n +1·a n +2=1n n +·12n n ++·23n n ++=3n n +. 15.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________. 【答案】-1【解析】∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1.16.如图(1)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.【解析】因为OA 1=1,OA 2,OA 3…,OA n ,…,所以a 1=1,a 2,a 3…,a n . 四、解答题17.已知数列{}n a 的前n 项和2321n S n n =-+,(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前多少项和最大.【解析】(1)当1n =时,11321132a S ==-+=;当2n ≥时,()()()22132132111n n n a S S n n n n -⎡⎤=-=-+----+⎣⎦332n =-;所以:32,1332,2n n a n n =⎧=⎨-≥⎩;(2)因为()22321321n S n n n n =-+=--+()216257n =--+;所以前16项的和最大.18.在数列{}n a 中,2293n a n n =-++.(1)-107是不是该数列中的某一项?若是,其为第几项? (2)求数列中的最大项.【解析】(1)令22107,293107,291100n a n n n n =--++=---=,解得10n =或112n =-(舍去).所以10107a =- (2)229105293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭, 由于*n ∈N ,所以最大项为213a = 19.数列{a n }满足a 1= 1 ,a n +1 +2a n a n +1- a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项? 【答案】(1)见解析(2)121n a n =-(3)50【解析】(1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. (3)令119921n =-,解得50n =,故199是这个数列的第50项.20.已知数列2299291n n n ⎧⎫-+⎨⎬-⎩⎭. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间1233⎛⎫ ⎪⎝⎭,内有无数列中的项?若有,是第几项?若没有,说明理由.【解析】(1)设a n =f (n )=2299291n n n -+-=(31)(32)(31)(31)n n n n ---+=3231n n -+.令n =10,得第10项a 10=f (10)=2831. (2)令3231n n -+=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3231n n -+=1-331n +, 且n ∈N *,∴0<1-331n +<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内. (4)令13<a n =3231n n -+<23, ∴3196,9662,n n n n +<-⎧⎨-<+⎩∴7,68,3n n ⎧>⎪⎪⎨⎪<⎪⎩∴当且仅当n =2时,上式成立,故在区间1233⎛⎫⎪⎝⎭,内有数列中的项,且只有一项为a 2=47. 21.已知函数f (x )=x -1x.数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 【解析】∵f (x )=x -1x,∴f (a n )=a n -1n a ,∵f (a n )=-2n .∴a n -1na =-2n ,即2n a +2na n -1=0. ∴a n =-n.∵a n >0,∴a n-n .22.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.【解析】存在最大项.理由:a 1=12,a 2=2222=1,a 3=2332=98,a 4=2442=1,a 5=2552=2532,….∵当n≥3时,221122(1)2(1)22nnnna n na n n++++=⨯==1211n⎛⎫+⎪⎝⎭2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8 .∴当n=3时,a3=98为这个数列的最大项.。
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
数列求通项公式及求和9种方法数列是指按照一定规律排列的一系列数值。
求数列的通项公式和求和的方法是数列研究的基础,下面将介绍9种常见的方法。
一、等差数列求通项公式和求和等差数列是指数列中两个相邻项之间的差固定的数列。
例如:1,3,5,7,9,……,其中差为21.1求通项公式对于等差数列,可使用以下公式计算通项:通项公式:a_n=a_1+(n-1)*d其中a_n表示数列第n项,a_1表示数列第一项,d表示公差。
1.2求和求和的公式为:S_n=(a_1+a_n)*n/2其中S_n表示数列前n项的和。
二、等比数列求通项公式和求和等比数列是指数列中的两个相邻项之间的比值是固定的数列。
例如:1,2,4,8,16,……,其中比值为22.1求通项公式等比数列的通项公式为:a_n=a_1*q^(n-1)其中a_n表示数列的第n项,a_1表示数列的第一项,q表示公比。
2.2求和求等比数列前n项和的公式为:S_n=a_1*(q^n-1)/(q-1)三、斐波那契数列求通项公式和求和斐波那契数列是指数列中的每一项都等于前两项之和。
例如:0,1,1,2,3,5,8,13,……3.1求通项公式斐波那契数列的通项公式为:a_n=a_(n-1)+a_(n-2)其中a_n表示数列的第n项。
3.2求和斐波那契数列前n项和的公式为:S_n=a_(n+2)-1四、等差数列的和差公式求通项公式和求和对于等差数列,如果已知首项、末项和项数,可以使用和差公式求通项公式和求和。
4.1公式和差公式是指通过首项、末项和项数计算公差的公式。
已知首项a_1、末项a_n和项数n,可以使用和差公式计算公差d:d=(a_n-a_1)/(n-1)4.2求通项公式已知首项a_1、公差d和项数n,可以使用通项公式计算任意项的值:a_n=a_1+(n-1)*d4.3求和已知首项a_1、末项a_n和项数n,可以使用求和公式计算等差数列前n项的和:S_n=(a_1+a_n)*n/2五、等比数列的部分和求和公式求通项公式和求和对于等比数列,如果已知首项、公比和项数,可以使用部分和求和公式求通项公式和求和。
2017年高考备考之 3年高考2年模拟1年原创【三年高考】1. 【2016高考浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .【答案】 1212. 【2016高考山东理数】已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【解析】(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ,所以56+=n a n .设数列{}n b 的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,可解得3,41==d b ,所以13+=n b n .3.【2016高考江苏卷】记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥ . 【解析】(1)由已知得1*13,n n a a n N -=∙∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=.又30r S =,故13030a =,即11a =.所以数列{}n a 的通项公式为1*3,n n a n N -=∈.(2)因为{1,2,,}T k ⊆ ,1*30,n n a n N -=>∈,所以1121133(31)32k k k r k S a a a -≤+++=+++=-< .因此,1r k S a +<.(3)下面分三种情况证明.①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+= . ②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥ .③若D 不是C 的子集,且C 不是D 的子集.令U E C C D = ,U F D C C = 则E φ≠,F φ≠,E F φ= .于是C E C D S S S =+ ,D F C D S S S =+ ,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++==≤ ,故21E F S S ≥+,所以2()1C C D D C D S S S S -≥-+ ,即21C C D D S S S +≥+ .综合①②③得,2C C D D S S S +≥ .4.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑5. 【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 【答案】1n-【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1n S n =-. 6.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++= ,所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 7. 【2015高考新课标1,理17】n S 为数列{n a }的前项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前项和. 8.【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+. (I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【解析】(I )因为233n n S =+ ,所以,1233a =+ ,故13,a = 当1n > 时,11233,n n S --=+此时,1122233,nn n n n a S S --=-=- 即13,n n a -= 所以,13,1,3,1,n n n a n -=⎧=⎨>⎩(II )因为3log n n n a b a = ,所以113b =,当1n > 时,()11133log 313n n nn b n ---==-⋅ ,所以1113T b ==当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++- ,所以()()01231132313n n T n --=+⨯+⨯++- ,两式相减,得()()012122333133n nn T n ---=+++--⋅ ()11121313313n n n ----=+--⋅- 1363623n n +=-⨯ ,所以13631243n n n T +=+⨯,经检验,1n = 时也适合, 综上可得:13631243n n n T +=+⨯ 9.【2015高考重庆,理22】在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++10.【2014高考广东理第19题】设数列{}n a 的前项和为n S ,满足21234n n S na n n +=--,n N *∈,且315S =.(1)求1a 、2a 、3a 的值; (2)求数列{}n a 的通项公式.11.【2014高考湖南理第20题】已知数列{}n a 满足111,nn n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式. 【解析】 (1)因为数列{}n a 为递增数列,所以10n n a a +-≥,则11nnn n n n a a p a a p ++-=⇒-=,分别令1,2n =可得22132,a a p a a p -=-=2231,1a p a p p ⇒=+=++,因为123,2,3a a a 成等差数列,所以21343a a a =+()()224113130p p p p p ⇒+=+++⇒-=13p ⇒=或, 当0p =时,数列n a 为常数数列不符合数列{}n a 是递增数列,所以13p =. (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为12.【2014高考全国1第17题】已知数列{}n a 的前项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由.【解析】(I )由题设,11n n n a a S λ+=-,1211n n n a a S λ+++=-.两式相减得,121()n n n n a a a a λ+++-=.由于10n a +≠,所以2n n a a λ+-=.【三年高考命题回顾】纵观前三年各地高考试题, 对数列通项公式和求和这部分的考查,主要考查数列的概念与表示方法、数列递推关系与通项公式的联系、数列的求和方法,往往与函数、方程、不等式等知识建立联系,高考中一般会以各种形式考查.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出, 高考对数列概念与表示方法的考查,要深刻体会数列不光体现一种递推关系,它具有函数特征,故经常会与函数、方程、不等式等知识联系考察.对数列通项公式的考察,一般会以等差数列和等比数列具体形式出现,或者由项的递推关系或者项与前n项的的关系得出,同时要注意从特殊到一般思想的灵活运用.对数列求和的考察,要掌握常见的数列求和方法(直接求和、倒序相加法、错位相减法、裂项相加法),往往会和不等式建立联系,会牵涉到放缩法,难度会大点,注意等价转换思想的活用.这部分试题难度属中低档的题目,小题突出“小、巧、活”,主要以通项公式、前n项和公式为载体,结合数列的性质考查分类讨论、化归与方程等思想,要注重通性、通法;解答题“大而全”,注重题目的综合与新颖,突出对逻辑思维能力的考查.由于连续两年大题没涉及数列,故预测2017年高考将以等差数列,等比数列的定义、通项公式和前n项和公式为主要考点,特别是错位相减法求和问题,重点考查学生的运算能力与逻辑推理能力.【2017年高考考点定位】高考对数列的通项公式与求和的考查有三种主要形式:一是考察数列的概念与表示;二是数列通项公式;三是数列求和;其中经常与函数、方程、不等式等知识的相联系.【考点1】数列的概念与表示【备考知识梳理】1.定义:按照一定顺序排列着的一列数.2.表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.3.分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.4.n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.5.处理方法:.用函数的观点处理数列问题 【规律方法技巧】1. 数列是定义域为正整数集或其有限子集的函数,故数列具有函数的特征(周期性、单调性等).2. 观察法是解决数列问题的法宝,先根据特殊的几项,找出共同的规律,横看“各项之间的关系结构”,纵看 “各项与项数n 的关系”,从而确定数列的通项公式. 【考点针对训练】1. 【2016年4月河南八市高三质检卷】已知*1log (2)()n n a n n N +=+∈,观察下列算式:1223lg3lg 4log 3log 42lg 2lg3a a ∙=∙=∙=;123456237lg3lg 4lg8log 3log 4log 83lg 2lg3lg 7a a a a a a ∙∙∙∙∙=∙=∙= ,…;若*1232016()m a a a a m N ∙∙∙∙=∈ ,则m 的值为( )A .201622+ B .20162 C .201622- D .201624-【答案】C【解析】由题意:1223lg3lg 4log 3log 42lg 2lg3a a ∙=∙=∙=;123456237lg3lg 4lg8log 3log 4log 83lg 2lg3lg 7a a a a a a ∙∙∙∙∙=∙=∙= ,…;12345613142315lg3lg 4lg16log 3log 4log 1616,lg 2lg3lg15a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅=⋅=⋅= …;据此可知,*1232016()m a a a a m N ∙∙∙∙=∈ ,则m 的值为201622-2.数列 ,817,275,31,31--的一个通项公式是A .n n a n n 312)1(1--=+ B .n n a n n 312)1(--= C . n n n n a 312)1(1--=+ D . nn n n a 312)1(--= 【答案】C.【考点2】递推关系与数列通项公式 【备考知识梳理】在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈.数列通项公式的求解常用方法:1、定义法,直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.2、公式法, 若已知数列的前项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.3、由递推式求数列通项法,对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列.4、待定系数法(构造法),求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法. 【规律方法技巧】 数列的通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥.⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩.⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥.⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥.⑹已知递推关系求n a ,用构造法(构造等差、等比数列).特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为的等比数列后,再求n a .如(21)已知111,32n n a a a -==+,求n a ;(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项.注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解. (3)由n S 与1n S -的关系,可以先求n S ,再求n a ,或者先转化为项与项的递推关系,再求n a . 【考点针对训练】1. 【2016届榆林市高三二模】在数列{}n a 中,()1111,114n n a a n a -=-=->,则2016a 的值为( ) A .14-B .5C .45D .以上都不对 【答案】C2. 【2016湖北省八校高三.二联】数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos3n n n b a π,记n S 为数列{}n b 的前项和,则120S = . 【答案】7280【解析】由()()1=11n n na n a n n ++++得,111n n a a n n +=++,所以数列n a n ⎧⎫⎨⎬⎩⎭是以为公差的等差数列,且111a =,所以n a n n =,2n a n =,22cos 3n n b n π=,所以222222212011111234561202222S =-⨯-⨯+-⨯-⨯+-+22222221(1223456120)2=-+-⨯++-+- 222222221[(123120)3(369120)]2=-++++-⨯++++ 22222221139(1240)(123120)22=⨯⨯⨯++-⨯++++ 140418111201212413972802626⨯⨯⨯⨯=⨯⨯⨯-⨯= 【考点3】数列求和 【备考知识梳理】数列的求和也是高考中的热点内容,考察学生能否把一般数列转化为特殊数列求和,体现了化归的思想方法,其中错位相减和裂项相消是高考命题的热点.估计在以后的高考中不会有太大的改变.数列求和的常用方法,尤其是利用裂项法和错位相减法求一些特殊数列的和,数列求和的基本方法:1.基本公式法:()1等差数列求和公式:()()11122n n n a a n n S na d +-==+ ()2等比数列求和公式:()111,11,111n n n na q S a q a a qq q q =⎧⎪=-⎨-=≠⎪--⎩()30122nn n nn n C C C C ++++= . 2.错位相消法:一般适应于数列{}n n a b 的前向求和,其中{}n a 成等差数列,{}n b 成等比数列.3.分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和.4.拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有:()1若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; ()2()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;()31k=;()411m m m n n n C C C -+=-;()5()!1!!n n n n ⋅=+-.5.倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的.【规律方法技巧】数列求和关键是研究数列通项公式,根据通项公式的不同特征选择相应的求和方式,若数列是等差数列或等比数列,直接利用公式求和;若通项公式是等差乘等比型,利用错位相减法;若通项公式可以拆分成两项的差且在累加过程中可以互相抵消,利用裂项相消法,从近年的考题来看,逐渐加大了与函数不等式的联系,通过对通项公式进行放缩,放缩为易求和的数列问题处理. 【考点针对训练】1. 【2016年江西九江高三第三次联考】设n S 是等差数列{}n a 的前项和,若12,21344672==S S ,则=2016S ( )A .22 B .26 C .30 D .34 【答案】C【解析】由134420166721344672,,S S S S S --成等差数列,得1221022016-+=⨯S ,即=2016S 30,故选C.2. 【2016届淮北一中高三最后一卷】已知函数()()()()1210log 110ax x f x x x ⎧->⎪=⎨+-<≤⎪⎩且334f f ⎡⎤⎛⎫-= ⎪⎢⎥⎝⎭⎣⎦,在各项为正的数列{}n a 中,{}1112,,2n n n a a f a a +⎛⎫==+ ⎪⎝⎭的前项和为n S ,若126n S =,则n =____________. 【答案】6【应试技巧点拨】1. 由递推关系求数列的通项公式 (1)利用“累加法”和“累乘法”求通项公式此解法来源与等差数列和等比数列求通项的方法,递推关系为1()n n a a f n +-=用累加法;递推关系为1()n n a f n a +=用累乘法.解题时需要分析给定的递推式,使之变形为1n n a a +-、1n naa +结构,然后求解.要特别注意累加或累乘时,应该为)1(-n 个式子,不要误认为个. (2)利用待定系数法,构造等差、等比数列求通项公式求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ).把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. 3.如何选择恰当的方法求数列的和在数列求和问题中,由于题目的千变万化,使得不少同学一筹莫展,方法老师也介绍过,就不清楚什么特征用什么方法.为此提供一个通法 “特征联想法”:就是抓住数列的通项公式的特征,再去联想常用数列的求和方法.通项公式作为数列的灵魂,只有抓住它的特征,才能对号入座,得到求和方法.特征一:....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. 特征二:n n n C a b =⋅,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错位相减法”. 特征三:1n n nC a b =⋅,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. 特征四:nn n n C C a =⋅,数列{}n C 的通项公式是一个组合数和等差数列通项公式组成,一般采用“倒序相加法”.4. 利用转化,解决递推公式为n S 与n a 的关系式. 数列{n a }的前项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.通过纽带:12)n n n a S S n -=-≥(,根据题目求解特点,消掉一个n n a S 或.然后再进行构造成等差或者等比数列进行求解.如需消掉n S ,利用已知递推式,把n 换成(n+1)得到递推式,两式相减即可.若消掉n a ,只需把1n n n a S S -=-带入递推式即可.不论哪种形式,需要注意公式1n n n a S S -=-成立的条件 2.n ≥5.由递推关系求数列的通项公式(1)利用“累加法”和“累乘法”求通项公式此解法来源与等差数列和等比数列求通项的方法,递推关系为1()n n a a f n +-=用累加法;递推关系为1()n n a f n a +=用累乘法.解题时需要分析给定的递推式,使之变形为1n n a a +-、1n naa +结构,然后求解.要特别注意累加或累乘时,应该为)1(-n 个式子,不要误认为个. (2)利用待定系数法,构造等差、等比数列求通项公式求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ).把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解.1. 【2016届宁夏石嘴山三中高三下三模】数列{}n a 满足11=a ,对任意的*N n ∈都有n a a a n n ++=+11,则+++ (1)121a a =20161a ( ) A .20162015 B .20172016 C .20174034 D .20174032【答案】D2. 【2016届云南省玉溪一中高三下第八次月考】若数列{n a }满足11n a --1na =d (n ∈N ﹡,d 为常数),则称数列{n a }为调和数列.已知数列{1nx }为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A .10B .20C .30D .40 【答案】B【解析】由题意知1n n x x d --=-(常数),所以数列{}n x 是以1x 为首项,d -为公差的等差数列,则有()122051610200x x x x x +++=⋅+= ,51620x x +=.故选B.3. 【2016届河南郑州一中高三考前冲刺一】数列{}n a 满足:11=a ,且对任意的*∈N n m ,,都有mn a a a n m n m ++=+,则=+⋅⋅⋅+++20143211111a a a a ( ) A .20142013 B .10072013 C .20152013 D .20154028【答案】D【解析】因为mn a a a n m n m ++=+,则可得10,6,3,14321====a a a a ,则可猜得()21+=n n a n ,∴()⎪⎭⎫ ⎝⎛+-=+=1112121n n n n a n ,∴12320141111111112122320142015a a a a ⎛⎫+++⋅⋅⋅+=-+-+- ⎪⎝⎭ 40282015=,故选D . 4. 【2016届河南郑州一中高三考前冲刺】已知数列{}n a 满足m n n a n ++-=3453123,若数列{}n a 的最小项为,则实数m 的值为( ) A .41 B .31 C .41- D .31- 【答案】B5. 【2016年淮北一中高三模考】数列 {}n a 中,()11126,212n n n a a a a n n n--=-=++≥,则此数列的通项公式n a =___________.【答案】()()1121n n ++-【解析】由11221n n n a a a n n ---=++得1211n n a a n n -=++,所以112(1)1n n a an n -+=++,又1142a +=,所以{1}1n a n ++是等比数列,所以1114221n n n a n -++=⨯=+,即1(1)(21)n n a n +=+-.6. 【2016年河北石家庄高三二模】数列{}n a 满足:1132,51++⋅=-=n n n n a a a a a ,则数列{}1+⋅n n a a 前10项的和为______.【答案】10217. 【2016年江西省南昌市高三一模测试】数列{a n }的前n 项和为S n ,若S n +S n 一1=2n-l (n>2),且S 2 =3,则a 1+a 3的值为 。