2010届高考数学总结精华版第一章-集合
- 格式:doc
- 大小:98.00 KB
- 文档页数:5
《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。
集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。
集合中的元素无序,不重复。
2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。
(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。
(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。
(4)互斥:两个集合的交集为空集,即A∩B=∅。
(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。
3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。
(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。
(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。
4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。
(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。
通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。
5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。
(2)单射:每个自变量只对应唯一的因变量。
(3)满射:每个因变量都有对应的自变量。
(4)一一对应:既是单射又是满射的映射。
(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。
总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。
理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。
在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。
<∆∆0=>∆0关于直线对称。
x y =⑦证明函数图像的对称性,即证明图像上任意点关于对称注意:①根据要求先画出抛物线,然后写出图象成立的充要条件。
<-20n a b使得取最大值使得取最小值。
,=,=)ααcos -)2(α-ctg αtg =-)3(απtg tg -、三角函数的图象:的最大值是B x ++)sin(ϕω),(其中00>>ωA A +,频率是,相位是,初相是;其图象的对称轴ωπ2πω2=f ϕω+x ϕ,凡是该图象与直线的交点都是该图象的对称中心)(2Z k ∈+πB y =)。
k π=三角函数的单调区间:的递增区间是,递减区间是⎤⎡+-22ππππk k ,)(Z k ∈⎡2πk1.平面向量知识结构表2.向量的概念①向量的加法与减法:定义与法则(如图5-1):a+b =(x 1+x 2,y 1+y 2),a-b =(x 1-x 2,y 1-y 2)。
其中a =(x 1,y 1),b =(x 2,y 2)。
运算律:a+b=b+a,(a+b)+c=a+(b+c),a+0=0+a=a 。
②向量的数乘(实数与向量的积)定义与法则(如图5-2):λa=λ(x,y)=(λx, λy)(1)︱︱=︱︱·︱︱;λa λa λa+λb。
=,OA a )=λ(·),(b a b 2121y y x x +分有向线段AB 所成的比为+=+=222121y y x x ,但不一定有斜率。
(斜率=tgα,α=90 时,无斜率),这时必有两条切线,注意不要漏掉平行于例如:一条直线经过点,且被圆截得的弦长为求此弦所在直线的方程。
该题就要注意,不要漏掉准线方程:,1ex 1122)(ex a x ca e PF -=-=通径,过焦点与长轴垂直的直线与椭圆相交所得弦,其长为22b a中经常利用余弦定理、三角形面积公式将有关线段、1PF轨迹是双曲线。
12222=-b y )0,0(>>b a 122=)0,0(>>b a ; y∈R; 实轴长,虚轴长=2b}a x a x x ≤≥、2c 准线方程:ca x 2±=)图中线段的几何特征:=1AF BF 22.图形:性质:方程:(焦点到准线的距离);、、、-->=p p px y ),0(,22(p)的焦点F 的弦为AB +p以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用。
高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆A B B ⊆B{x A A = A ∅= B A ⊇ B B ⊇交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ=== 等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)。
高中数学集合知识点总结6篇篇1一、集合的基本概念集合是数学中非常重要的概念,它是具有某种特定性质的事物的总体。
集合通常由大括号{}括起来,其元素之间用逗号隔开。
集合分为有限集合和无限集合,有限集合的元素个数是有限的,无限集合的元素个数是无限的。
例如,自然数集合就是一个无限集合。
二、集合的表示方法集合的表示方法有多种,包括列举法、描述法、图示法等。
列举法是将集合中的元素一一列举出来;描述法是通过描述元素的一般性质来确定集合;图示法则是通过画图来表示集合。
在实际应用中,可以根据需要选择适当的表示方法。
三、集合的分类根据元素的性质,集合可以分为多种类型,包括数集、点集、线集等。
数集是最常见的集合类型,它包含具有一定数学规律的数的总体。
点集则是包含具有某种几何性质的点的总体,如平面上的点集。
线集则包含直线、线段等几何图形的总体。
四、集合的基本运算集合的基本运算包括并集、交集、差集和对称差等。
并集是两个或多个集合中所有元素的集合;交集是两个集合中共有的元素的集合;差集是一个集合中不属于另一个集合的元素的集合;对称差是两个集合的并集中去掉它们的交集后的元素构成的集合。
在进行集合运算时,需要明确各个运算的定义和性质。
五、数集的表示及基本性质数集是数学中最重要的集合之一,它包含具有一定数学规律的数的总体。
常见的数集包括自然数集、整数集、有理数集和无理数集等。
自然数集包括所有非负整数;整数集包括所有正整数、负整数和零;有理数集包括所有可以表示为两个整数之比的数;无理数集则是无法表示为两个整数之比的数。
数集具有一些基本性质,如可数性、有序性等。
这些性质在进行数学运算和证明时非常重要。
六、高中数学中的其他相关知识点高中数学中还有许多与集合相关的知识点,如区间与邻域的概念、数列与序列的概念、映射与函数的概念等。
这些知识点都与集合有着密切的联系,在进行数学学习时需要掌握这些知识点。
区间和邻域的概念对于理解数列和函数的性质非常重要;数列和序列的概念有助于理解数学中的有序结构;映射和函数的概念则是数学中非常重要的基础概念之一。
高中数学必修1集合知识点总结XXX Knowledge Summary Chapter 1 Concept of Sets and ns [1.1.1] Meaning and n of Sets (1) Concept of SetsXXX XXX set have certainty。
distinctiveness。
and disorderliness.2) XXXN represents the set of natural numbers。
N* or N+ represents the set of positive integers。
Z represents the set of integers。
Q represents the set of nal numbers。
and R represents the set of real numbers。
(3) nship een Sets and ElementsXXX een object a and set M is a∈M。
or a∉M。
one of which must be true。
(4) XXX① XXX: List all the elements in the set one by one and write them in braces to represent the set。
② n Method: {x|x has the property}。
where x is the representative element of the set。
③Graphical Method: Use a number line or a Venn diagram to represent the set.5) n of Sets① A set with a finite number of elements is called a finite set。
高中数学第一章知识点总结高中数学第一章知识点总结,主要包括集合与函数概念等内容。
集合有关概念、集合的表示方法、集合的元素特性等;函数概念、函数的性质、函数的表示、函数的应用等。
高中数学第一章知识点总结一、集合与函数概念1. 集合集合是指由某些对象共同组成的一个群体,可以用小写拉丁字母表示,如 A、B、C 等。
集合的元素称为集合的成员或元素,集合的符号表示为{ }。
2. 函数函数是指一种特殊的关系,表示出一个变量与其他变量之间的关系。
函数可以用等式或不等式表示,函数的定义域、值域、取值范围等也是函数的重要概念。
二、集合间的基本关系1. 包含关系集合 A 包含于集合 B,记作 AB,表示 A 中的元素都是 B 中的元素,且 B 中的元素不一定是 A 中的元素。
2. 相等关系两个集合 A 和 B 相等,记作 A=B,表示 A 中的所有元素都与 B 中的所有元素相等。
3. 包含于关系集合 B 包含于集合 A,记作 BA,表示 A 中的元素都是 B 中的元素,且 B 中的元素不一定是 A 中的元素。
三、集合的分类1. 有限集有限集是指含有有限个元素的集合,例如,{1,2,3}、{a,b,c}等。
2. 无限集无限集是指含有无限个元素的集合,例如,{1,2,3,4,...}、{a,b,c,...}等。
3. 空集空集是指不含任何元素的集合,例如,{ }等。
四、集合间的基本关系1. 子集如果集合 A 中有任意一个元素,都包含于集合 B 中,那么集合A 就是集合B 的子集。
例如,{1,2,3}是{a,b,c}的子集。
2. 真子集如果集合 A 是集合 B 的子集,并且集合 B 不是空集,那么集合 A 就是集合 B 的真子集。
例如,{1,2,3}是{a,b,c}的真子集。
五、函数的性质1. 函数的定义域函数的定义域是指函数的自变量可能取值的集合,例如,f(x)=x^2 的定义域为 R。
2. 函数的值域函数的值域是指函数的因变量可能取值的集合,例如,f(x)=x^2 的值域为 R。
2010年高考题 一、选择题1.(2010浙江理)(1)设P={xx<4},Q={x<4},则 (A) (B)(C) (D),可知B正确,本题主要考察了集合的基 本运算,属容易题 2.(2010陕西文)1.集合A={x-1≤x≤2},B={xx<1},则A∩B=(A){xx<1}(B){x-1≤x≤2} (C) {x-1≤x≤1} (D) {x-1≤x<1}{x-1≤x≤2}{xx<1}{x-1≤x<1},,则 (A)(B) (C) (D) 答案 D 【解析】选D. 在集合中,去掉,剩下的元素构成 4.(2010辽宁理)1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},B∩A={9},则A=(A){1,3}(B){3,7,9} (C){3,5,9} (D){3,9} 答案 D 【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力。
【解析】因为A∩B={3},所以3∈A,又因为B∩A={9},所以9∈A,所以选D。
本题也可以用Venn图的方法帮助理解。
5.(2010全国卷2文) (A) (B) (C) (D) 答案C 解析:本题考查了集合的基本运算. 属于基础知识、基本运算的考查. ∵ A={1,3}。
B={3,5},∴ ,∴故选 C . 6.(2010江西理),,则=( ) A. B. C. D. 答案 C 【解析】考查集合的性质与交集以及绝对值不等式运算。
常见的解法为计算出集合A、B;,,解得。
在应试中可采用特值检验完成。
7.(2010安徽文)(1)若A=,B=,则=(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) C 【解析】,则 (A)(B) (C)(D) 答案 D 解析:,故答案选D,本题主要考察了集合的基本运算,属容易题 9.(2010山东文)(1)已知全集,集合,则=A. B. C. D. 答案:C 10.(2010北京文)⑴ 集合,则=(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3} 答案:B 11.(2010北京理)(1) 集合,则=(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x≤3} 答案:B 12.(2010天津文)(7)设集合 则实数a的取值范围是 (A) (B) (C) (D) 答案 C 【解析】本题主要考查绝对值不等式的基本解法与集合交集的运算,属于中等题。
高中数学必修1知识点总结高中数学必修1知识点总结第一章集合与函数概念1.1.1 集合的含义与表示集合是由元素组成的整体,元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。
集合与元素间的关系可以用a∈M表示对象a属于集合M,用a∉M表示对象a不属于集合M。
集合的表示方法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集。
1.1.2 集合间的基本关系集合间的基本关系有子集、真子集和集合相等。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A是B的子集且A≠B,则称A是B的真子集,记作A⊂B。
如果A是B的子集且B是A的子集,则称A和B相等,记作A=B。
如果集合A有n(n≥1)个元素,则它有2^n个子集,2^n-1个真子集,2^n-1个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算有交集、并集和补集。
集合A和B的交集是由同时属于A和B的元素组成的集合,记作A∩B。
集合A和B的并集是由属于A或B的元素组成的集合,记作A∪B。
集合A的补集是由不属于A的元素组成的集合,记作A'或Ac。
其中,U表示全集,A'也可以写成U-A。
补充知识】含绝对值的不等式与一元二次不等式的解法1)含绝对值的不等式的解法当不等式中含有绝对值时,可以根据绝对值的定义,将不等式拆分成两个不等式来求解。
例如,对于不等式 |x|<a (a>0),可以拆分成 -a<x<a,即解集为{x|-a<x<a};对于不等式 |x|>a (a>0),可以拆分成x<-a 或 x>a,即解集为{x|x<-a 或 x>a}。
同样地,对于形如 |ax+b|<c 或 |ax+b|>c (c>0) 的不等式,也可以通过拆分绝对值的方式,转化为 |x|<a 或 |x|>a (a>0)的形式,然后根据前面的方法求解。
2)一元二次不等式的解法对于一元二次不等式 ax²+bx+c>0 (a>0),可以先求出二次函数 y=ax²+bx+c 的图象,然后根据图象的位置关系,确定不等式的解集。
(每日一练)高中数学必修一集合知识点归纳总结(精华版)单选题1、已知全集U={x∈N|−1<x≤9},集合A={0,1,3,4},B={y|y=2x,x∈A},则(∁U A)∩(∁U B)=()A.{5,7}B.{7,9}C.{5,7,9}D.{1,2,3,4,5,6,7,8,9}答案:C解析:根据给定条件用列举法表示全集U,求出集合B,再按给定运算即可作答.因为U={x∈N|−1<x≤9},于是得U={0,1,2,3,4,5,6,7,8,9},又集合A={0,1,3,4},B={y|y=2x,x∈A},则B={0,2,6,8},从而得∁U A={2,5,6,7,8,9},∁U B={1,3,4,5,7,9},所以(∁U A)∩(∁U B)={5,7,9}.故选:C2、已知集合A={1,2,3,4},B={x|3﹣x>0},则A∩B=()A.{1,2}B.{1,2,3)C.{1,2,3,4}D.{1}答案:A解析:根据集合交集定义直接求解,即得结果.因为A={1,2,3,4},B={x|x<3},所以A∩B={1,2}故选:A.小提示:本题考查交集定义,考查基本分析求解能力,属基础题.3、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B解析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.4、已知集合A={x|x2−1=0},则下列式子表示正确的有()①1∈A②{−1}∈A③∅∈A④{−1,1}⊆AA .1个B .2个C .3个D .4个答案:B解析:先求出集合A 中的元素,然后逐项分析即可.因为A ={x|x 2−1=0}={−1,1},则1∈A ,所以①正确;{−1}⊆A ,所以②不正确;∅⊆A ,所以③不正确;{−1,1}⊆A ,所以④正确,因此,正确的式子有2个. 故选:B.5、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是() A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C解析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解. 因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C。
高中数学第一章-集合
考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件.
考试要求:
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一)集合
1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2.集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
集合的性质:
①任何一个集合是它本身的子集,记为A
A⊆;
②空集是任何集合的子集,记为A
φ;
⊆
③空集是任何非空集合的真子集;
如果B
B⊆,那么A = B.
A⊆,同时A
如果C
⊆
A⊆
⊆,那么
,.
B
A
C
B
[注]:①Z= {整数}(√)Z ={全体整数} (×)
②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=+
N,则C s A= {0})
③空集的补集是全集.
④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R
}二、四象限的点集.
③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例:
⎩
⎨
⎧=-=+1323
y x y x 解的集合{(2,1)}.
②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2
+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n
个. ②n 个元素的真子集有2n
-1个. ③n 个元素的非空真子
集有2n -2个.
5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.
解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②
且21≠≠y x 3≠+y . 解:逆否:x + y =3
x = 1或y = 2.
2
1≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.
{|,}{|}{,}
A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:
,,,,
,;,;,.
U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇ C
(2) 等价关系:U A B A B A A B B A B U ⊆⇔=⇔=⇔= C (3) 集合的运算律:
交换律:.;A B B A A B B A ==
结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===
等幂律:.,A A A A A A ==
求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U
反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )
6. 有限集的元素个数
定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.
基本公式:
(1)()()()()(2)()()()()
()()()()
card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+
(3) card ( U A )= card(U)- card(A)
(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)
①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为
了统一方便)
②求根,并在数轴上表示出来;
③由右上方穿线,经过数轴上表示各根的点(为什么?);
④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等
式是“<0”,则找“线”在x 轴下方的区间.
x
(自右向左正负相间) 则不等式)0)(0(002
21
10><>++++--a a x
a x
a x a n n n n
的解可以根据各区间的符号
确定.
特例① 一元一次不等式ax>b 解的讨论;
2
原命题若p 则q
否命题若┐p 则┐q 逆命题若q 则p
逆否命题若┐q 则┐p
互为逆否互逆否互为逆
否
互
互逆
否
互
2.分式不等式的解法 (1)标准化:移项通分化为
)
()(x g x f >0(或
)
()(x g x f <0);
)
()(x g x f ≥0(或
)
()(x g x f ≤0)的形式,
(2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0
)(0
)()(0)
()
(;
0)()(0)
()(x g x g x f x g x f x g x f x g x f 3.含绝对值不等式的解法
(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布 一元二次方程ax 2
+bx+c=0(a ≠0)
(1)根的“零分布”:根据判别式和韦达定理分析列式解之.
(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑
1、命题的定义:可以判断真假的语句叫做命题。
2、逻辑联结词、简单命题与复合命题:
“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。
3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反;
(2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;
(3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.
4、四种命题的形式:
原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。
(1)交换原命题的条件和结论,所得的命题是逆命题;
(2)同时否定原命题的条件和结论,所得的命题是否命题;
(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.
5、四种命题之间的相互关系:
一个命题的真假与其他三个命题的真假有如下三条关系:(原命题⇔逆否命题)
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
6、如果已知p⇒q那么我们说,p是q的充分条件,q是p的必要条件。
若p⇒q且q⇒p,则称p是q的充要条件,记为p⇔q.
7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。